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Strongly Incompressible Curves

Mario Garcia-Armas

Abstract. Let G be a ûnite group. A faithful G-variety X is called strongly incompressible if every
dominant G-equivariant rational map of X onto another faithful G-variety Y is birational. We settle
the problem of existence of strongly incompressible G-curves for any ûnite group G and any base
ûeld k of characteristic zero.

1 Introduction

Let G be an algebraic group. A G-compression of a generically free G-variety X is a
dominant G-equivariant rational map X ⇢ Y where Y is also generically free. We
say that X is strongly incompressible if every G-compression of X is birational. _is
concept was introduced by Z. Reichstein [Re04, §2], where the author asks for a clas-
siûcation of strongly incompressible G-varieties (see also [Re10, §7.1]).
A related problem arises when we only consider self-rational maps. More pre-

cisely, given a generically free G-variety X, is every dominant G-equivariant rational
map X ⇢ X a birational isomorphism? Even when G is trivial, this appears to be an
interesting problem in many contexts. X. Chen [Ch10] proved that every dominant
self-rational map of a very general projective K3 surface of genus g ≥ 2 is birational
(see [Ch12] for generalizations).

If a ûnite group G does not act faithfully on any curve of genus ≤ 1, then there
exist strongly incompressible complex G-curves (see [Re04, Example 6]). In unpub-
lished notes, N. Fakhruddin and R. Pardini have independently proved the existence
of strongly incompressible complex G-surfaces for certain ûnite groups G. To the
best of our knowledge, no examples of strongly incompressible varieties are known in
higher dimensions.

In this paper, we study the question of the existence of strongly incompressible
G-curves for every ûnite groupG and every base ûeld k of characteristic 0 (see Section
2 formore details on our assumption on char(k)). We settle the classiûcation problem
for G-curves raised in [Re04], by considering ûnite groups G that can act on a curve
of genus ≤ 1. In Section 3, we show that strongly incompressible G-curves exist if G
does not act faithfully on any curve of genus 0.

_eorem 1.1 (see _eorem 3.4) Suppose that G cannot act faithfully on a curve of
genus 0 via k-morphisms. _en there exists a strongly incompressible G-curve deûned
over k.
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For ûnite groups G that can act faithfully on a curve of genus 0 over k (recall that
these are always cyclic, dihedral, or polyhedral groups), the situation is more deli-
cate. In particular, it is important to decide whether a faithful G-curve X can be G-
compressed to P1, provided that there exists a faithfulG-action on the projective line.
To this end, wemake a small detour in Section 4 and, given a projective representation
G → PGL(V), we construct a cohomological invariant associated to any faithful G-
variety X, which allows us to determine whether X can be mapped G-equivariantly
to P(V). In Section 5, we compute the invariant for certain group actions on the
projective line.

We study the existence of strongly incompressible curves for groups that can act
faithfully on a curve of genus 0 in Sections 6–9. Our results are summarized in the
following theorem. In this paper, we denote the dihedral group of 2n elements by
D2n . For a deûnition of cohomological 2-dimension of a ûeld k, denoted by cd2(k),
we refer the reader to [Se02, I.§3]. We remark that k has cohomological 2-dimension
zero if and only if every algebraic extension of k is quadratically closed (see [EW87,
Lemma 2]).

_eorem 1.2 Let n ≥ 2 be an integer and let ωn be a primitive n-th root of 1.
(i) (_eorem 3.4, Proposition 6.4) Let G be eitherZ/nZ or D2n , where n is odd. _en

there exist strongly incompressible G-curves if and only if ωn + ω−1
n /∈ k.

(ii) (_eorem 3.4, Propositions 6.3 and 7.1) Suppose that n is even. _en there exist
strongly incompressible Z/nZ-curves if and only if ωn /∈ k.

(iii) (_eorem 3.4, Proposition 8.7) Suppose that n ≥ 4 is even. _en there exist strongly
incompressible D2n-curves if and only if either ωn + ω−1

n /∈ k or cd2(k) > 0.
(iv) (Propositions 8.1 and 9.6) Let G = (Z/2Z)2, A4, S4, or A5. _en there exist

strongly incompressible G-curves if and only if cd2(k) > 0.

In particular, we note the following corollary of the above results, which answers
the strong incompressibility problem for curves over an algebraically closed ûeld, as
posed in [Re04].

Corollary 1.3 Let G be a nontrivial ûnite group and let k be an algebraically closed
base ûeld. _en there exists a strongly incompressible G-curve if and only if G does not
act faithfully on P1, i.e., G is not cyclic, dihedral, A4, S4, or A5.

