
Bull. Aust. Math. Soc. 86 (2012), 416–423
doi:10.1017/S000497271200007X

ON GROUPS WITH A FINITE NUMBER OF NORMALISERS

MOHAMMAD ZARRIN

(Received 2 November 2011)

Abstract

Groups having exactly one normaliser are well known. They are the Dedekind groups. All finite groups
having exactly two normalisers were classified by Pérez-Ramos [‘Groups with two normalizers’, Arch.
Math. 50 (1988), 199–203], and Camp-Mora [‘Locally finite groups with two normalizers’, Comm.
Algebra 28 (2000), 5475–5480] generalised that result to locally finite groups. Then Tota [‘Groups with
a finite number of normalizer subgroups’, Comm. Algebra 32 (2004), 4667–4674] investigated properties
(such as solubility) of arbitrary groups with two, three and four normalisers. In this paper we prove that
every finite group with at most 20 normalisers is soluble. Also we characterise all nonabelian simple (not
necessarily finite) groups with at most 57 normalisers.
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1. Introduction and results

We say that a group G is an Nn-group (Nc
n-group, respectively) if it has exactly n

normalisers of subgroups (normalisers of cyclic subgroups, respectively).
The groups belonging toN1 are the Dedekind groups, which are well known. Pérez-

Ramos [13] characterised finite groups belonging to N2, and then Camp-Mora [5]
generalised this result to locally finite groups. Subsequently Tota [15] investigated the
behaviour of normaliser subgroups of a group on the structure of the group itself and
gave some properties of arbitrary groups with two, three and four normalisers. More
precisely, among other things, her results can be described in the following way.
• A group G has a finite number of normalisers if and only if G is central-by-finite.
• Let G be an N3-group. Then G is nilpotent of class at most three.
• Let G be an N4-group. Then G is soluble of derived length two.
• Let G be an N4-group. If G is not locally finite, then G is nilpotent of class at

most three.
In particular, she showed that every Nn-group with n ≤ 4 is soluble of derived length
at most two.
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Observing that the characterisation of such groups is possibly very hard, the above
writers restricted themselves to studying Nn-groups with small values of n. On the
other hand, it is easy to see that

Nn ⊆ N
c
m,

for some m ≤ n. So to investigate Nn-groups it suffices to study Nc
n-groups. The aim of

this paper is to investigate Nc
n-groups. We obtain a solubility criterion for Nc

n-groups
(Nn-groups) in terms of n. In fact we prove that every finite group with at most 20
normalisers of cyclic subgroups (normalisers of subgroups, respectively) is soluble,
while we conjecture that the best bound must be 21 (26, respectively).

The main result of this paper is the following theorem.

T A. Let G be a finite Nc
n-group (Nn-group) with n ≤ 20. Then G is a soluble

group.

We also investigate nonabelian simple Nc
n-groups with n ≤ 57.

T B. Let G be a nonabelian simple Nc
n-group with n ≤ 57. Then G � A5.

We write An and D2m, respectively, to denote the alternating groups on n letters and
the dihedral group of order 2m and m > 1. For any prime power q, we denote by L2(q),
PGL(2, q), SL(2, q) and GL(2, q), the projective special linear group, the projective
general linear group, the special linear group and the general linear group of degree
two over the finite field of size q, respectively.

2. Properties of groups with a finite number of normalisers

In 1980 Polovickiı̌ [12] proved that if a group has finitely many normalisers of
abelian subgroups, then its centre has finite index. This result suggests that the
behaviour of normalisers has a strong influence on the structure of the group. In fact
Tota [15] (see Theorem 2.1 and also the remark after Theorem 2.2) has proved that a
group G has finitely many normalisers of cyclic subgroups if and only if G is a central-
by-finite group if and only if G has finitely many normalisers of subgroups. Therefore
we can summarise the latter results in the following theorem. (Note that every group
with n normalisers of abelian subgroups is also a group with m normalisers of cyclic
subgroups, for some m ≤ n.)

T 2.1. For any group G, the following statements are equivalent.

(a) G has finitely many normalisers of cyclic subgroups.
(b) G is a central-by-finite group.
(c) G has finitely many normalisers of subgroups.
(d) G has finitely many normalisers of abelian subgroups.

For the proofs of the main theorems we need the following lemmas.

