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Abstract

In small-plot experiments, weed scientists have traditionally estimated herbicide efficacy
through visual assessments or manual counts with wooden frames—methods that are time-
consuming, labor-intensive, and error-prone. This study introduces a novel mobile application
(app) powered by convolutional neural networks (CNNs) to automate the evaluation of weed
coverage in turfgrass. The mobile app automatically segments input images into 10 by 10 grid
cells. A comparative analysis of EfficientNet, MobileNetV3, MobileOne, ResNet, ResNeXt,
ShuffleNetV1, and ShuffleNetV2 was conducted to identify weed-infested grid cells and
calculate weed coverage in bahiagrass (Paspalum notatum Flueggé), dormant bermudagrass
[Cynodon dactylon (L.) Pers.], and perennial ryegrass (Lolium perenne L.). Results showed that
EfficientNet and MobileOne outperformed other models in detecting weeds growing in
bahiagrass, achieving an F1 score of 0.988. For dormant bermudagrass, ResNet performed best,
with an F1 score of 0.996. Additionally, app-based coverage estimates (11%) were highly
consistent with manual assessments (11%), showing no significant difference (P= 0.3560).
Similarly, ResNeXt achieved the highest F1 score of 0.996 for detecting weeds growing in
perennial ryegrass, with app-based and manual coverage estimates also closely aligned at 10%
(P= 0.1340). High F1 scores across all turfgrass types demonstrate the models’ ability to
accurately replicate manual assessments, which is essential for herbicide efficacy trials requiring
precise weed coverage data. Moreover, the time for weed assessment was compared, revealing
that manual counting with 10 by 10 wooden frames took an average of 39.25, 37.25, and 42.25 s
per instance for bahiagrass, dormant bermudagrass, and perennial ryegrass, respectively,
whereas the app-based approach reduced the assessment times to 8.23, 7.75, and 14.96 s,
respectively. These results highlight the potential of deep learning–based mobile tools for fast,
accurate, scalable weed coverage assessments, enabling efficient herbicide trials and offering
labor and cost savings for researchers and turfgrass managers.

Introduction

The turfgrass industry plays a significant role in various sectors, including sports, landscaping,
and recreation, contributing to the economy and enhancing environmental aesthetics
(Breuninger et al. 2013). However, weed infestations pose a persistent challenge, compromising
turfgrass quality (Brosnan et al. 2020; Yu andMcCullough 2016).Weeds compete with turfgrass
for essential resources such as nutrients, water, and light, leading to reduced vigor and aesthetic
appeal (Brosnan et al. 2020). Effective weed management is crucial to maintaining healthy
turfgrass. Among available strategies, herbicides have long been a cornerstone of weed
management in turfgrass (Hahn et al. 2020; Yu and McCullough 2016). However, the industry
faces persistent challenges due to the emergence of herbicide-resistant weed populations
(Brosnan et al. 2020) and the lack of new herbicide modes of action (Duke and Dayan 2022). In
response, chemical companies are actively developing and evaluating new herbicide products to
strengthen weed management practices.

Accurate estimation of weed coverage and density is essential for evaluating herbicide
efficacy and developing effective weed management tactics (Liu et al. 2021; Shorewala et al.
2021). By assessing weed density before and after herbicide application, researchers can quantify
herbicide effectiveness and facilitate comparisons across treatments (Ozaslan et al. 2024; Patton
et al. 2019). Such evaluations are essential for determining the optimal herbicide dosages that
maximize control while minimizing environmental impact (Jin et al. 2025). Moreover, weed
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density data support the development of integrated weed
management strategies (Harker and O’Donovan 2013).
Understanding weed density and distribution within a field allows
agronomists and researchers to tailor management practices,
improving overall weed management efficacy (Norsworthy et al.
2018). In addition, in the context of herbicide development,
analyzing the interaction between weed density and herbicide
effectiveness is crucial (Harker and O’Donovan 2013). Such
analyses contribute to designing targeted weed control solutions
that address specific weed density pressures, ensuring precise and
effective management (Dammer 2016; Jin et al. 2025; Zheng
et al. 2025).