2 Notation and Preliminaries

Let k denote a base ûeld of characteristic 0 and let k be its algebraic closure. A
k-variety X is a geometrically reduced scheme of ûnite type over k (not necessar-
ily irreducible). _e word “curve” is reserved for a geometrically irreducible smooth
projective 1-dimensional variety. A point of a variety means a geometric point, unless
stated otherwise.
As usual, a rational map X ⇢ Y of k-varieties is an equivalence class of k-mor-

phisms U → Y , where U is a dense open subset of X. We denote the algebra of
rational functions of X by k(X). In general, k(X) is the direct sum of the function
ûelds of the irreducible components of X. An algebraic group G deûned over k is a
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smooth aõne group scheme of ûnite type over k. We say that X is a G-variety if G
acts morphically on X. _e inclusion of the algebra of G-invariant functions k(X)G

into k(X) induces a rational quotient map πX ∶X ⇢ W , where k(W) = k(X)G (see
[Ros56,Ros63]). _e varietyW is denoted by X/G and is unique up to birational iso-
morphism. IfN is a normal subgroup ofG, there exists amodel of X/N with a regular
action ofG/N . It is uniquely deûned up toG/N-equivariant birational isomorphism.
A rational map X ⇢ Y of G-varieties gives rise to a G/N-equivariant rational map
f ∶X/N ⇢ Y/N such that f ○ π′X = π′Y ○ f , where π′X ∶X ⇢ X/N and π′Y ∶Y ⇢ Y/N
are the corresponding rational quotient maps. _e above constructions are detailed
in [Re00], where the base ûeld is assumed to be algebraically closed. However, the
results there easily carry over to the general case, since the approach in [Re00] builds
on the work of M. Rosenlicht [Ros56,Ros63], where the base ûeld is arbitrary.
AG-action on X is said to be generically free if there exists a denseG-invariant open

subset of X with trivial scheme-theoretic stabilizers. (In particular, a faithful action
of a ûnite group is generically free.) A G-compression is a G-equivariant dominant
rational map X ⇢ Y , where X and Y are generically free G-varieties. A generically
free G-variety X contains a dense G-invariant open subset U which is the total space
of a G-torsor πU ∶U → U/G (see [BF03, _eorem 4.7]). We say that X is primitive
if G transitively permutes the irreducible components of X (equivalently, if X/G is
irreducible). Under this condition, the ûber at the generic point of U/G is a G-torsor
T → Spec(K), where K ≅ k(X)G . _e class of this torsor in H1(K ,G)will be denoted
by [X]. Conversely, given a ûnitely generated ûeld extension K of k, any class in
H1(K ,G) determines a generically free primitive G-variety X endowed with a k-iso-
morphism k(X)G ≅ K uniquely up toG-equivariant birational isomorphism. Inwhat
follows, we assume all G-varieties to be primitive, unless stated otherwise.
As we deûned in the introduction, a generically free G-variety X is said to be

strongly incompressible if everyG-compression of X is birational. However, as it stands,
this deûnition is not satisfactory over base ûelds k of characteristic p > 0. Indeed, we
claim that for every ûnite group G and every G-variety X deûned over k, there exists
a non-birationalG-compression of X. Indeed, let FX/Spec(k)∶X → X(p) be the relative
Frobenius morphism associated to X (see [Liu02, §3.2.4] for details). By functoriality,
wemay endow X(p)with an action of the groupG(p), which is canonically isomorphic
toG (recall thatG is a ûnite constant group). _is actionmakes FX/Spec(k) into a dom-
inant G-equivariant morphism, which has degree pdim(X) by [Liu02, Corolary 2.27].
To complete the proof of the claim, we must show that the G-action on X(p) is faith-
ful. Let N be the kernel of the action. _en we must have k(X(p)) ⊂ k(X)N ⊂ k(X),
where the inclusion k(X(p)) ⊂ k(X) is the purely inseparable extension induced by
FX/Spec(k). _us k(X)/k(X)N is both Galois and purely inseparable, which implies
that N is trivial.

In view of the above argument, it seems natural to deûne strong incompressibility
by requiring that only separable G-compressions should be birational. _e techniques
used in the present paper do not carry over easily to that setting, though some results
remain true (see Lemma 3.1). We do not pursue this direction any further and assume
in the sequel that our base ûeld k has characteristic 0.
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Given a central simple algebra A, we will denote its Brauer class by [A]. As usual,
the symbol (a, b)2 denotes the quaternion algebra with basis 1, i , j, i j, subject to the
relations i2 = a, j2 = b, and i j+ ji = 0. _e following simple observation will be used
repeatedly in the sequel.

Lemma 2.1 Let k(x) be a rational function ûeld over k and suppose that the quater-
nion algebra ( f (x), g(x))2 is split over k(x), where f , g ∈ k[x] are separable. _en
f (α) is a square in k(α) for any root α ∈ k of g.