L 2.2. Suppose that G is an Nc
n-group and N E K ≤G. Then:

(1) K is an Nc
m-group for some m ≤ n;

(2) K/N is an Nc
r-group for some r ≤ n.
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P. (1) This follows from the fact that NK(〈x〉) = NG(〈x〉) ∩ K, for any x ∈ K.
(2) This is straightforward. �

L 2.3. Let D2m be an Nc
t -group. Then:

(1) t = (m/2) + 1 if m , 2 is even;
(2) t = m + 1 if m is odd.

P. This is straightforward. �

According to Lemma 2.3, it follows that, for any positive integer n, there exists a
finite Nc

n-group.
The following is a key lemma for some of our results.

L 2.4. Let G be a group, and let x and y be elements of G such that NG(〈x〉) =

NG(〈y〉). Then the subgroup H = 〈x, y〉 is a nilpotent group of class at most two.

P. Since NG(〈x〉) = NG(〈y〉), we have y−1xy = xi and x−1yx = y j for some i, j ∈ N.
This implies that x−1y−1xy ∈ 〈x〉 ∩ 〈y〉 and so H′ ≤ Z(H). It follows that H is a nilpotent
group of class at most two. �

Finally, we show that a semisimple Nc
n-group has order bounded by a function of n.

(Recall that a group G is semisimple if G has no nontrivial normal abelian subgroups.)

P 2.5. Let G be a semisimple Nc
n-group (Nn-group). Then G is finite and

|G| ≤ (n − 1)!.

P. The group G acts on the set

N := {NG(〈x〉) | x ∈G} \ {G}

by conjugation. By assumption, |N| = n − 1. Put

N′(G) =
⋂
x∈G

NG(NG(〈x〉)).

The subgroup N′(G) is the kernel of this action and so

G/N′(G) ↪→ S n−1. (∗)

By definition of N′(G), it follows that NN′(G)(〈x〉) C N′(G) for any element x ∈ N′(G),
and so

〈x〉 C NN′(G)(〈x〉) C N′(G).

That is, every cyclic subgroup of N′(G) is 2-subnormal. Therefore N′(G) is a 2-Engel
group, and so (as is well known; see [11]) N′(G) is nilpotent of class at most three.
Now, as G is a semisimple group, we can obtain that N′(G) = 1. It follows from (∗)
that G is a finite group and |G| ≤ (n − 1)!, as required. �
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3. SolubleNNNn-groups

In this section we prove Theorem A.
First, by Lemma 2.4, we give some interesting relations between Nc

n-groups and
(N , n)-groups that were considered by Lennox and Wiegold in 1981 [10]. Let n ∈ N.
We say that a group G satisfies condition (N , n) (or that G is an (N , n)-group)
whenever in every subset of G with n + 1 elements there exist distinct elements x,
y such that 〈x, y〉 is nilpotent.

P 3.1. Let n be a positive integer and G be an Nc
n-group (not necessarily

finite). Then G satisfies condition (N , n).

P. Suppose, for a contradiction, that G does not satisfy condition (N , n). Then
there exists a set X = {a1, a2, . . . , an+1} of G such that 〈ai, a j〉 is not nilpotent, for
every 1 ≤ i , j ≤ n + 1. It follows, by Lemma 2.4, that G is an Nc

t -group with t ≥ n + 1,
a contradiction. �

It it easy to see that the dihedral group of order eight, D8, is an (N , 1)-group and
that it is also, by Lemma 2.3, an Nc

3-group. This example shows that the converse of
Proposition 3.1 is not true.

R 3.2. Proposition 3.1 holds whenever G is an Nn-group since, if G ∈ Nn, then
G ∈ Nc

m for some m ≤ n. Hence, according to Proposition 3.1, G satisfies condition
(N , m). On the other hand, it is easy to see that (N , r) ⊆ (N , s) for all r ≤ s. Thus G
satisfies condition (N , n).

P  T A. This follows from Proposition 3.1 and the main result of [6]. �

In particular, we conjecture that the best bound must be 21. Some results (see case
(1) of Lemmas 3.3 and 3.4, below) show that every Nc

21-group is an (N , 20)-group,
and so, by [6], such groups are soluble.

An element x of G is called right n-Engel if [x,n y] = 1 for all y ∈G, where
[x, y] = x−1y−1xy = x−1xy and [x,m+1 y] = [[x,m y], y] for all positive integers m. We
denote by Rn(G), the set of all right n-Engel elements of G. The subset corresponding
to Rn(G) which can be similarly defined is Ln(G), the set of all left n-Engel elements
of G, where an element x of G is called left n-Engel if [y,n x] = 1 for all y ∈G.

