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On the Structure of Cuntz Semigroups in
(Possibly) Nonunital C*-algebras

Aaron Peter Tikuisis and Andrew Toms

Abstract. We examine the ranks of operators in semi-finite C∗-algebras as measured by their densely
defined lower semicontinuous traces. We first prove that a unital simple C∗-algebra whose extreme
tracial boundary is nonempty and finite contains positive operators of every possible rank, indepen-
dent of the property of strict comparison. We then turn to nonunital simple algebras and establish
criteria that imply that the Cuntz semigroup is recovered functorially from the Murray–von Neu-
mann semigroup and the space of densely defined lower semicontinuous traces. Finally, we prove that
these criteria are satisfied by not-necessarily-unital approximately subhomogeneous algebras of slow
dimension growth. Combined with results of the first author, this shows that slow dimension growth
coincides with Z-stability for approximately subhomogeneous algebras.

1 Introduction

It has recently become apparent that the question of which ranks, suitably defined,
can occur in a simple and stably finite C∗-algebra has considerable bearing on the
deeper structure of the algebra. The most significant example is due to Winter, who
uses the notion of approximate divisibility of ranks in such algebras as an essential
ingredient in his proof of Z-stability for a wide class of nuclear C∗-algebras [23].
Z-stability, in turn, is by now an indispensable tool in the effort to classify simple
separable amenable C∗-algebras via K-theoretic data.

Several articles have appeared concerning ranks of operators in unital C∗-algebras
([4,6,16,20]); much of that work required further assumptions on the comparability
of positive operators in the sense of Cuntz. Here, we pursue two lines of research.
On the one hand, we prove that a unital simple C∗-algebra with finitely many ex-
treme tracial states contains positive operators of every possible rank, regardless of
separability, nuclearity, or comparability of positive operators.

We also begin to treat the nonunital and potentially stably projectionless cases,
particularly nonunital approximately subhomogeneous algebras. We define a mea-
sure (called the radius of divisibility) of how closely each linear strictly positive func-
tion on the trace space of an algebra can be approximated by the rank function of
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a positive operator, and then show that this quantity is lower semicontinuous with
respect to inductive limits. After computing this invariant for recursive subhomo-
geneous algebras, we are able to explicitly describe the Cuntz semigroup of simple
approximately subhomogeneous algebras with slow dimension growth, à la Brown,
Perera, and Toms [4]. In [22], the first author shows that this structure for the Cuntz
semigroup entails Z-stability of the approximately subhomogeneous algebra; in fact,
slow dimension growth and Z-stability are equivalent for simple approximately sub-
homogeneous algebras, extending the main result of [20] to the nonunital case.

Our result for unital simple C∗-algebras with finitely many extreme traces bears
some relationship to the main result of [12], which says that for unital, simple, sep-
arable, nuclear C∗-algebras with finitely many extreme traces, strict comparison and
Z-stability are equivalent. On the one hand, their result implies ours under the addi-
tional hypotheses of separability, nuclearity, and strict comparison. In [23], one finds
another Z-stability theorem for C∗-algebras under a number of hypotheses, includ-
ing (tracial) m-divisibility, a condition related to the ranks of positive operators. Our
result gives evidence that one may not be surprised that the Z-stability theorem in
[12] does not have a condition about the ranks of positive operators as a hypothesis.
Such a condition holds automatically for the algebras considered there.

The organization of this paper is as follows. After preliminaries in Section 2, we
discuss traces and C∗-algebras with compact primitive ideal space in Section 3. Our
first main result, concerning C∗-algebras with finitely many extreme traces, is in Sec-
tion 4. The radius of divisibility and its pertinent properties are established in Sec-
tion 5. Section 6 contains a computation of the Cuntz semigroup for simple exact
C∗-algebras, assuming that the Cuntz semigroup enjoys certain regularity proper-
ties. Finally, we apply the theory developed in Sections 5 and 6 to approximately
subhomogeneous C∗-algebras in Section 7.