Proof Since the quaternion algebra ( f (x), g(x)) 2 is split, there exist coprime poly-
nomials p, q, r ∈ k[x] such that the polynomial identity

f (x)p(x)2 + g(x)q(x)2 = r(x)2

holds. Substituting α in the above identity implies that f (α)p(α)2 = r(α)2. Note that
p(α) = 0 implies r(α) = 0. Conversely, suppose that r(α) = 0. _en α is a root of
f (x)p(x)2 of multiplicity at least 2, which implies that p(α) = 0 since f is separable.
It follows that r(α) = 0 if and only if p(α) = 0.
Assume for the sake of contradiction that p(α) = r(α) = 0. _en it follows that

α is a root of g(x)q(x)2 of multiplicity at least 2. Since g is separable, we obtain that
q(α) = 0. Hence α is a common root of p, q, r, which is impossible since they are
relatively prime. _is contradiction shows that p(α)r(α) ≠ 0 and therefore f (α) =
r(α)2p(α)−2 ∈ k(α)×2.

3 Strong Incompressibility of Curves

Let G be a ûnite group. Recall that a faithful G-variety X is said to be strongly incom-
pressible if any G-compression X ⇢ Y onto a faithful G-variety Y is birational. We
are interested in the study of strong incompressibility of G-curves. We remark that
the existence of strongly incompressible G-curves depends not only on the group G,
but also on the base ûeld k.

Note also that G-compressions of curves extend naturally toG-equivariant surjec-
tive ûnite morphisms, so we will regard G-compressions of curves as morphisms in
the sequel. _e following simple lemma is extremely useful in our analysis.

Lemma 3.1 ([Re04, Example 6]) Suppose that there exists a faithful G-curve X that
cannot be G-compressed to any G-curve of genus ≤ 1. _en there exists a strongly in-
compressible G-curve.

Proof Consider the set S consisting of faithful G-curves Y such that there exists a
G-compression X → Y . By assumption, the genus g(Y) ≥ 2 for all Y ∈ S. Select
a curve Y0 ∈ S having minimal genus. We claim that Y0 is strongly incompressible.
Indeed, suppose that we have aG-compression f ∶Y0 → Y ′, which implies that Y ′ ∈ S.
In particular, we must have g(Y ′) ≥ g(Y0) ≥ 2. However, by the Hurwitz Formula
(see [Liu02,_eorem 7.4.16]) it also follows that g(Y0) ≥ g(Y ′), whence equalitymust
hold. _is implies that f is birational.
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_e following result will be instrumental in the sequel. It is a special case of [RY01,
Proposition 8.6] (see also [RY01, Remark 9.9]), whose proof depends on the resolution
of singularities. We include an alternative proof because it works over any base ûeld of
characteristic 0, it is more elementary, and, in particular, does not rely on resolution
of singularities.

_eorem 3.2 _ere exists a faithful G-curve X deûned over k such that every element
of G ûxes some geometric point of X.

Proof See Appendix A.

We now recall some facts about the automorphism group of an elliptic curve.

Lemma 3.3 Let E be an elliptic curve deûned over a ûeld k.
(i) _ere exists a split exact sequence

(3.1) 1 // E i // Aut(E) π // Aut0(E) // 1 ,

where E acts on itself by translations and Aut0(E) denotes the group of automor-
phisms of E that preserve the origin.

(ii) _ere exists a natural isomorphism Aut0(E) ≅ µn , where

n =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

2 if j(E) ≠ 0, 1728,
4 if j(E) = 1728,
6 if j(E) = 0.

(iii) If j(E) = 1728 (resp. 0), we have Aut0(E)(k) = Z/4Z (resp. Z/6Z) if and only if
k contains a primitive fourth (resp. sixth) root of unity.

(iv) _e translation by P0 ∈ E and the automorphism α ∈ Aut0(E) commute if and
only if α(P0) = P0.

Proof (i) See [Sil09, §X.5]. Note that in [Sil09] Aut(E) and Aut0(E) are denoted by
Isom(E) and Aut(E), respectively.

(ii) See [Sil09, Corolary III.10.2].
(iii) _is follows directly from part (ii).
(iv) Let τP0 denote the translation by P0. _en note that τP0 and α commute if and

only if α(P) + α(P0) = α ○ τP0(P) = τP0 ○ α(P) = α(P) + P0 for all P ∈ E, which
implies the desired result.

_eorem 3.4 Suppose that G cannot act faithfully on a curve of genus 0 via k-mor-
phisms. _en there exists a strongly incompressible G-curve.

Proof By Lemma 3.1, it suõces to prove that there exists a faithful G-curve X that
cannot be G-compressed to any curve of genus 1.

Note that G is not isomorphic to Z/nZ for n = 1, 2, 3, 4, 6, because these groups
act faithfully on P1 over k (see [Beau10, Proposition 1.1]). By_eorem 3.2, there exists
a faithful G-curve X such that every g ∈ G ûxes a geometric point of X. For the
sake of contradiction, suppose that there exists a G-compression X → E, where E is a
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curve of genus 1 endowed with a faithfulG-action. Extending to the algebraic closure,
we obtain a G-compression Xk → Ek . Regard G as a subgroup of Aut(Ek). By the
exact sequence (3.1) and the fact that G /≅ Z/nZ for n = 1, 2, 3, 4, 6, we conclude that
G ∩ i(Ek) ≠ ∅. Since i(Ek) acts on Ek by translations, G ∩ i(Ek) acts freely on Ek .
However, every element of G must ûx a point on Ek by our assumption on Xk . _is
contradiction shows that X cannot be G-compressed to any G-curve of genus 1.