In herbicide experiments, the collection of weed control data
requires regular monitoring of weed coverage following pesticide
application. However, human visual observation often leads to
errors, especially at low (e.g., 5%, 10%) and intermediate (e.g., 50%)
levels of weed density (Andújar et al. 2010). These limitations
hinder visual methods in threshold-based weed management
programs (Andújar et al. 2010), which are common in turfgrass
weed evaluations (Bertin et al. 2009). Moreover, data collected
solely through visual observation are often insufficient for
publication in many scientific journals, making it challenging
for researchers to share their findings. To address this issue,
researchers have used wooden frames with a grid of lines to create
multiple squares (Fermanian et al. 1980). In this method, the frame
is randomly placed in the field plot, and the number of squares
containing weeds is manually counted. The percentage of squares
with weeds, relative to the total number of squares, provides an
estimate of weed coverage (Fermanian et al. 1980). These frames
typically contain a 10 by 10 grid or more. While increasing the
number of squares improves estimation accuracy, it also increases
the time required for manual counting.

Convolutional neural networks (CNNs) have revolutionized
agricultural practices, enhancing precision in crop management
(Jin et al. 2024; Tao and Wei 2025; Zhuang et al. 2023). These
algorithms are particularly useful in precision weed management,
enabling the identification of specific weed species, counting tillers,
and pinpointing weed locations for targeted herbicide application
(Deng et al. 2025; Jin et al. 2023). Despite advancements, there
remains a gap in using CNNs for accurate weed density and
coverage estimation, particularly in turfgrass scenarios. Previous
research has explored weed localization using CNNs by generating
grid cells on input images and using image classification networks
to detect weeds within those cells (Jin et al. 2022). This approach,
which employs a grid-based segmentation method, has demon-
strated high performance (F1 score≥ 0.972) (Jin et al. 2022).
However, its applicability for estimating turfgrass weed coverage
and density has not yet been investigated. We hypothesize that this
grid-based segmentationmethod can be adapted for weed coverage
estimation in turfgrass, a concept that, to our knowledge, remains
unexplored in the literature.

Developing deep learning models capable of identifying grid
cells on input images offers the potential to automate weed
coverage and density estimation, significantly reducing time and
effort while improving the accuracy of herbicide efficacy assess-
ments. This highlights the need for research to improve both the
accuracy and efficiency of herbicide evaluations. Therefore, the
objectives of this research were (1) to develop a mobile application
(app) that automates the process of weed detection and density
estimation using deep learning and (2) to compare the
performance of various deep learning models in estimating weed
coverage in turfgrass.

Materials and Methods

Overview

Seven CNN architectures—ResNet (He et al. 2016), ResNeXt (Xie
et al. 2017), ShuffleNetV1 (Zhang et al. 2018), ShuffleNetV2 (Ma
et al. 2018), EfficientNet (Tan and Le 2019), MobileNetV3
(Howard et al. 2019), and MobileOne (Vasu et al. 2023)—were
investigated to detect weeds in bahiagrass (Paspalum notatum
Flueggé), dormant bermudagrass [Cynodon dactylon (L.) Pers.],
and perennial ryegrass (Lolium perenne L.).

ResNet is a groundbreaking CNN architecture that addresses the
issue of vanishing gradients in very deep networks (He et al. 2016). It
introduces residual learning by using shortcut connections, allowing
for the training of extremely deep networks with improved accuracy.
ResNet’s architecture significantly advanced the field of deep
learning by enabling the successful training of networks with
hundreds or even thousands of layers (He et al. 2016).

ResNeXt builds upon the ResNet architecture, aiming to improve
accuracy and efficiency in deep learning tasks (Xie et al. 2017). It
employs a strategy called “cardinality,” grouping multiple parallel
paths (similar to ResNet blocks) to increase model capacity without
significantly raising computational complexity. ResNeXt demon-
strates that improving network performance is more effectively
accomplished bywidening the network using grouped convolutions,
as opposed to merely increasing its depth (Xie et al. 2017).

ShuffleNetV1 is a lightweight CNN architecture designed for
efficient image classification (Zhang et al. 2018). It uses group
convolution and channel shuffling to reduce computational cost
while maintaining accuracy. Its low complexity and resource
requirements make it particularly suitable for mobile and
embedded devices.

ShuffleNetV2 further optimizes the original ShuffleNet archi-
tecture to enhance both efficiency and accuracy (Ma et al. 2018). It
introduces the concept of equal channel width and simplified
network design, addressing the limitations of the first version,
particularly in terms of memory access cost. The architecture also
features a more effective channel split and a new feature map
shuffle operation, enhancing both speed and performance
(Ma et al. 2018).