2 Preliminaries

Let A be a C∗-algebra. Let us consider on (A ⊗K)+ the relation a - b if vnbv∗n → a
for some sequence (vn) in A ⊗ K. Let us write a ∼ b if a - b and b - a. In this
case we say that a is Cuntz equivalent to b. Let Cu(A) denote the set (A ⊗ K)+/ ∼
of Cuntz equivalence classes. We use [a] to denote the class of a in Cu(A). It is
clear that [a] ≤ [b] ⇔ a - b defines an order on Cu(A). We also endow Cu(A)
with an addition operation by setting [a] + [b] := [a′ + b′], where a′ and b′ are
orthogonal and Cuntz equivalent to a and b, respectively (the choice of a′ and b′

does not affect the Cuntz class of their sum). In addition, Cu(A) has the relation
�, defined by [a] � [b] if, whenever ([bn])∞n=1 is an increasing sequence in Cu(A)
and [b] ≤ supn[bn], there exists n0 such that [a] ≤ [bn0 ]. This relation has proven
very important in the theory of the Cuntz semigroup, particularly since the seminal
article [5].

We shall use T(A) to denote the set of lower semicontinuous, densely finite (a.k.a.
densely defined) traces, as defined in [13, Definition 5.2.1]. Given τ ∈ T(A) we
define a map dτ : Cu(A)→ [0,∞] by the formula

dτ ([a]) := lim
n→∞

τ (a1/n).
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This is well defined. We could make this definition whenever τ is a 2-quasitrace,
but we wish to avoid defining these here. Indeed, we are only concerned here with
exact C∗-algebras, and all 2-quasitraces on an exact C∗-algebra are traces; this was
shown in [2] by reducing to the unital case, which was proven by Haagerup [11]. All
functionals on Cu(A) (suitably-defined) are of the form dτ for a 2-quasitrace τ [1].

Define ι : (A⊗K)+ → Lsc(T(A), [0,∞]) by

ι(a)(τ ) = dτ (a).

Then ι(a) is lower semicontinuous ( see [16, Proposition 2.10] in the unital case,
[9, Section 5.1] in general). When we ask which ranks of positive operators occur, we
mean: what is the range of ι?

We shall say that Cu(A) is almost unperforated if, whenever [x], [y] ∈ Cu(A)
satisfy (k + 1)[x] ≤ k[y] for some k ∈ N, it follows that [x] ≤ [y].

3 Compact Primitive Ideal Space and Traces

Proposition 3.1 Let A be a C∗-algebra. The following statements are equivalent:

(i) Prim(A) is compact;
(ii) there exists e ∈ A+ and ε > 0 such that (e− ε)+ is full;
(iii) there exists a full element in the Pedersen ideal of A;
(iv) there exist a, b ∈ Mn(A)+, some n, such that a is full and [a]� [b].

Proof The equivalence of (i) and (ii) follows directly from [19, Proposition 3.5].
(ii)⇒ (iii) is clear since (e− ε)+ is in the Pedersen ideal of A (this is evident from the
description of the Pedersen ideal in the proof of [13, Theorem 5.6.1]).

(iii)⇒ (iv): Let a be full and in the Pedersen ideal. We shall show that there exists
b ∈ Mn(A)+ for some n such that [a]� [b].

The proof of [13, Theorem 5.6.1] shows that there exist x1, . . . , xn ∈ A+ and
f1, . . . , fk ∈ Cc((0,∞))+ such that

a ≤
n∑

i=1
fi(xi).

Thus,

[a] ≤
∑

i
[ fi(xi)]�

∑
i

[xi],

which is to say that if

b :=
⊕

i
xi ,

then [a]� [b].
(iv)⇒ (i): Given a, b as in (iv), there exists ε > 0 such that [a] � [(b − ε)+]. In

particular a - (b− ε)+, whence (b− ε)+ is full. (ii) now follows for Mn(A) by setting
b = e. From the equivalence of (i) and (ii) we have that Prim(Mn(A)) ∼= Prim(A) is
compact, as required.

Remark It was pointed out by George Elliott that the equivalence of (iii) and (iv)
can be generalized to the following fact: for any C∗-algebra A, the Pedersen ideal of
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A is

(3.1) {a ∈ A : ∃ b ∈ (A⊗K)+ s.t. [a]� [b] in Cu(A)}.
Indeed, one inclusion is evident from the proof of [13, Theorem 5.6.1], while the
other is shown by proving that the set (3.1) is an ideal. This turns the equivalence of
(iii) and (iv) into a more general statement (and provides an alternate proof).