In view of the above theorem, it remains to study the existence of strongly incom-
pressible G-curves when G can act faithfully on a curve of genus 0. We will devote
Section 4 to the study of equivariant rational maps to projective spaces, and we will
use these results to understand compressions onto curves of genus 0.

4 Equivariant Maps to Projective Spaces

Let G be an algebraic group deûned over a ûeld k. A projective representation ρ∶G ↪
PGL(V) gives rise to a G-action on P(V). We will denote the resulting G-variety by
ρP(V). If ρ and σ are projective G-representations, it is clear that ρP(V) and σP(V)
are G-equivariantly isomorphic if and only if ρ and σ are conjugate. In what follows,
we always assume that the G-action on ρP(V) is generically free.
Consider the commutative diagram whose rows are central exact sequences

1 // Gm // GL(V) // PGL(V) // 1

1 // Gm // G′

?�
ρ

OO

// G
?�

ρ

OO

// 1

,

where G′ is the full preimage of G in GL(V). Given a ûeld extension K/k, we obtain
the corresponding diagram in cohomology

1 // H1(K , PGL(V)) // H2(K ,Gm)

1 // H1(K ,G′)

ρ∗

OO

ϕ // H1(K ,G)

ρ∗

OO

∆ρ // H2(K ,Gm).

(Note that H1(K ,Gm) and H1(K , GL(V)) are trivial by Hilbert’s _eorem 90.) _is
construction deûnes a cohomological invariant

∆ρ ∶H1(K ,G) → H2(K ,Gm) = Br(K).

If X is a generically free primitive G-variety and L = k(X)G , we denote the Brauer
class associated to [X] ∈ H1(L,G) by ∆ρ(X). Note that ∆ρ(X) is trivial if and only if
[X] li�s to a G′-torsor [X′] ∈ H1(L,G′).

Construction 4.1 Let Y be a primitive closed G-subvariety of ρP(V). Endow V
with a linear G′-action via ρ and deûne Ỹ ⊂ V to be the aõne cone over Y with the
origin removed. It is not hard to see that Ỹ is a primitiveG′-variety. Moreover, it is well
known that Ỹ is a Gm-torsor and Y is isomorphic to the geometric quotient Ỹ/Gm .
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Note also that the group G′/Gm ≅ G acts naturally on Ỹ/Gm , in such a way that the
above isomorphism is G-equivariant.

Lemma 4.2 Let Y be a generically free primitive closed G-subvariety of ρP(V). _en
∆ρ(Y) is trivial.

Proof We need to show that [Y] is in the image of the map

ϕ∶H1(K ,G′) → H1(K ,G),
where K = k(Y)G . Let Ỹ be as in Construction 4.1. If x ∈ Y has trivial stabilizer in
G, then any li� x̃ ∈ Ỹ of x has trivial stabilizer in G′. It follows that Ỹ is a generically
free primitive G′-variety and clearly ϕ([Ỹ]) = [Ỹ/Gm] = [Y].

Proposition 4.3 Let G be a ûnite group, let ρ∶G ↪ PGL(V) be a projective represen-
tation and let X be a faithful primitive G-variety.
(i) Suppose that there exists a G-equivariant rational map f ∶X ⇢ ρP(V). _en

∆ρ(X) is trivial.
(ii) Conversely, suppose that ∆ρ(X) is trivial. _en, given any G-invariant open sub-

set U ⊂ ρP(V), there exists a G-equivariant rational map X ⇢ U.

Proof (i) We write Y = f (X), K = k(Y)G , and L = k(X)G . We separate the proof
into two cases.

Case 1. Suppose that Y is a faithfulG-variety. _is case follows from the fact that ∆ρ is
a cohomological invariant. _e G-compression f ∶X ⇢ Y naturally induces a k-ûeld
homomorphism i∶K ↪ L and we have a commutative diagram:

H1(K ,G)
∆K

ρ //

i∗
��

H2(K ,Gm)

��
H1(L,G)

∆L
ρ // H2(L,Gm).

It is well known that in the above situation we must have i∗([Y]) = [X]. By Lem-
ma 4.2, we have ∆K

ρ (Y) = 1. _e commutativity of the above diagram then implies
that ∆L

ρ(X) = 1.

Case 2. In the argument below, every point is assumed to be a geometric point unless
stated otherwise. Suppose that the G-action on Y has a kernel H. Let Ỹ be as in
Construction 4.1, and letH′ be the kernel of theG′-action on Ỹ . We claim that π−1(H)
splits as Gm ×H′, where π∶G′ → G is the natural projection. Since G/H is ûnite and
acts faithfully on Y , it also acts generically freely. Hence, we can select a point y ∈ Y
such that StabG(y) = H. Fix any li� ỹ ∈ Ỹ of y; by construction, it follows that
StabG′( ỹ) = H′.