EfficientNet employs a state-of-the-art CNN architecture with a
compound scaling method to uniformly scale network depth,
width, and resolution (Tan and Le 2019). This approach creates a
family of models that achieve superior accuracy with fewer
parameters and lower computational resources than previous
architectures, making it ideal for tasks requiring high efficiency,
particularly in resource-constrained environments.

MobileNetV3 optimizes the earlier MobileNet architecture,
focusing on enhancing both efficiency and accuracy for mobile and
edge devices (Howard et al. 2019). It combines neural architecture
search with platform-aware network optimization, resulting in a
model that balances high performance with low computa-
tional costs.

MobileOne is a streamlined CNN architecture designed for
real-time apps on mobile and edge devices (Vasu et al. 2023). It
uses a pre-parameterization technique to enhance both speed and
accuracy during inference, achieving high efficiency with minimal
computational requirements.

Image Acquisition

Images of Florida pusley (Richardia scabra L.) in actively growing
bahiagrass were captured over several time periods from May to
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August 2018. The training images were taken at the Gulf Coast
Research and Education Center in Balm, FL, USA (27.71°N,
82.29°W), while the test images were collected from multiple
commercial and residential lawns in Riverview, FL, USA (27.81°N,
82.42°W), and the University of South Florida campus in Tampa, FL,
USA (27.95°N, 82.45°W).

For dormant bermudagrass, training images were captured at
the University of Georgia Griffin Campus in Griffin, GA, USA
(33.26°N, 84.28°W), while the test images were primarily collected
from various golf courses in Peachtree City, GA, USA (33.39°N,
84.59°W). The training and test images predominantly contained
annual bluegrass (Poa annua L.) and various winter annual
broadleaf weeds.

For perennial ryegrass, images of common dandelion
(Taraxacum officinale F.H. Wigg.), ground ivy (Glechoma
hederacea L.), and spotted spurge [Chamaesyce maculata (L).
Small; syn.: Euphorbia maculata L.) growing within perennial
ryegrass were collected from various golf courses and institutional
lawns in Indianapolis, IN, USA (39.76°N, 86.15°W) to construct
the training datasets. The testing dataset consisted of images of the
same weed species collected from multiple institutional lawns and
golf courses in Carmel, IN, USA (39.97°N, 86.11°W).

All training and testing images were acquired using a Sony
Cyber-shot camera (Sony, Minato-ku, Tokyo, Japan) with a
resolution of 1,920 × 1,080 pixels and were captured between 9:00
AM and 5:00 PM under diverse weather and outdoor lighting
conditions, including clear, cloudy, and partly cloudy skies.

Training and Testing

During image classification training, images of bahiagrass,
dormant bermudagrass, and perennial ryegrass were cropped into
subimages with a resolution of 426 × 240 pixels using Irfanview
(v. 5.50, Irfan Skiljan, Jajce, Bosnia). The training dataset included
20,000 positive images (containing weeds) and 20,000 negative
images (without weeds). For validation, an additional set of 5,000
positive images and 5,000 negative images was utilized.

The image classification neural networks were trained and
evaluated using the PyTorch (v. 1.12.0) open-source deep learning
framework developed by Facebook (San Jose, CA, USA). All
computations were performed on an NVIDIA GeForce RTX 3080
graphics processing unit (Santa Clara, CA, USA). To ensure
consistency across models, the following hyperparameters were
standardized for each experimental setup:

• Training epochs: 30
• Learning rate: 0.001
• Batch size: 32

In image classification, precision (Equation 1), recall (Equation 2),
and F1 score (Equation 3) are widely used metrics for evaluating
model performance. These metrics are derived from the confusion
matrix, which compares a model’s predicted classifications with the
actual labels. The confusion matrix categorizes predictions into four
categories: true positives (TP), true negatives (TN), false positives
(FP), and false negatives (FN), specifically:

• TP: Number of instances correctly classified as positive.
• FN: Number of instances incorrectly classified as negative
when actually positive.

• FP: Number of instances incorrectly classified as positive
when actually negative.

• TN: Number of instances correctly classified as negative.

Precision is the ratio of instances correctly predicted as positive
to the total number of instances predicted as positive, focusing on
minimizing FPs to ensure accurate positive predictions (Sokolova
and Lapalme 2009).