Lemma 3.2 Let A be a C∗-algebra. If a ∈ A+ is full, then∞[a] := supn n[a] is the
largest element of Cu(A).

Proof By Brown’s Theorem [3], we have aAa ⊗ K ∼= A ⊗ K; by identifying these,
we can assume that a is strictly positive. Let (pn) be an increasing sequence of finite
rank projections converging to 1 ∈ B(H) in the strong operator topology, so that
fn := a1/n⊗ pn is an approximate unit for A⊗K. Let b ∈ (A⊗K)+ and let ε > 0 be
given, and find k ∈ N large enough that

‖b1/2 fkb1/2 − b‖ < ε.

It follows by [17, Proposition 2.2] that there is x ∈ A⊗K such that

(xb1/2) fk(xb1/2)∗ = (b− ε)+,

whence
∞[a] ≥ rank(pk)[a] = [ fk] ≥ [(b− ε)+].

Since ε was arbitrary, we have∞[a] ≥ [b], as required.

Lemma 3.3 Let A be a C∗-algebra with a ∈ A+ full. If τ is a lower semicontinuous
trace on A+ with τ (a) <∞, then τ is densely finite.

Proof It will suffice to prove that τ ((b− ε)+) <∞ for each b ∈ A+ and ε > 0. Let
b and ε be given. By Lemma 3.2 we have∞[a] ≥ [b], so that

∞[a]� [(b− ε/2)+].

It follows that n[a] ≥ [(b − ε/2)+] for some n ∈ N, so we can find x ∈ A ⊗K such
that

x
( n⊕

i=1
a
)

x∗ = (b− ε)+.

Extending τ to A⊗K we then have

τ ((b− ε)+) = τ
(( n⊕

i=1
a1/2
)

(x∗x)
( n⊕

i=1
a1/2
))

≤ ‖x‖2τ
( n⊕

i=1
a
)
<∞.

For any a ∈ A, set

Ta7→1(A) := {τ ∈ T(A) : τ (a) = 1}.
(In the case that A is unital and a = 1, this is of course the set of normalized traces.)

Proposition 3.4 Suppose that e ∈ A+ is full and in the Pedersen ideal of A. It follows
that
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(i) Te 7→1(A) is a base for the cone of densely finite traces on A;
(ii) Te 7→1(A) is compact, in the topology of pointwise converge on the Pedersen ideal of

A;
(iii) Te 7→1(A) is a Choquet simplex.

Proof (i) Suppose τ ∈ T(A)\{0}. Then τ (e) > 0, or else e would not be full. Also,
τ (e) <∞ since e is in the Pedersen ideal. Hence τ ∈ R+Te 7→1(A), as required.

(ii) We shall show that T(A) is closed in the topology defined in [9, Section 3.2],
from which it follows that it is compact in that topology. By (i) and [9, Proposi-
tion 3.10], the restriction of this topology to Te 7→1(A) agrees with the topology of
pointwise convergence on the Pedersen ideal.

Suppose that (τi) ⊆ Te 7→1(A) is a net which converges to τ ∈ T(A). Since e is in
the Pedersen ideal, by the proof of [13, Theorem 5.6.1], let e ≤ (a − ε)+ for some
a ∈ (A⊗K)+ and ε > 0. Since [e] is full there is n ∈ N such that [(a−ε/2)+]� n[e];
we can even arrange that [(a− ε/2)+]� n[(e− δ)+] for sufficiently small δ. We can
then find ε > 0 and x ∈ Mn(A) such that

e ≤ (a− ε)+ = x
( n⊕

i=1
(e− δ)+

)
x∗.

Therefore, for any η ∈ T(A), we have

η(e) ≤ n‖x‖2η((e− δ)+) ≤ Kη((e− δ)+),

where K = n‖x‖2. Using the definition of the topology in [9, Section 3.2], we have

1/K = lim sup τi(e)/K ≤ τi((e− δ)+) ≤ τ (e) ≤ lim inf τi(e) = 1.