Let h ∈ H be arbitrary and let h∗ ∈ π−1(h) be any li�. Since h acts trivially on
y, there exists an element λh∗ ∈ Gm such that h∗ ⋅ ỹ = λh∗ ỹ. It follows that λ−1

h∗h
∗

stabilizes ỹ, whence it must be contained in StabG′( ỹ) = H′. Since Gm acts freely on
Ỹ , it is easy to see that λ−1

h∗h
∗ is the unique element in π−1(h) contained in H′; in

https://doi.org/10.4153/CJM-2015-012-3 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-2015-012-3


548 M. Garcia-Armas

particular, it is independent of the li� h∗. It follows that the section s∶H → π−1(H)
given by h → λ−1

h∗h
∗ is a well-deûned homomorphism satisfying s(H) = H′. Hence

the exact sequence 1→ Gm → π−1(H) → H → 1 splits in the desiredway. _is ûnishes
the proof of the claim.

We thus have a commutative diagram with exact rows:

1 // Gm // G′ π //

��

G //

��

1

1 // Gm // G′/H′ // G/H // 1.

Since H acts trivially on Y , the dominant G-equivariant rational map X ⇢ Y induces
aG/H-compression X/H ⇢ Y , which gives rise to a k-ûeld homomorphism i∶K ↪ L.
Using the bottom sequence above, we obtain a commutative diagram in cohomology:

H1(K ,G′/H′) //

��

H1(K ,G/H) //

i∗
��

H2(K ,Gm)

��
H1(L,G′/H′) // H1(L,G/H) // H2(L,Gm).

_e G/H-variety Y represents a class [Y] ∈ H1(K ,G/H), which maps to [X/H] ∈
H1(L,G/H) under i∗. It is easy to see that the G′/H′-action on Ỹ is generically free,
so it follows that [Y] comes from a class in H1(K ,G′/H′) and therefore its image in
H2(K ,Gm) is trivial. By the commutativity of the above diagram, the image of [X/H]
in H2(L,Gm) is also trivial.

To complete the proof of Case 2, note that we have the commutative diagram

H1(L,G′) //

��

H1(L,G)
∆ρ //

��

H2(L,Gm)

H1(L,G′/H′) // H1(L,G/H) // H2(L,Gm).

_e image of [X] ∈ H1(L,G) under the middle vertical map is precisely [X/H]. It
thus follows that ∆ρ(X) is trivial.

(ii) By assumption, [X] can be li�ed to a class in H1(L,G′), i.e., there exists a
generically free primitive G′-variety X′ such that X′/Gm is birationally isomorphic
to X as a G-variety. Without loss of generality, we may identify X′/Gm with X.

We may view V as a generically free linear G′-variety and the natural projection
πV ∶V ⇢ ρP(V) as a rational quotientmap. LetU ′ = π−1

V (U), which is clearly aG′-in-
variant open subset of V . Note that V is a versal G′-variety (see [Se03, Example 5.4]),
whence there exists a G′-equivariant rational map X′ ⇢ U ′. Taking quotients byGm ,
we obtain a G-equivariant rational map X = X′/Gm ⇢ U ′/Gm = U .

We record the following corollary for future reference.
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Corollary 4.4 Let ρ∶G ↪ PGL2 be a projective representation of a nontrivial ûnite
group G and let X be a faithful irreducible G-variety. _en there exists a G-compression
X ⇢ ρP1 if and only if ∆ρ(X) = 1.

Proof _e “only if ” part follows directly fromProposition 4.3(i). On the other hand,
suppose that ∆ρ(X) = 1. Since G is nontrivial, ρP1 has a ûnite number of G-ûxed
points. _erefore, we can ûnd aG-invariant openU ⊂ ρP1 not containing anyG-ûxed
points. By Proposition 4.3(ii), there exists a G-equivariant rational map f ∶X ⇢ ρP1

such that f (X) ⊂ U . _e closure f (X) is a G-invariant closed irreducible subset of
ρP1. By construction, it cannot be a ûxed point, so it coincides with ρP1 itself. _is
proves that f is dominant.

5 Some Explicit Computations

In this section, we explicitly compute the invariant introduced in Section 4 for certain
actions on the projective line. We will use these results later to study the strong in-
compressibility ofG-curves in the case whereG acts faithfully on P1. In what follows,
the class of an element a ∈ k× in k×/k×2 will be denoted by a.

Recall that the conjugacy classes of embeddings of (Z/2Z)2 into PGL2(k) are
parametrized by the pairs (a, b) ∈ (k×/k×2)2 such that the quaternion algebra (a, b)2
is split (see [Beau10, Proposition 3.4]). We denote the corresponding embedding by
ρ(a ,b) and ûx generators e1 , e2 of (Z/2Z)2. We have the following three cases.
● Suppose that both a and b are non-squares. _en we have

ρ(a ,b)∶ e1 ↦ (λ −a
1 −λ) e2 ↦ (0 a

1 0) ,

where λ2 − a ≡ b mod k×2 (we can ûnd such λ ∈ k because (a, b)2 is split).
● Suppose that a = 1. _en we have

(5.1) ρ(a ,b)∶ e1 ↦ (0 b
1 0) e2 ↦ (−1 0

0 1) .

