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A PROPERTY OF NEW COORDINATES DEFINING
AUGMENTED SCHOTTKY SPACES

HIROKI SATO

§0. Introduction

In the previous paper [3], we introduced new coordinates to the
Schottky space, and defined the augmented Schottky spaces @;"(Z’). Here,
in §1, we will define fiber spaces over the augmented Schottky spaces.
In §2, we will consider a property of the new coordinates, namely, we
will state a relation between limits of sequences of elements of the new
coordinates and limits of sequences of length of loops on Riemann surfaces.

§1. Fiber spaces over the augmented Schottky spaces

1.1. We will use the same notations and terminologies as in the
previous paper [3]. Throughout this paper, we fix a standard system of
loops 2 ={a, -+, ;3 71, -5 722-s; on a compact Riemann surface S of
genus g (see p. 156 in [3]).

For Ic{1,2,---,g}and J={j, ---,jn} {1, 2,---,2¢ — 3} where j,
< -+ <jn., we consider §"'€,(2). We see that S\|J",y, consists of
m + 1 components [g)], [¢,], - - -, [0;,], here each [¢;] represents one contain-
ing the cell ¢, =¢(,i, ---,i,) when 7; = y(1,1, ---,i,) (see [3], p. 157).
If J=¢, we regard S\Ur,, as S itself. For arbitrary ze¢§"'C,(2), we
have m + 1 Schottky groups (including the trivial group) Gy(z), G;(2), - - -,
G,.(z), and m + 1 Riemann surfaces Sy(z), S;(¢), - -+, S;(r) as well as the
Riemann surface with nodes

S(@) = o) + 8,0 + -+ + S,.(0)

as in the previous paper [3]. We will introduce 2g — 2 Schottky groups
(including the trivial group) Gy(z) (s = 0,1, ---,2g — 3) as follows.

(i) Gy) is defined by normalizing Gy(z) as follows: p,(z) =0, ¢.(z)
= oo and py(r) = 1 if the cell ¢, is contained in [g,], or p*(1,0, ---,0) =1
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if o, & [0,], where p*(1,0, ---,0) is the right distinguished point with re-
spect to the boundary loop #(1,0, - --,0) of [g,].

(i) Gy2) (s=28,---,8) is defined as follows: Let [o,,] be the
part which contains the cell ¢, Let G,(r) be the Schottky group re-
presenting the Riemann surface S,(r) (see p. 172 in [3]). G(7) is the
group obtained from G,,(r) by the following normalization: p,(z) =0,
q{(zr) = o0, and p,(z) = 1 if g, € [ow], or P~(1, 0}, - -+, 3,) (2) = 1 if 0, & [04s]s
where p~(1, i, - - -, 1,) (z) is the left distinguished point with respect to the
boundary loop 7(1,1i, ---,i,) of [g:]

(ii1) Gi(z) is defined as follows. Let [evw] be the part of S which
contains the cell ¢,. Let G, (z) be the Schottky group representing
Sy (0). Gy(z) is the group obtained from G, (7) by the following normali-
zation: (1) p(z) = 0 if g, € [oy], or p~(1) (v) = 0if 0, & [04n]; (2) Pelr) = o0
if g, € [o,], Oor p*(L,0, ---,0) (7) = oo if g,& [6,,], where p*(1,0, ---,0) is
the right distinguished point with respect to the boundary loop (1,0, - - -, 0)
of [ovw]; (B piz) =1 if the terminal cell ¢, with I = (1,1, 0, - - -, 0) belongs

-
to [o4w], or p*(1,1,0,--.,0) (z) = 1 if o, & [04q,], where p*(1,1,0,---,0) (2)
o o
is the right distinguished point with respect to the boundary loop
71, 1,0, ---,0) of [g,]
————r

@iv) G (s=g+1,g+2 -, 2g — 3) are defined as follows. Let
[o.s] be the part of S which contains the cell g,, Let G,(z) be the
Schottky group representing S, (z). Let y, =y(@,i,---,i,). We define
és(t) as the group obtained from G, (z) by the following normalization:
D p(® =0 if g€loww), or p (L3, --+,5) (0) =0 if 0, [ox,], where
p-@,i, ---,1,) () is the left distinguished point with respect to the bound-
ary loop y(1,i;, ---,1,) (z) of [ovw]; (@) pz) = oo if the terminal cell g,
with [ = (1,1, ---,1,0, ---, 0) belongs to [s,,], or p*@A, i, - -,1,,0,---,0)