Therefore, τ is a nonzero, densely finite trace on A. It follows from [9, Proposi-
tion 3.10], that since e is in the Pedersen ideal,

τ (e) = lim τi(e) = 1.

Hence, τ ∈ Te 7→1(A) as required.
(iii) The cone of densely finite traces is, by [14, Corollary 3.3] and [15, Theo-

rem 3.1] a lattice cone. It follows from this, (i), and (ii) that Te 7→1(A) is a Choquet
simplex.

4 C∗-algebras with Finitely Many Extreme Traces

Suppose that the Pedersen ideal of A contains a full element e, which we also ask to
be positive. We may clearly identify Lsc(T(A), (0,∞]) with the space

LAff(Te 7→1(A), (0,∞])

of lower semicontinuous affine functions Te 7→1(A) to (0,∞].

Proposition 4.1 Suppose that A has a full positive element e in its Pedersen ideal.
Then the range of ι contains all of Lsc(T(A), (0,∞]) if and only if the range of ι contains
a uniformly dense subset of continuous affine functions Te 7→1(A) → (0,∞). Moreover,
in this case, Lsc(T(A), (0,∞]) ⊂ ι(Cu(A)\V (A)).
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Proof The forward direction is obvious. Conversely, suppose that ι contains a uni-
formly dense subset of continuous affine functions as above. By [10, Theorem 11.8],
every function in Lsc(T(A), (0,∞]) is the supremum of continuous linear functions
T(A) → (0,∞) (strictly speaking, [10, Theorem 11.8] deals with functions whose
codomain is R, but the same proof works for codomain (0,∞]). By [7], we may
in fact obtain each function in Lsc(T(A), (0,∞]) as an increasing net of continuous
linear functions. Since A is separable, T(A) is metrizable and we can replace such a
net by a sequence. The proof of this last statement does not quite go as one might
expect, so we separate the argument as its own lemma.

Lemma 4.2 Let X be a metrizable compact Hausdorff space. Suppose that f : X →
[0,∞] is a lower semicontinuous function that is the pointwise supremum of an increas-
ing net ( fα) of lower semicontinuous functions. Then f is the pointwise supremum of
an increasing sequence ( fαi ).

Proof Let (qk)∞k=1 be a dense sequence in [0,∞). For each k, f−1((qk,∞]) is open,
and since X is metrizable, it is σ-compact. Therefore, we can find an increasing
sequence of open sets (Uk,i)∞i=1, each of which has compact closure, with union
f−1((qk,∞]); moreover, Uk,i ⊆ f−1((qk,∞]) for each i.

By using the compactness of Uk,i , lower semicontinuity of each fα, and the fact
that the net ( fα) is increasing, we can find αi such that fαi (x) > qk for all x ∈
Uk,i , i = 1, . . . , k. This condition, together with density of {qk}, forces f to be the
pointwise supremum of ( fαi ). As the net ( fα) is increasing, it is clear that we can
arrange that ( fαi ) is increasing.

We now have that for f ∈ Lsc(T(A), (0,∞]), there exists an increasing sequence
( fn) of continuous linear functions T(A)→ (0,∞) whose pointwise supremum is f .
By hypothesis, let S be a uniformly dense subset of continuous affine functions from
Te 7→1(A) to (0,∞) that is contained in the range of ι. By compactness of Te 7→1(A), let
δ1 ∈ (0, 1) such that f1(τ ) > δ1 for all τ ∈ Te 7→1(A). Then there exists g1 ∈ S such
that

f1(τ )− δ1 < g1(τ ) < f1(τ )

for all τ ∈ Te 7→1(A). Since f2(τ ) ≥ f1(τ ) > g1(τ ), we may likewise pick δ2 ∈ (0, 1/2)
such that

f2(τ )− δ2 > g1(τ )

for all τ ∈ Te 7→1(A). Then there exists g2 ∈ S such that

f2(τ )− g1(τ )− δ2 < g2(τ ) < f2(τ )− g1(τ )

for all τ ∈ Te 7→1(A). That is to say,

f2 − δ2 < g1 + g2 < f2.