● Suppose that b = 1. _en we have

ρ(a ,b)∶ e1 ↦ (−1 0
0 1) e2 ↦ (0 a

1 0) .

(If (a, b) = (1, 1), the last two embeddings are conjugate.) For simplicity, denote the
(Z/2Z)2-variety ρ(a ,b)P

1 by (a ,b)P1. Clearly, (a ,b)P1 and (a′ ,b′)P1 are isomorphic as
(Z/2Z)2-varieties if and only if a = a′ and b = b′.

Lemma 5.1 Let ρ(a ,b) be as above, let K/k be a ûeld extension, and identify

H1(K , (Z/2Z)2)

with (K×/K×2)2. _en ∆ρ(a ,b)(c, d) = [(ac, bd)2] for all c, d ∈ K×.
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Proof It suõces to prove that ρ(a ,b)∗∶ (K×/K×2)2 → H1(K , PGL2) maps (c, d) to
(ac, bd)2. Let U ,V ∈ GL2 be li�s of ρ(a ,b)(e1), ρ(a ,b)(e2), respectively. Note that
U2 = b′I, V 2 = a′I, and UV + VU = 0, where a′ = a and b′ = b. Rescaling the li�s if
necessary, wemay assume that a′ = a and b′ = b. LetA be the split quaternion algebra
(b, a)2. Note that there is a k-algebra isomorphism A ≅ M2 given by i ↦ U , j ↦ V ,
which induces isomorphismsGL1(A) ≅ GL2 and PGL1(A) ≅ PGL2. By construction,
ρ(a ,b) factors as

(Z/2Z)2 � � ϕ // PGL1(A) ≅ // PGL2 ,

where the embedding ϕ is given by e1 ↦ [i], e2 ↦ [ j]. We have therefore reduced
the problem to showing that ϕ∗∶ (K×/K×2)2 → H1(K , PGL1(A)) sends (c, d) to
(ac, bd)2 for all c, d ∈ K×.

We give a proof of this fact by Galois descent. Let L = K(
√
c,
√
d). _en we may

view ϕ∗(c, d) as an element of H1(Gal(L/K), PGL1(A)(L)). For simplicity, assume
that c, d, and cd are non-squares; the remaining cases are easier and le� to the reader.
Deûne generators σ1 , σ2 ∈ Gal(L/K) such that σ1 ûxes

√
d and sends

√
c to −

√
c,

while σ2 ûxes
√
c and sends

√
d to −

√
d. Note that the 1-cocycle v∶Gal(L/K) →

PGL1(A)(L) representing ϕ∗(c, d) is given by σ1 ↦ [i], σ2 ↦ [ j]. _en we twist the
Galois action on γ = x + yi + z j + ti j ∈ A⊗K L by setting

σ1 ∗ γ = vσ1(σ1(γ)) = i−1σ1(γ)i = σ1(x) + σ1(y)i − σ1(z) j − σ1(t)i j,
σ2 ∗ γ = vσ2(σ2(γ)) = j−1σ2(γ) j = σ2(x) − σ2(y)i + σ2(z) j − σ2(t)i j.

It follows that γ is invariant under the twisted Galois action if and only if

γ = x + y1
√
d i + z1

√
c j + t1

√
cd i j

for x , y1 , z1 , t1 ∈ K.
_is implies that ϕ∗(c, d) is generated as a K-algebra by i′ =

√
d i and j′ =

√
c j,

which satisfy i′2 = bd, j′2 = ac and i′ j′ + j′ i′ = 0. Consequently, we obtain that
ϕ∗(c, d) = (bd , ac)2 ≅ (ac, bd)2.

Recall now that the group Z/2Z embeds into PGL2(k) over any ûeld k and the
possible embeddings are of the form

ρb ∶ −1↦ (0 b
1 0) ,

up to conjugacy (see[Beau10, _eorem 4.2]). We denote ρbP1 simply by bP1. Note
that bP1 and b′P1 are isomorphic as Z/2Z-varieties if and only if b = b′. By [Le07,
Example 6], it follows that bP1 is versal if and only if b ∈ k×2.

Corollary 5.2 Let ρb be deûned as above, let K/k be a ûeld extension, and identify
H1(K ,Z/2Z) with K×/K×2. _en ∆ρb(c) = [(c, b)2] for all c ∈ K×.