—— ~——

(z) = oo if 0,6 [04], Wwhere p*(1, i, --+,%,0,---,0) (z) is the right distin-
h,/—/
guished point with respect to the boundary loop (1,2, ---,i,0,---,0) of
\_‘,l__/
[0:]; (B) pi(r) =1 if the terminal cell o, with ' = (1,4, ---,2,,1,0,---,0)
N’

belongs to [o.»], or p*(1, 4, ---,i,1,0,---,0) (¢) =1 if o, &lo,,y], Where
N’

p*(,4,---,1,1,0,---,0) (v) is the right distinguished point with respect
N————

n’
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to the boundary loop y(3,i;, -+ +,%,,1,0,---,0) of [;,]
\_..\,’_—/

n

Remark. Each [o;] is the union of all cells ¢, such that
k(s)=3j.
Corresponding groups ésg‘c) are equivalent to éj(z-), namely, there exist
T, e Mob with G() = T.G,(z)T;". The Riemann surfaces
S8.2) = 2G.()/G(2)
are conformally equivalent to Si(z). Accordingly
S(z) = Sy(z) + Si(0) + -+ + 8,,(2)

can be written as

S@ =85 + 8. + - - + 8.,
with some s, with j, = k(s), i = 1,2, - - -, m, and Sy(c) = Si(2).

1.2. Fiber spaces. Here we will define fiber spaces %s@j(Z) (s =0,
1,---,2g — 3) over the augmented Schottky spaces @;‘(Z‘).

DerFINITION. The s-th fiber space %s@;"(Z’) (s=0,1,---,2¢ — 3) over
the augmented Schottky space ©X(Z) is the set of all the points (z, 2) e
C*-* with r e &*(2) and z e 2/(G(z)), where 2/(G,(z)) = AC(\Uet,r A
(distinguished points).
We define the following sets by using %3@;‘(2):
BBH(Q2) = B.82)|8L(2),
F67B(2) = FSH2)|67C(2)
FHBUD) = BB |5SYU2)
and
TH@HI) = BEHD) B2 .

Here the vertical segment | represents a restriction.

~ 1.3. ProrosrrioN 1. (1) For each s = 0,1, ---,2g — 3, the fiber space
&@;‘(2) is @ domain in C*-% (2) For each I C{l,2,---,8} and J C
{1,2,..-,2g — 8}, 3B;7(2) is a subdomain of &@;"(2’) and a domain in

CBg—Z— 1) =1J1

We can prove the above proposition by a similar way to the proof
of Proposition 5 in [3], and here we omit it.
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1.4. Poincaré metric. It is assumed that each component of S\{nodes}
has hyperbolic universal covering surface (see [3]). For each re&3(2),
we denote by A,(z, 2) the Poincaré metric on 2/(G,(z)). In this case, the
Poincaré metric 2z, 2) means the unique conformal complete Riemannian
metric of Gaussian curvature —1. Then by a similar method to Bers [2],
we have the following.

PropPOSITION 2. The number Az, 2) is a continuous function of (z, 2)
€ %.8¥(2) for each s =0,1,---,2g — 3.

We project this A,(r, 2) to 2/(G,(1))/G(z) and we call it the Poincaré
metric as well.

§2. A property of the new coordinates

2.1. In this section we will consider a relation between the new co-
ordinates and the non-Euclidean length of loops on Riemann surfaces.

Let S be a fixed compact Riemann surface of genus g and X =
{ay, ++ -, @3 715 -+ *5 T2g-st @ fixed standard system of loops on S. Let S(v)
be a compact Riemann surface of genus g and 2, = {&,(v), - - -, @,(v); 7:(),
-+, 7g-s(»)} a standard system of loops on S(v) such that 7,) (j=1,2,
.-+, 2g — 3) give the same partitions of the set {1,2, ---,g} as 7, (see p.
157 and p. 171 in [3]). Then there exists a Schottky group

G = AW, 2), - -+, Ay, 2))

with 2(G())/G(v) = S(v), where the defining curves C,(») and Cj(v) of
A (v, 2) have the property I7,(Cy(v)) = a,(v) = II(Cj(v)) and I, is the natural
projection of 2(G(v)) onto S(v). We call Ay, 2) the generator of G(v) as-
sociated with «,(v). Then we can uniquely determine z, € &,(2) such that
G(z) = G(v). Let L(a(v)) and L(y4(v)) denote the length of geodesic loops
homotopic to a(v) and 7,() on S(v), respectively (i =1,2,---,8;j =12,
..., 28 — 3).