We may continue this process, finding a sequence of numbers δn ∈ (0, 1/n) and
functions gn ∈ S such that

fn − δn < g1 + · · · + gn < fn.
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Evidently, for all τ ∈ Te 7→1(A), we have

f (τ ) = sup fn(τ ) =
∞∑

n=1
gn(τ ).

Since gn ∈ S, we have gn = ι(an) for some an ∈ (A ⊗K)+ with ‖an‖ < 1/2n. Then
we have

∞∑
n=1

gn = ι
( ∞⊕

n=1
an

)
,

as required.
The last statement of the proposition follows, since

[⊕∞
n=1 an

]
is the supremum

of the strictly increasing sequence
[⊕N

n=1 an

]
.

Proposition 4.3 Let A be unital such that ∂eT(A) is compact and totally disconnected.
Then every continuous function ∂eT(A) → (0,∞) is the uniform limit of functions in
the range of ι.

Proof Let f : ∂eT(A) → (0,∞) be a continuous function and let ε > 0. By [6,
Lemma 4.1], for each point τ ∈ ∂eT(A), there exists aτ ∈ (A ⊗ K)+ and a neigh-
bourhood Uτ of τ such that

|dγ(aτ )− f (γ)| < ε/3

for all γ ∈ Uτ . By continuity of f , we may, by possibly shrinking Uτ , also assume that
| f (γ) − f (τ )| < ε/3 for γ ∈ Uτ . Also, by the hypothesis that ∂eT(A) is completely
disconnected, we can assume that Uτ is closed.

By compactness of ∂eT(A), let Uτ1 , . . . ,Uτn be a finite subcover. By shrinking
some of the sets, we may in fact assume that Uτ1 , . . . ,Uτn are pairwise disjoint.

Using [6, Lemma 4.5] with aτi , let bi ∈ (A⊗K)+ be such that dτ (bi) = aτi (τ ) for
all τ ∈ Uτi , and

dτ (bi) <
ε

3(n− 1)

for τ 6∈ Uτi .
Set a = b1 ⊕ · · · ⊕ bn. Then for τ ∈ ∂eT(A), let i be such that τ ∈ Uτi . Then

|dτ (b)− f (τ )|
≤
∑
j 6=i
|dτ (b j)| + |dτ (bi)− dτ (ai)| + |dτ (ai)− f (τi)| + | f (τi)− f (τ )|

< (n− 1)
ε

3(n− 1)
+ 0 + ε/3 + ε/3 = ε,

as required.

Corollary 4.4 If A is unital and simple and ∂eT(A) is finite, then ι is onto.

Proof This follows from Propositions 4.1 and 4.3.

https://doi.org/10.4153/CMB-2014-040-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-040-5


On the Structure of the Cuntz Semigroup 409

5 The Radius of Divisibility

Abstracting the technique in the proof of [20, Theorem 3.4], we introduce an invari-
ant of the Cuntz semigroup called the radius of divisibility. This name is inspired
by the fact (shown in Proposition 7.1) that it shares roughly the same relationship
to the matricial-to-topological dimension of a recursive subhomogeneous algebra as
does the radius of comparison, as defined in [21, Definition 4.1]. In fact, much as the
radius of comparison has been used to show that simple approximately subhomo-
geneous algebras with slow dimension growth have strict comparison in their Cuntz
semigroups, the radius of divisibility will be used in Corollary 7.2 to show that the
Cuntz semigroups of such algebras are also almost divisible.

Although we can phrase the following definition for general e, it is probably only
useful in the case where e is full and in the Pedersen ideal of A.

Definition 5.1 Let A be a C∗-algebra and let e ∈ A+. The radius of divisibility of A
with respect to e is the infimum of real numbers r > 0 such that, for any continuous
linear function f : T(A) → (0,∞), there exists a ∈ (A ⊗ K)+ such that for all
τ ∈ T(A),

|dτ (a)− f (τ )| ≤ rdτ (e).

We denote this quantity by rod(A, e).

For a Choquet simplex C , let us denote by Aff(C) the set of continuous affine maps
C to R, and by Aff(C)++ the subset of Aff(C) whose range is contained in (0,∞).