Proof We need to show that ρb∗∶K×/K×2 → H1(K , PGL2) maps c to (c, b)2 for all
c ∈ K×. Note that we may write ρb = ρ(1,b) ○ ϕ, where ϕ∶Z/2Z → (Z/2Z)2 sends −1
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to e1. _erefore wemust have ρb∗(c) = ρ(1,b)∗ ○ϕ∗(c) = ρ(1,b)∗(c, 1) = (c, b)2, where
the last equality follows from Lemma 5.1.

6 Cyclic and Dihedral Groups: Compressibility of P1

We set some notation for the remainder of the paper. Given an integer n ≥ 2, let ωn
be a choice of a primitive n-th root of unity, let αn = (ωn +ω−1

n )/2 and let βn = α2
n − 1.

Recall that the groupsZ/nZ and D2n act faithfully on some curve of genus 0 if and
only if they act faithfully onP1, which happens if and only if αn ∈ k (see [Beau10,Ga13]
for details). If the latter condition does not hold, the existence of strongly incompress-
ible curves for Z/nZ and D2n follows from _eorem 3.4.

Lemma 6.1 Let n ≥ 3 be any integer, let k be a ûeld containing αn , and deûne the
embedding ρ∶D2n ↪ PGL2(k) by sending

(6.1) σ ↦ (αn + 1 βn
1 αn + 1) τ ↦ (1 0

0 −1) ,

where σ , τ are the usual generators of D2n . _en ρP1 is not strongly incompressible.

Proof Weneed to exhibit aG-equivariantmap ρP1 → ρP1 that is not injective. Select
a square root of βn (possibly in a quadratic extension of k) and deûne

Q = ( 1 1
−β−1/2

n β−1/2
n

) ,

in such a way that

Q−1ρ(σ)Q = (1 + ωn 0
0 1 + ω−1

n
) , Q−1ρ(τ)Q = (0 1

1 0) .

Let F∶P1 → P1 be given by F(x ∶ y) = (xn+1 ∶ yn+1). A calculation shows that

F ○ (Q−1ρ(σ)Q) = (Q−1ρ(σ)Q) ○ F
and

F ○ (Q−1ρ(τ)Q) = (Q−1ρ(τ)Q) ○ F .
It follows that Q ○ F ○ Q−1 is a G-equivariant map ρP1 → ρP1 deûned over k(β1/2

n ).
Explicitly, note that Q ○ F ○ Q−1 sends (x ∶ y) to (u ∶ v), where

u = (x + β1/2
n y)n+1 + (x − β1/2

n y)n+1 ,

v = β−1/2
n ((x + β1/2

n y)n+1 − (x − β1/2
n y)n+1) .

In particular, it follows that Q ○ F ○Q−1 is actually deûned over k. Since it has degree
n + 1, it is not birational.

Remark 6.2 Restricting the embedding (6.1) to Z/nZ, the above lemma proves a
fortiori that the projective line is not strongly incompressible as a Z/nZ-variety.

Proposition 6.3 Let n ≥ 2 be any integer and let k be a ûeld containing ωn . _en
there are no strongly incompressible Z/nZ-varieties.
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Proof _is is proved in [Re04, Example 5]; we supply a short alternative proof. Re-
call that the embedding ρ∶Z/nZ ↪ PGL2(k) sending a generator of Z/nZ to the
diagonal matrix diag(ωn , 1) is generic, i.e., ρP1 is versal. Any faithful Z/nZ-variety
can thus be Z/nZ-compressed to ρP1. Moreover, ρP1 is not strongly incompressible,
as shown by the nontrivial Z/nZ-compression (x ∶ y) ↦ (xn+1 ∶ yn+1).

_e techniques introduced above can be used to show that there are no strongly
incompressible varieties for odd cyclic and odd dihedral groups if they act faithfully
on the projective line.

Proposition 6.4 Let n ≥ 3 be an odd integer, let k be a ûeld containing αn , and let G
be either Z/nZ or D2n . _en there are no strongly incompressible G-varieties.

Proof We focus on the case G = D2n ; the cyclic case follows along the same lines.
Note that the embedding ρ introduced in (6.1) is generic for odd n, i.e., the G-variety
ρP1 is versal (see [Le07, _eorem 8]). It follows that any faithful G-variety can be
G-compressed to ρP1. It thus suõces to prove that ρP1 itself is not strongly incom-
pressible. _is follows directly from Lemma 6.1.

7 Strongly Incompressible Curves for Even Cyclic Groups

Let G = Z/nZ, where n ≥ 4 is even and let k be a ûeld containing αn . Deûne the
embedding ρ∶G ↪ PGL2(k) by sending

σ ↦ (αn + 1 βn
1 αn + 1) ,

where σ is a generator ofZ/nZ. Recall that this embedding is unique up to conjugacy
(see [Beau10, _eorem 4.2], [Ga13, Remark 3.4]). By the results in Proposition 6.3,
it remains to analyze the case where ωn /∈ k. (In this situation, ρP1 is not versal.)
Interestingly, we will prove that there exist strongly incompressible G-curves under
this assumption.

Proposition 7.1 Let k be a ûeld such that αn ∈ k and ωn /∈ k. _en there exists a
strongly incompressible G-curve.