Precision ¼ TP
TPþ FP

(1)

Recall is the proportion of TPs correctly classified by the model.
A high recall indicates the model’s effectiveness in classifying TPs,
highlighting its ability to minimize FNs (Sokolova and Lapalme
2009).

Recall ¼ TP
TPþ FN

(2)

The F1 score is a comprehensive metric that combines precision
and recall into a single value. It is calculated as the harmonic mean
of precision and recall, offering a balanced assessment of the
model’s performance, especially in scenarios where maintaining
high precision and recall is crucial (Sokolova and Lapalme 2009).

F1Score ¼
2� Precision� Recall
Precisionþ Recall

(3)

The rationale for selecting thesemetrics lies in their critical role in
evaluating weed coverage and density using a classification neural
network. Precision measures the proportion of grids predicted as
containing weeds that are actually weed infested, helping to reduce
FPs that could lead to overestimation of weed density. Recall
quantifies the proportion of actual weed-infested grids that are
correctly identified, ensuring that the model effectively captures
weed presence. Because both FPs and FNs impact estimation, the F1
score, which balances precision and recall, provides a meaningful
overall assessment of the model’s classification performance.

Development of the Mobile App

Themobile app for this study was developed using Android Studio,
with Kotlin as the programming language. Kotlin offers several
advantages, such as code conciseness and reduced
NullPointerExceptions (Ardito et al. 2020). The Android
Software Development Kit version employed was Application
Programming Interface (API) level 33. The app was designed
following the Model-View-ViewModel (MVVM) architectural
pattern, utilizing Kotlin co-routines to create a robust and efficient
app (Chauhan et al. 2021). In Android development, MVVM
provides a clear separation of concerns among components,
promoting clean code and enhancing testability (Lou 2016).
Figure 1 illustrates the MVVM pattern’s three fundamental
components: the Model, the View, and the ViewModel.

Figure 1. The Model-View-ViewModel (MVVM) architectural diagram.
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• Model: The Model component represents the data and core
business logic of the app. It interacts with underlying data
sources, such as databases or network APIs, to retrieve and
manage data efficiently.

• View: The View component is responsible for rendering and
handling the user interface (UI). It displays data provided by
the ViewModel and triggers actions based on user input.

• ViewModel: The ViewModel serves as an intermediary
between the Model and the View. It holds the data to be
displayed in the UI and provides methods and properties that
can be bound directly to UI elements. Designed to be
independent of the specific UI framework, the ViewModel
enhances testability and allows for better decoupling from the
View layer.

To deploy the model on Android, this study utilized the Open
Neural Network Exchange (ONNX) platform. Research has
demonstrated that converting machine learning models to the
ONNX format and deploying them with ONNX Runtime
significantly improves inference speed while maintaining accuracy,
making it particularly beneficial for real-time apps on mobile
devices (Openja et al. 2022). ONNX serves as an open standard for
representing machine learning models, enabling AI developers to
use models across multiple frameworks, tools, runtimes, and
compilers (Lin et al. 2019). It plays a crucial role in promoting
interoperability and standardization in machine learning, allowing
for more efficient model development, deployment, and opti-
mization workflows (Kim et al. 2021).

Figure 2 illustrates the app’s UI. The process begins with the
user importing an image from the camera or gallery and selecting a
suitable recognition model based on the image content
(Figure 2A). Once the model is prepared, the user clicks the
recognition button to initiate weed coverage analysis with the
chosen model, and the results are then displayed (Figure 2B).

To enhance segmentation accuracy and performance, a 10 by 10
grid was selected, as it strikes a balance between segmentation
precision and computational efficiency, while also aligning with the
actual wooden grid configurations commonly used by weed
scientists. Given the hardware limitations inherent to mobile
devices, such as limited memory and processing power, careful
consideration was necessary to execute this segmentation efficiently.
This constraint influenced the choice of in-memory segmentation,
ensuring the process remains feasible within typical mobile device
capabilities. For accurate recognition, images were preprocessed by
segmenting them into 100 smaller sections using the 10 by 10 grid.
Due to the time-intensive nature of this process, in-memory
segmentation was used. In the Android system, the screen follows a
two-dimensional coordinate system, with the origin at the top left
corner, the positive x axis extending to the right, and the positive y
axis extending downward (Figure 3). The blue area represents the
selected image, while the red area indicates a subimage. Each sub-
image’s dimensions were determined by dividing the width and
height of the selected image by 10. Starting from the top left corner,
subimages were processed sequentially from left to right across each
row. Once a row was completed, the process shifted to the next row,
continuing until the bottom-right subimage was reached. Each
subimage was stored in a list for subsequent recognition operations.
The detailed segmentation process is illustrated in Figure 4.