Lemma 5.2 Let

C1
φ1

2←− C2
φ2

3←− · · ·
be an inverse sequence of Choquet simplices whose inverse limit is C. Then

(i)
⋃∞

i=1 Aff(Ci) ◦ φi
∞ is uniformly dense in Aff(C);

(ii)
⋃∞

i=1 Aff(Ci)++ ◦ φi
∞ is uniformly dense in Aff(C)++.

Proof (i) is well known.
(ii) This is essentially contained in the proof of [20, Theorem 3.4]; however, for

clarity, we will provide an explicit proof here. By (i), it suffices to show that if f ∈
Aff(Ci) ◦ φi

∞ ∩ Aff(C)++, then f ∈ Aff(C j)++ ◦ φ j
∞ for some j. Let g ∈ Aff(Ci) be

such that f = g ◦ φi
∞; we will in fact show that g ◦ φi

j ∈ Aff(C j)++ for some j ≥ i.
For a contradiction, suppose that this is false; that is, that for each j ≥ i, there exists
x j ∈ C j such that g(φi

j(x j)) ≤ 0. Then for j ≥ i, set

γ j = (γ(k)
j )k≥i := (φi

j(x j), φ
i+1
j (x j), . . . , φ

j−1
j (x j), x j , x j+1, x j+2, . . . ) ∈

∞∏
k=i

Ck.

By compactness of
∏∞

k=i Ck, let γ = (γ(k)) ∈
∏∞

k=i Ck be a cluster point of the se-

quence (γ j). Since γ(k+1)
j ◦φk

k+1 = γ(k)
j for all k ≤ j, it follows that γ(k+1) ◦φk

k+1 = γ(k)

for all k; that is, (γ(k)) defines a point γ in C . However,

f (γ) = g(φi
∞(γ)) ≤ lim sup g(φi

j(x j)) ≤ 0,

which is a contradiction.
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Proposition 5.3 Let

A1
φ2

1−→ A2
φ3

2−→ · · ·

be an inductive sequence of C∗-algebras whose limit is A such that the maps φ j
i are

injective and full. Suppose e1 is a full element in the Pedersen ideal of A1, and set e =
φ∞1 (e1). Then

rod(A, e) ≤ lim inf rod(Ai , φ
i
1(ei)).

Proof Set ei := φi
1(e1) for all i. Let r := lim inf rod(Ai , ei), and suppose that r′ > r.

Let η = (r′ − r)/2. Let f ∈ Aff(Te 7→1(A))++. We note that Te 7→1(A) = lim←−Tei 7→1(A)
(this is well-known in the unital case, and no tricks are needed to adapt the proof
to the nonunital situation). It therefore follows from Lemma 5.2(ii) that for all i
sufficiently large, there exists g ∈ Aff(Tei 7→1(Ai)) such that ‖g ◦ φi

∞ − f ‖ < η. In
particular, we may find such g ∈ Aff(Tei 7→1(Ai)) for some i for which rod(Ai , ei) <
r + η. This means that we can find â ∈ (Ai ⊗K)+ such that

|dτ (â)− g(τ )| ≤ r + η

for all τ ∈ Tei 7→1(Ai). Thus, with a := φ∞i (â) ∈ A, we have

|dτ (a)− f (τ )| ≤ |dτ◦φi
∞

(â)− g(τ )| + |g ◦ φ∞i (τ )− f (τ )‖ ≤ r + η + η = r′.

Since r′ > r was arbitrary, this shows that rod(A) ≤ r as required.

6 A Computation of the Cuntz Semigroup

In Theorem 6.2, we shall show that when A is simple and exact, Cu(A) is almost un-
perforated, and the range of ι is uniformly dense, then Cu(A) can in fact be explicitly
described purely in terms of the cone of traces T(A) paired with the Murray–von
Neumann semigroup V (A). Succinctly, we show that Cu(A) has the form described
in [9, Corollary 6.8]. This sort of computation is not particularly new; such Cuntz
semigroup computations were pioneered by Brown, Perera, and the second author
in [4], although with more hypotheses on A including unitality.

The following preliminary is in order (again, slight weakenings of this can already
be found in the literature).