L 3.3. Let n be a positive integer and G be an Nc
n-group (not necessarily finite).

Then:

(1) if Lt(G) = 1 for some t ≥ 2, then G satisfies condition (N , n − 1);
(2) if G is a semisimple group, then G satisfies condition (N , n − 1).

P. (1) Suppose, for a contradiction, that G does not satisfy condition (N , n − 1).
Then there exists a set X = {a1, a2, . . . , an} of G such that 〈ai, a j〉 is not nilpotent,
for every 1 ≤ i , j ≤ n. We claim that NG(〈ai〉) ,G for every i ∈ {1, . . . , n}. To
show this, suppose that there exists an element ai ∈ X such that NG(〈ai〉) = G. This
implies that [g,2 ai] = 1 for every g ∈G. That is, ai ∈ L2(G) ⊆ Lt(G) = 1, which gives a
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contradiction. On the other hand since NG(〈e〉) = G, where e is the trivial element of
G, we obtain that G is an Nc

k-group with k ≥ n + 1, a contradiction.
(2) It can easily be seen that

L2(G) = {a ∈G | 〈a〉G is abelian},

where 〈a〉G denotes the normal closure of a in G. As G is semisimple, so L2(G) = 1
and so, by part (2), the result follows. �

L 3.4. Let G be an Nc
n-group and Rt(G) = Lt(G), for some t ≥ 2. If G satisfies the

maximal condition on its subgroups or G is a finitely generated soluble group, then G
satisfies condition (N , n − 1).

P. By [14, Theorem 12.3.7] and the main result of [4], R(G) = Z∗(G), where Z∗(G)
is the hypercentre of G. Now, by an argument similar to the proof of part (1) of
Lemma 3.3, the result follows. (Note that Rt(G) ⊆ R(G) and if a ∈ Z∗(G) then 〈a, b〉 is
nilpotent, for all b ∈G.) �

We say that a group G is an Na
n-group if it has exactly n normalisers of abelian

subgroups (see also [12]). Since every group with n normalisers of abelian subgroups
is also a group with m normalisers of cyclic subgroups, for some m ≤ n, Theorem A
gives the following corollary.

C 3.5. Let G be a finite group. If G has k normalisers of abelian subgroups
such that k ≤ 20, then G is a soluble group.

In view of the above results and as A5 ∈ N27 ∩ N
a
27 (for example, by GAP [7]) and

also A5 ∈ N
c
22, we can give the following conjectures.

C 3.6. Every finite Nn-group (or Na
n-group) with n ≤ 26 is soluble.

C 3.7. Every finite Nc
n-group with n ≤ 21 is soluble.

4. Nonabelian simpleNNNn-groups

In this section, we prove Theorem B. We need some preliminary lemmas. Finding
the number of normalisers of cyclic subgroups of a group G, specifically for simple
groups, itself is of independent interest as a pure combinatorial problem. Here we give
a lower bound for the number of normalisers of cyclic subgroups, for some famous
groups that we need for proofs of some main results.

A set C of vertices of a graph Γ whose induced subgraph is a complete subgraph is
called a clique and the maximum size (if it exists) of a clique in a graph is called the
clique number of the graph and is denoted by ω(Γ). Let G be a group. Following [1],
we shall use the notation NG to denote the nonnilpotent graph as follows: take G as the
vertex set and let two vertices be adjacent if they generate a nonnilpotent subgroup.
Here, for an Nc

n-group G, we give some interesting relations between n and ω(NG).
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L 4.1. Let G be an Nc
n-group. Then:

(1) ω(NG) ≤ n;
(2) if G is a semisimple group, then ω(NG) + 1 ≤ n.

P. (1) The statement follows from Lemma 2.4.
(2) Let {a1, . . . , ak} be a clique of the graph NG. As in the proof of part (2) of

Lemma 3.3, it follows that NG(〈ai〉) ,G for all i ∈ {1, . . . , k}. This completes the proof,
since NG(〈e〉) = G. �

P 4.2. If, for any prime power order q with q > 5, L2(q) ∈ Nc
s and

PGL(2, q) ∈ Nc
t , where s, t ∈ N, then

q2 + q + 2 ≤ s, t.