Detailed Process Description

1. Start: The function begins, ready to process the source
image.

2. Retrieve source image dimensions: The width and height of
the source image are obtained for subsequent calculations.

3. Calculate segment dimensions: The width and height of
each segment are calculated based on a 10 by 10 grid
structure.

Figure 2. User interface of the app. (A) Configuration page showing (I) button to select an image from the camera; (II) button to select an image from the gallery; (III) dropdown to
select a model; (IV) button to start recognition; and (V) image view displaying the selected image. (B) Result page showing (VI) text view displaying weed coverage; (VII) image view
showing the recognized image.
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4. Initialize SubImage list: An empty list is created to store the
subimages.

5. Outer loop (columns): Iterates over columns, controlled by
columnIndex (0 to columnTotal -1).

6. Inner loop (rows): Iterates over rows, controlled by
rowIndex (0 to rowTotal -1).

7. Calculate starting coordinates: For each segment, the
starting coordinates (subImageXValue and
subImageYValue) are calculated based on rowIndex and
columnIndex.

8. Create SubBitmap: A sub-bitmap is created from the source
image at the calculated starting coordinates
(subImageXValue, subImageYValue) with the determined
width and height using Bitmap.createBitmap.

9. Add subbitmap to list: The new sub-bitmap is added to
subImageList.

10. Inner loop condition check: If rowIndex < rowTotal -1, the
inner loop continues.

11. Outer loop condition check: If columnIndex < column
Total -1, the outer loop continues.

12. Return subimage list: After all loops complete, the function
returns subImageList containing all subimages.

13. End: The function execution concludes.

Given the requirement to process 100 segmented images, the
initial sequential recognition method was found to be inefficient.
Dynamic batch processing using ONNX was introduced to
improve efficiency and overall performance. Dynamic batching
adjusts the batch size during inference based on real-time input
data, enablingmore flexible utilization of computational resources.

Figure 3. Grid-based coordinate system for image segmentation on Android. This
figure shows how the input image is divided into a 10 by 10 grid for subimage
processing. The origin (0, 0) starts at the top left, and subimages (highlighted in red)
are extracted in row-major order from the original image (in blue).

Figure 4. Workflow of mobile-based image segmentation. This figure outlines the
process of segmenting the input image into a grid of subimages. After subimage
dimensions are computed, a nested loop iterates through each cell to extract and
store subimages for further classification.
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This approach significantly improves system efficiency and
response time, particularly when handling asynchronous or real-
time requests.

App-Based Counting versus Manual Counting

In this study, seven models were trained for each turfgrass:
bahiagrass, dormant bermudagrass, and perennial ryegrass. The
optimal model for each turfgrass was selected through a
comprehensive comparison of precision, recall, and F1 score from
both the validation and test datasets. The best model for each
turfgrass species was integrated into the app for weed density
estimation.Weed density was assessedmanually and using the app,
with each method repeated four times per image. A Student’s t-test
was conducted to compare the accuracy of the app-based method
with manual counting, using a significance level of 0.05 to
determine whether statistically significant differences existed
between the two approaches.

Results and Discussion

Model Performance

For bahiagrass detection, EfficientNet and MobileOne demon-
strated superior performance with identical F1 scores (0.988),
outperforming other architectures by notable margins. Although
theymaintained strong detection capabilities, ResNet and ResNeXt
showed relatively lower generalization capabilities in this category
(Table 1).

In the case of dormant bermudagrass, ResNet achieved the
highest F1 score (0.996), with ShuffleNetV1 and MobileOne
forming a close second tier. The performance hierarchy revealed
consistent patterns of difference between validation and testing
phases across architectures.

Lolium perenne detection results exhibited tight clustering
among top performers, with ResNeXt leading with an F1 score of
0.996 on the testing dataset, followed by ShuffleNetV2 and ResNet.
Notably, MobileOne showed a relatively reduced level of
effectiveness in this category compared with its strong perfor-
mance on other species.