Lemma 6.1 Let A be a simple C∗-algebra. Then Cu(A) is almost unperforated if
and only if, for [a], [b] ∈ Cu(A), if f ([a]) < f ([b]) for every lower semicontinuous
dimension function f for which f ([b]) <∞, then [a] ≤ [b].

Proof By [18, Proposition 3.2], the “if” direction is automatic. Let us assume that
Cu(A) is almost unperforated. If [c], [d] ∈ Cu(A) are such that f ([c]) < f ([d])
holds for every lower semicontinuous dimension function, then we must show that
[c] ≤ [d]. If we knew that f ([c]) < f ([d]) for the non-lower semicontinuous di-
mension functions, then [18, Proposition 3.2] would show that [c] ≤ [d]; the rest of
the proof overcomes this obstacle.

https://doi.org/10.4153/CMB-2014-040-5 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2014-040-5


On the Structure of the Cuntz Semigroup 411

Given any dimension function f : Cu(A)→ [0,∞], we may define f̄ : Cu(A)→
[0,∞] by

f̄ ([x]) = sup
[x′]�[x]

f ([x′]).

Then by [9, Lemma 4.7], f̄ is a lower semicontinuous dimension function on Cu(A).
For [a]� [c], we have

f ([a]) ≤ f̄ ([c]) < f̄ ([d]) ≤ f ([d]).

(The first and last inequalities are evident from the definition of f , while the middle
one is by hypothesis.) Therefore, by [18, Proposition 3.2], [a] ≤ [d]. But since [c] is
the supremum of [a] satisfying [a]� [c], we must have [c] ≤ [d], as required.

In the following, we view V (A) q Lsc(T(A), (0,∞]) as an ordered abelian semi-
group as follows; V (A) and Lsc(T(A), (0,∞]) are already ordered semigroups (with
pointwise ≤ giving the ordering on the latter), and we insist that their embeddings
maintain the order and semigroup structures. For

[p] ∈ V (A) and f ∈ Lsc(T(A), (0,∞]),

we set [p] + f := g ∈ Lsc(T(A), (0,∞]) given by g(τ ) = τ (p) + f (τ ); [p] ≤ f if and
only if τ (p) < f (τ ) for all τ ∈ T(A), while f ≤ [p] if and only if f (τ ) ≤ τ (p) for
all τ ∈ T(A).

Theorem 6.2 Let A be a simple, exact C∗-algebra such that Cu(A) is almost unper-
forated and the range of ι is uniformly dense. Then Cu(A) is isomorphic, as an ordered
semigroup, to V (A) q Lsc(T(A), (0,∞]). The isomorphism sends [a] ∈ Cu(A) to
[p] ∈ V (A) if [a] = [p] for some projection p ∈ (A ⊗ K)+, and to the function ι(a)
otherwise.

Proof The statement of the proposition implicitly defines a map

Φ : Cu(A)→ V (A)q Lsc(T(A), (0,∞]).

Let us first verify that Φ is an order embedding, i.e., that [a] ≤ [b] if and only if
Φ([a]) ≤ Φ([b]). This will require only that Cu(A) is almost unperforated. Four
different cases need to be checked, depending on whether or not each of [a], [b] is in
V (A).

It is trivial if both are in V (A). By using Proposition 6.1, we obtain the “if” direc-
tion when [a] ∈ V (A). However, if [a] ∈ V (A) and [a] < [b], then by [16, Propo-
sition 2.2], there exists a nonzero [x] such that [a] + [x] ≤ [b]. Since A is simple,

dτ (x) > 0 and so [̂a](τ ) < [̂b](τ ) for all τ .
The “only if” direction is automatic if [a] 6∈ V (A). On the other hand, if [a] 6∈

V (A) and [̂a] ≤ [̂b] pointwise then, again using [16, Proposition 2.2] and simplicity
of A, we have

[̂a′](τ ) < [̂a](τ ) ≤ [̂b](τ )

for all τ , and therefore by Proposition 6.1, [a′] ≤ [b]. Since [a] is the supremum
of [a′] � [a], we have [a] ≤ [b]. This concludes the verification that Φ is an order
embedding.
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Now we will show that Φ is surjective. Obviously, V (A) is in the range of Φ.
We shall therefore show that Lsc(T(A), (0,∞]) is contained in the range of Φ. By
Proposition 4.1, it suffices to show that the range of ι contains Aff(Te 7→1(A), (0,∞)).