2.2. THEOREM. Let
T, = (tl(Tv)y Ty tg(tu), Px(fu), Sty p2g~3(fu))

v=1,2,--) be elements of S,(2) determined by S(v) and X, as above.
(1) Suppose lim,..t, =17,€8CS,(2) (I x ¢). Then lim, . L(a()) =0
if and only if t(z,) = 0, that is, ie L
(2) Suppose lim,.. 7, = 7,€8'S,(2) (J = ¢). Then lim,.. L(y,(v)) =0
if and only if pf(z,) = 1, that is, jed.
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Proof. (1) We show that if lim,_., L(e,(v)) = 0, then #,(z,) = 0. Suppose
t(z,) = 0. Since z,€ 'S (Y), Az, 2) is one of generators of the Schottky
group G(z,). We may set Az, 2) = (/tfz)z. Let Cfr,) and Ci(z,) be
defining curves of A,(r,, 2). Let A(2)|dz| be the Poincaré metric on C\{0, 1}.
Then noting that A(z) < A(z, 2), it is easily seen that L(a(z,)) 3 0, which
contradicts the assumption.

Next we will show that if ¢(z,) = 0, then lim,_.. L{e,(v)) = 0. Let ¢ be
a circle with the center p,(z,) (the extended repelling fixed point associated
with iel in a standard fundamental domain o(G(z,)) (see §5-1 in [3])
such that / (c) < e for sufficiently small ¢, where I, (c) denotes the length
of ¢ with respect to the Poincaré metric on 2/(G(z,)). For sufficiently large
v, pz,) is contained in the interior to ¢, and all defining curves of G(z,)
other than C,(z,) can be taken to be to the exterior to ¢, where Cy(z,) is
a defining curve of A[z,, 2) containing p,(z,) in the interior. Then it is
easily seen that «,(v) is homotopic to the image of ¢ under the natural
projection from 2(G(z,)) to S(v). By Proposition 2, |/, (c) — /. (c)| <e for
sufficiently large ». Hence I, (c) < 2.. Thus L(a(v) < [ (c) < 2.. Since ¢
may be taken arbitrarily small, we have lim,__ L(x,(v)) = 0.

(2) We will show that if lim, .., L(y,(»)) = 0, then lim,_, p(z,) = 1. Let
S() = 2(G(z,))/G(z,) be divided into two parts S,(z,) and S)(z,) by the loop
7;(). We denote by ai(v), - - -, a; (v) the “a-loops” on S(z,) ¢ =1,2). We
denote by A{(z,, 2) the generators of G(r,) associated with ai(v). Let Gi(z,)
be the group G(r,) normalized by p(z,) = 0, ¢{(z,) = oo and p®*(z,) = 1,
where p{(z,)) (I = 1,2) and q{"(z,) are the repelling fixed points of A{(z,, 2)
and the attracting fixed point of A{(z,, 2), respectively.

With the aid of a standard fundamental domain for G(z,), we can find
a simple closed curve 7,(v), which is a lift of y,(v), whose interior contains
all the fixed points of A{*(z,, 2), ---, AZ(r, 2). It is easily seen that the
Euclidean length of 7,(») tends to 0 as v — oo, since L(y,(»)) — 0 (v — oo).
Hence

2

lim p{*(z,) = lim ¢{"(¢,) = -+ - = limp{)(z,) = lim ¢{(c,) = 1.
Thus from the definition of p,(z,) (see p. 161 in [3]) we have the desired
result, lim,_., p/(z,) = 1.
Conversely, we show that if lim, .. p,(z,) = 1, then lim,.., L(y,(»)) = 0.
We denote by p(z,) the distinguished point resulted from the deformation.
Then we choose a circle ¢ with the center p(z,) in a standard fundamental

https://doi.org/10.1017/50027763000020109 Published online by Cambridge University Press


https://doi.org/10.1017/S0027763000020109

78 HIROKI SATO

domain w(r,) for G(z,) such that / (c) < e for sufficiently small e. By a
similar method to the proof of Proposition 5 in [3], we can assume that
all defining curves of A{(z,,2), -, AQ(r,,2) can be taken to be in the
interior to the circle ¢, and all defining curves of A{(z,2),---, AQ(z, 2)
can be taken to be to the exterior to the circle ¢ for sufficiently large ».
Thus the image of ¢ under the natural projection is homotopic to the loop
7/»). By Proposition 2, we have |l (c) — . (c)] <e Hence [/ (c) < 2.
Since L(y,(»)) < I.(c), we have lim,_.. L(y;,(»)) = 0.
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