App-based versus Manual Weed Coverage Estimation

The app integrates the top-performing models for each turfgrass
species to estimate weed coverage and density: EfficientNet,
ResNet, and ResNeXt for bahiagrass, dormant bermudagrass, and
perennial ryegrass, respectively. For each turfgrass species, four
individuals provided manual weed density estimates, and the app
generated four corresponding estimates for comparison. As shown
in Table 2, the app-based method produced a significantly higher
average weed coverage estimate for bahiagrass compared with
manual counting (P< 0.0001; 95% confidence interval (CI):
[10.7600, 11.7400]; Cohen’s d = 31.8198). In contrast, the app-
based method provided estimates comparable to manual estimates
for dormant bermudagrass (P= 0.3560; 95%CI: [−0.7400, 0.2400];
Cohen’s d = −0.7071) and perennial ryegrass (P = 0.1340; 95% CI:
[−1.0658, 0.0658]; Cohen’s d = −1.2247), with no significant
differences observed between the two methods.

Time Efficiency

The comparative analysis revealed substantially improved time
efficiency using the app-based method compared with manual
counting across all turfgrass species (Table 3). For bahiagrass, the
app-based approach reduced processing time by approximately
79% relative to manual counting. Similar efficiency gains were
observed for dormant bermudagrass (79% reduction) and
L. perenne (65% reduction), with the app consistently completing
tasks in under 15 s compared with manual counting, which

Table 1. Neural network validation and testing result for detection of weeds in turfgrass.

Validationc Testingd

Neural networka Turfgrass speciesb Precision Recall F1 score Precision Recall F1 score

ResNet Bahiagrass 0.984 0.984 0.984 0.957 0.942 0.949
ResNet Dormant bermudagrass 0.986 0.985 0.985 0.996 0.997 0.996
ResNet Perennial ryegrass 0.983 0.983 0.983 0.993 0.993 0.993
ResNeXt Bahiagrass 0.986 0.986 0.986 0.962 0.924 0.939
ResNeXt Dormant bermudagrass 0.987 0.986 0.986 0.989 0.989 0.989
ResNeXt Perennial ryegrass 0.984 0.985 0.984 0.996 0.996 0.996
ShuffleNetV1 Bahiagrass 0.971 0.968 0.969 0.925 0.893 0.906
ShuffleNetV1 Dormant bermudagrass 0.986 0.984 0.985 0.993 0.992 0.993
ShuffleNetV1 Perennial ryegrass 0.976 0.977 0.977 0.991 0.991 0.991
ShuffleNetV2 Bahiagrass 0.987 0.987 0.987 0.953 0.926 0.938
ShuffleNetV2 Dormant bermudagrass 0.987 0.985 0.986 0.982 0.982 0.982
ShuffleNetV2 Perennial ryegrass 0.984 0.985 0.985 0.994 0.994 0.994
EfficientNet Bahiagrass 0.990 0.989 0.989 0.987 0.989 0.988
EfficientNet Dormant bermudagrass 0.986 0.984 0.985 0.989 0.989 0.989
EfficientNet Perennial ryegrass 0.991 0.991 0.991 0.992 0.992 0.992
MobileNetV3 Bahiagrass 0.988 0.987 0.988 0.985 0.983 0.984
MobileNetV3 Dormant bermudagrass 0.979 0.982 0.980 0.990 0.988 0.989
MobileNetV3 Perennial ryegrass 0.987 0.987 0.987 0.992 0.992 0.992
MobileOne Bahiagrass 0.989 0.988 0.989 0.988 0.988 0.988
MobileOne Dormant bermudagrass 0.976 0.969 0.972 0.993 0.992 0.993
MobileOne Perennial ryegrass 0.952 0.951 0.950 0.983 0.982 0.982

aNeural network: The specific neural network model used in the weed detection task.
bTurfgrass species: The turfgrass species used in the weed detection model.
cValidation: Precision, recall, and F1 score results on the validation dataset, used for model tuning.
dTesting: Precision, recall, and F1 score results on the independent testing dataset, used to evaluate model generalization.
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required more than 37 seconds. These quantitative improvements
demonstrate the app’s ability to accelerate weed coverage assess-
ment while maintaining accuracy across diverse growth conditions
and geographic locations, as specified in Table 3.