P. It follows from part (2) of Lemma 4.1 and [16, Proposition 4.2] that q2 + q +

2 ≤ s. Now, since

L2(q) �
ZSL(2, q)

Z
≤ PGL(2, q)

where Z is the centre of GL(2, q), we can obtain, by Lemma 2.2, that q2 + q + 2 ≤ t, as
required. �

R 4.3. According to Proposition 4.2, the group L2(7) is an Nc
s-group for some

58 ≤ s. But it is easy to see (for example, by GAP [7]) that s = 58.

L 4.4. Let G be a finite group, and p a prime divisor of the order of G. Suppose
that all pairs of distinct Sylow p-subgroups of G intersect trivially. Let P and Q be
different Sylow p-subgroups of G. If x ∈ P and y ∈ Q, then NG(〈x〉) , NG(〈y〉).

P. Suppose, for a contradiction, that NG(〈x〉) = NG(〈y〉). According to Lemma 2.4,
the subgroup 〈x, y〉 is a nilpotent group. This implies that the subgroup 〈x, y〉 is a p-
group so 〈x, y〉 ≤ P or 〈x, y〉 ≤ Q. It follows that P ∩ Q , 1, which is contrary to the
hypothesis. Thus NG(〈x〉) , NG(〈y〉). This completes the proof. �

Let G be a finite group, p a prime divisor of the order of G. We denote by vp(G) the
number of Sylow p-subgroups of G such that every two distinct Sylow p-subgroups of
G have trivial intersection. The following lemma is key to some of our results.

L 4.5. Let G be a finite Nc
n-group, and p a prime divisor of the order of G. Then

vp(G) + 1 ≤ n.

P. This follows from Lemma 4.4. �

We are now ready to conclude the proof of Theorem B.

P  T B. By Proposition 2.5, G is finite. Suppose, to the contrary, that
there exists a nonabelian finite simple Nc

n-group, G, not isomorphic to A5 and of the
least possible order such that n ≤ 57. By [3, Proposition 3], [2, Theorem 1] and
Lemma 2.2, it is enough to consider the following groups: L2(2m), m = 4 or an odd
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prime; L2(3m), L2(5m), m a prime; L2(m), m a prime and 7 ≤ m; L3(3); L3(5); U3(4)
(the projective special unitary group of degree three over the finite field of order 42);
or S z(2p), p an odd prime.

If G is isomorphic to L2(m), m a prime and 7 ≤ m (L2(2m), m = 4 or an odd prime,
respectively), then by Proposition 4.2, we can see that n ≥ 58 (n ≥ 74, respectively),
a contradiction. If G is isomorphic to L2(3m) (L2(5m), respectively), m a prime,
then again, by Proposition 4.2, we can see that n ≥ 92 (n ≥ 652, respectively), a
contradiction. Thus among the projective special linear groups, we only need to
investigate the groups L3(3) and L3(5). If G � L3(3), then |G| = 24 × 33 × 13 and
v13(G) = 144. So n ≥ 145, by Lemma 4.5, a contradiction. If G � L3(5), then |G| =
53 × 25 × 3 × 31 and v31(G) = 4000. Thus n ≥ 4001, by Lemma 4.5, a contradiction.
Therefore, we must consider the groups U3(4) and S z(2m), m an odd prime. If
G � U3(4), then it has order 26 × 3 × 52 × 13 (see Theorem 10.12(d) of Chapter II
in [8]). So v13(G) = 1 + 13k for some k > 0 and since v13(G) divides |G|, we have
v13(G) = 1600 and so n ≥ 1601, by Lemma 4.5, a contradiction. If G � S z(2m) (m an
odd prime), then it follows from Theorem 3.10 (and its proof) of Chapter XI in [9] that
v2(G) ≥ 22m + 1 ≥ 65. Hence n ≥ 66, by Lemma 4.5, a contradiction. This completes
the proof. �

Theorem B has the following consequence.

T 4.6. Let G be a nonabelian simple Nn-group with n ≤ 57. Then G � A5.

P. Since Nn ⊆ N
c
m for some m ≤ n, it follows, by Theorem B, that G � A5. On the

other hand, we can obtain that A5 ∈ N27. This gives the result. �

We have a nice characterisation for A5.

C 4.7. The only simple group with 27 (22, respectively) normalisers
(normalisers of cyclic subgroups, respectively) is A5.
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