Namely, given f ∈ Aff(Te 7→1(A), (0,∞)), let ε1 > ε2 > · · · , converging to 0, such
that f (τ ) > ε1 for all n. Since the range of ι is dense, we may find [bn] ∈ Cu(A) such
that

ι(bn)(τ ) ∈ ( f (τ )− εn, f (τ )− εn+1)

for all τ ∈ Te 7→1(A). By Proposition 6.1, ([bn]) is an increasing sequence, and its
supremum [b] clearly satisfies ι(b) = f , as required.

7 Simple Approximately Subhomogeneous Algebras With Slow
Dimension Growth

The following result is in all likelihood true without the assumption of a compact
primitive ideal space, but we do not require this generality for the applications we
have in mind.

Proposition 7.1 Let A be subhomogeneous with Prim(A) compact, and let e be a full,
positive element in the Pedersen ideal of A. It follows that

(7.1) rod(A, e) ≤ 16R(d+4):r(e) := 16 sup
π irred. rep.

dtop(π) + 4

Rankπ(e)
.

Proof This proof is contained in the proof of [20, Theorem 3.4]. We shall explain
exactly how, since the statement of [20, Theorem 3.4] neither makes reference to the
radius of divisibility, nor handles the nonunital case. Set r to be the right-hand side
of (7.1) for convenience, and let a continuous linear function f : T(A) → (0,∞)
be given. By Proposition 3.4 we have that Te 7→1(A) is a compact base for the space
of densely defined lower semicontinuous traces. We therefore need only prove that
there exists a ∈ (A ⊗K)+ such that |dτ (a) − f (τ )| ≤ r for all τ ∈ Te 7→1(A), and, of
course, it in fact suffices to show this only for extreme points of Te 7→1(A).

As long as r is finite, it follows from [19, Corollary 3.3] that A is a recursive subho-
mogeneous algebra, so let us consider it to be equipped with a recursive subhomoge-
neous decomposition. For 1 ≤ i ≤ n, let Mni (Xi) be the i-th matrix block of A, X(0)

i
the i-th clutching space, Ai the i-th stage algebra, and φi : Ai → Mni the i-th clutch-
ing homomorphism. The irreducible representations of A correspond to evaluating
an element of A at a point

x ∈ X(1) :=
l⋃

i=1
Xi\X(0)

i .

Let us denote such a representation by πx, and let Tr denote the canonical normalized
trace on Mn (for any n). The extreme points of Te 7→1(A) are all multiples of τx :=
Tr ◦ πx; therefore, we must verify that |dτx (a) − f (τ )| ≤ rdτx (e) for all x ∈ X(1). We
note here that dτx (b) = rank(πx(b))/ni = rank(b(x))/ni for any b ∈ A+ and x ∈ Xi .
We can therefore finally characterize our requirement in terms of ranks of positive
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operators: ∣∣∣ rank(a(x))

ni
− f (τx)

∣∣∣ ≤ r
rank(e(x))

ni
= 16

dim(Xi) + 4

ni
.

The existence of such an a now follows verbatim from the proof of [20, Theorem 3.4,
p. 239].

Corollary 7.2 If A is a simple, nonelementary, approximately subhomogeneous al-
gebra with slow dimension growth, then ι is surjective, and Cu(A) is as described in
Theorem 6.2

Proof The range of ι is dense by Propositions 5.3 and 7.1, together with noting that
simplicity and nonelementarity implies that min Rankπ(φ∞1 (a)) → ∞ for every
nonzero π. We have almost unperforation by [19, Corollary 5.9]. The conclusion
follows from Theorem 6.2.

Corollary 7.3 Let A be a simple, separable, non-type I approximately subhomoge-
neous algebra. Then the following are equivalent.

(i) A is Z-stable.
(ii) A has slow dimension growth.
(iii) A has finite decomposition rank.

Proof (i)⇔ (ii) is [22, Corollary 9.2], which relies on Corollary 7.2.
(iii)⇒ (i) is [22, Theorem 8.5].
Finally, (i)⇒ (iii) is the main result of [8].
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