The application of deep learning models such as ResNet,
ResNeXt, and EfficientNet for detecting weeds in bahiagrass,
dormant bermudagrass, and perennial ryegrass has shown
promising results that can benefit weed management practices
(He et al. 2016; Tan and Le 2019; Xie et al. 2017). These models
effectively balance the need for high accuracy with computational
efficiency, offering a tool that can save time and resources in large-
scale agricultural operations. EfficientNet’s compound scaling
method enabled it to excel in detecting weeds in bahiagrass,
capturing complex features with high precision and recall. The
residual connections in ResNet and ResNeXt enhanced their
capacity to learn deep patterns, contributing to their success with
dormant bermudagrass and perennial ryegrass (Ebski et al. 2018;
Zhou et al. 2021). In contrast, lightweight models, ShuffleNetV1
and MobileOne, although computationally efficient, lacked the
depth needed for detailed feature extraction, resulting in lower
accuracy and F1 scores, especially in the testing dataset (Vasu et al.
2023; Zhang et al. 2018).

The app tended to overestimate weed coverage in bahiagrass,
particularly when R. scabra was present. To effectively distinguish
R. scabra growing in bahiagrass, augmenting the training dataset
by incorporating more images of R. scabra in bahiagrass is
essential. In contrast, the app performed well in determining weed

coverage in dormant bermudagrass and actively growing perennial
ryegrass, showing strong agreement with manual counting.
However, further improvements are needed to enhance its
accuracy in more complex, actively growing environments.

This study demonstrates that integrating deep learning models
into a mobile app for weed coverage and density estimation
provides a significant time-saving advantage over traditional
manual methods. This efficiency not only streamlines the
estimation process but also reduces labor costs, making it
particularly well suited for large-scale agricultural experiments.
By automating weed coverage assessments, the app-based method
offers a faster and more accurate alternative, potentially facilitating
herbicide efficacy experiments and improving overall field
management practices.

Beyond its technical merits, the app offers substantial economic
value for turfgrass practitioners and agricultural researchers. By
automating weed coverage assessments, it mitigates human error,
enhances consistency, and accelerates data collection. These
capabilities facilitate more timely and informed decisions regard-
ing herbicide applications and other weed management strategies.
Ultimately, the app enhances both the precision and sustainability
of weed control efforts, serving as a practical and cost-effective tool
for improving field management and supporting high-throughput
herbicide efficacy evaluations.

The app-based method demonstrated promise in estimating
weed coverage but exhibited several limitations that warrant
improvement. A primary issue was the misclassification of

Table 2. Comparison of weed coverage percentage estimated by app-based and manual counting methods.

Methods Bahiagrass Dormant bermudagrass Perennial ryegrass

—————————————————————— % ————————————————————————

App-based
methoda

15 11 10

Manual
countingb

4 11 10

P-value
(t-test)c

<0.0001 0.3560 0.1340

Specificationd Actively growing bahiagrass images
were taken in Tampa, FL, USA; weed

species included only Richardia
scabra.

Dormant bermudagrass images were
taken in Peachtree City, GA, USA;
weed species included only Poa

annua.

Actively growing perennial ryegrass images were
taken in Carmel, IN, USA; weed species included
Taraxacum officinale, Glechoma hederacea, and

Chamaesyce maculata.

aApp-based method: Percentage of weed coverage estimated using an automated app.
bManual counting: Percentage of weed coverage estimated through manual counting.
cP-value (t-test): The statistical significance of the difference between the app-based and manual methods for estimating weed coverage. A P-value less than 0.05 indicates a significant
difference.
dSpecification: Details the specific turfgrass images used along with the associated weed species.

Table 3. Descriptive statistics of model and manual recognition time efficiency.

Methods Bahiagrass Dormant bermudagrass Perennial ryegrass

———————————————————————— s ————————————————————————

App-based
methoda

8.23 7.75 14.96

Manual
countingb

39.25 37.25 42.25

Specificationc Actively growing bahiagrass images
were taken in Tampa, FL, USA; weed

species included only Richardia
scabra.

Dormant bermudagrass images were
taken in Peachtree City, GA, USA;
weed species included only Poa

annua.

Actively growing perennial ryegrass images were
taken in Carmel, IN, USA; weed species included
Taraxacum officinale, Glechoma hederacea, and

Chamaesyce maculata.

aApp-based method: Time (in seconds) taken by the app to recognize weeds.
bManual counting: Time (in seconds) taken for manual counting of weeds.
cSpecification: Details the specific turfgrass images used along with the corresponding weed species.
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bahiagrass as a weed, particularly in areas where R. scabra was
present. This misidentification significantly contributed to an
overestimation of weed coverage during the active growing phase
of bahiagrass and R. scabra, underscoring the app’s difficulty in
distinguishing morphologically similar species. An insufficient
amount of R. scabra training data may have led to an
overestimation of bahiagrass weed coverage, particularly during
active growth stages. This finding suggests that further refinement
of the app’s deep learning models, particularly for actively growing
turfgrass species mixed with morphologically similar weeds, is
necessary to improve accuracy. In contrast, the app performed well
in detecting weeds in dormant bermudagrass and perennial
ryegrass, closely aligning with manual counting and indicating its
effectiveness in scenarios where turfgrass and weeds are more
morphologically distinct.

Due to the limitations of mobile device processors, achieving
high-performance weed recognition remains challenging, high-
lighting the need for amore efficient and accurate algorithm.While
our model is currently deployed locally on mobile devices, future
deployments could leverage cloud computing. By utilizing the
powerful computational capabilities of the cloud, we can overcome
the limitations of mobile hardware. Cloud-based deployment
would allow for batch processing, significantly improving
recognition efficiency. Additionally, cloud-based models could
be updated seamlessly, providing greater flexibility and ensuring
users have access to the latest advancements in weed detection.

The app’s effectiveness in estimating weed coverage may vary
across geographic regions and management practices, influenced
by factors such as weed species composition and turfgrass
dormancy levels. Expanding the training dataset to include a
broader range of weed and turfgrass species could enhance the
app’s generalizability and performance in diverse contexts. Factors
such as weed species composition and turfgrass surface quality—
shaped by diverse management practices—may influence the
accuracy of weed coverage and density estimation. These variations
present challenges to the model’s generalization, potentially
limiting its performance in unfamiliar environments. The training
dataset used to develop the model is currently limited in
geographic range and weed diversity, raising concerns about its
generalizability to different regions or weed species. To address
these limitations, users are encouraged to manually verify the app’s
weed identification accuracy under their specific local conditions.
Future efforts will focus on expanding the training image database
to include a broader range of turfgrass types, weed species, growth
stages, weed densities, and biotypes. This expansion aims to
enhance the model’s adaptability and ensure consistent perfor-
mance across diverse regions, weeds, and management practices.
To address themisclassification of bahiagrass and R. scabra, several
strategies can be employed. First, expanding the dataset to include
more diverse images of R. scabra, particularly in mixed
environments with bahiagrass, as well as across varying growth
stages, would improve the model’s ability to differentiate between
the two species. Additionally, incorporating spectral or texture-
based features could improve species differentiation by capturing
unique characteristics. Finally, implementing a multi-class
classification layer to explicitly distinguish turfgrass from weeds
would help reduce overestimation and enhance detection accuracy.
These approaches are crucial for improving overall classification
performance.

This study evaluated various deep learning models for detecting
weeds in actively growing bahiagrass, dormant bermudagrass, and
actively growing perennial ryegrass and selected the best-

performing model for integration into a mobile app.
Subsequently, the app-based method was compared with tradi-
tional manual counting. For bahiagrass, the app-based method
tended to overestimate weed coverage, likely due to challenges in
distinguishing bahiagrass from morphologically similar weeds,
such as R. scabra, during active growth stages. This highlights the
need for improved species differentiation. This gap in detection
accuracy reflects a broader challenge in the field of weed
management, where distinguishing between species with similar
morphology is crucial for precision agriculture and effective
herbicide application. Encouragingly, the app demonstrated strong
alignment with manual counting for dormant bermudagrass and
perennial ryegrass. These results suggest that the app is effective for
weed detection in cases where turfgrass is dormant or when weed
species are morphologically distinct from turfgrasses. While the
app performs well for dormant bermudagrass and perennial
ryegrass, further refinement is needed for more complex cases like
bahiagrass during active growth. Addressing these challenges will
be a crucial step toward improving the utility of mobile app–based
weed detection in diverse agricultural settings. Future research
should expand to cover a broader range of turfgrass species and
other crops, such as wheat (Triticum aestivum L.). Additionally,
collaborations with agricultural researchers and field practitioners
would facilitate the development of region-specific models and
datasets, improving the app’s adaptability to different environ-
ments and weed species. Such expansion would allow users to
rapidly assess weed coverage and density through simple image
capture, supporting enhanced weed management and herbicide
efficacy evaluation.
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