Proof Our goal is to construct a hyperelliptic curve endowedwith a faithfulG-action
that cannot be G-compressed to any curve of genus ≤ 1. _e result then follows from
Lemma 3.1.

Let m = n/2, let K = k(t) be the rational function ûeld, and consider the exact
sequence 1 → Z/2Z → G → Z/mZ → 1. _en we obtain an exact sequence in
cohomology

1 // H1(K ,Z/2Z) // H1(K ,G) // H1(K ,Z/mZ).

Consider the class [ρP1] ∈ H1(K ,G). Its image in H1(K ,Z/mZ) is equal to the class
of the Z/mZ-variety Y = ρP1/(Z/2Z) (which is abstractly isomorphic to P1). Recall
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that σm maps to ( 0 βn
1 0 ) under the embedding ρ. It thus follows that the quotient map

ρP1 → Y is given by (x ∶ y) ↦ (x2 + βn y2 ∶ 2xy).
Note that H1(K ,Z/2Z) = K×/K×2 acts on the ûber of [Y]. To describe this action,

write L = k(ρP1) = k(u), which is a G-Galois extension of K. _en the subexten-
sion L0 = k(Y) = k(x) of L, where x = u2

+βn
2u , corresponds to the Z/mZ-torsor

Y → Y/(Z/mZ). A short computation shows that L can be obtained from L0 by
adjoining

√
x2 − βn . An element c ∈ K×/K×2 acts on the torsor L/K by replacing

L = L0(
√
x2 − βn) with L0(

√
(x2 − βn) f (t)), where f (t) ∈ K is any representative

of the class c. Recall that t is a rational function of x, say t = p(x)/q(x). _us, in gen-
eral we obtain the function ûeld of a hyperelliptic curve X, which is naturally endowed
with a faithfulG-action. Our goal is tomake a clever selection of the class c. Fix a ∈ k,
not a zero of either q or qp′ − pq′, and let c be the class of f (t) = q(a)t − p(a). An
explicit hyperelliptic equation for X is given by y2 = s(x), where s(x) is the square-
free part of (x2 − βn)(q(a)p(x)− p(a)q(x))q(x). By assumption, s(a) = 0, whence
(x , y) = (a, 0) is a k-rational point of X.

We claim that X cannot be G-compressed to any curve of genus 0. First of all,
such a curve would be forced to be ρP1 since X has k-rational points. For the sake of
contradiction, suppose that there exists a G-compression X → ρP1. Regard this map
as aZ/2Z-compression. Aswe sawbefore, ρP1 is isomorphic to βnP1 as aZ/2Z-variety.
On the other hand, if we regard X as a Z/2Z-variety, its class [X] ∈ H1(L0 ,Z/2Z) =
L×0 /L×2

0 is given by s(x). If we denote the restriction of ρ to Z/2Z by ρ′, we conclude
using Corollary 5.2 that ∆ρ′(X) = [(s(x), βn)2]. _is class must be trivial over L0 =
k(x) by Corollary 4.4. If we apply Lemma 2.1 to the root a of s, we obtain that βn ∈
k×2, i.e., ωn − ω−1

n ∈ k. However, this contradicts the fact that ωn /∈ k.
It remains to prove that X cannot beG-compressed to anyG-curve of genus 1. Since

X has k-rational points, it suõces to prove that there is no G-compression X → E,
where E is an elliptic curve endowed with a faithful G-action. Suppose there is such
a G-compression and regard G as a subgroup of Aut(E). By Lemma 3.3(i), we can
write G ≅ G0 × π(G), where G0 = G ∩ E and π(G) ⊂ Aut0(E). Since G is cyclic, we
conclude that G0 and π(G) are cyclic groups of relatively prime order. We claim that
σm (the unique element of order 2 insideG) belongs toG0, or equivalently thatG0 has
even order. Suppose on the contrary that the order of π(G) is even, i.e., π(G) ≅ Z/dZ
for d = 2, 4, or 6. By Lemma 3.3(iv), the translation by P0 ∈ E and the automorphism
α ∈ Aut0(E) commute if and only if α(P0) = P0. Since π(G) has even order, it
contains the inversion map P ↦ −P. _erefore any point of E ûxed by π(G) has
order dividing 2. Since we are assuming that G0 is a cyclic group of odd order that
commutes with π(G), it must be trivial. It follows that G = π(G) ≅ Aut0(E) ≅ Z/nZ
for n = 4 or 6. By Lemma 3.3(iii), this contradicts the assumption that k does not
contain the appropriate roots of unity. We have proved that σm ∈ G0, and hence
acts as a translation on E. On the other hand, note that σm ûxes a k-rational point
in X, namely (x , y) = (a, 0). Hence, it must also ûx a point in E. _is contradiction
completes the proof.

Example 7.2 We will explicitly construct the curve X from the above proposition
when n = 4. In this case, α4 = (ω4 + ω−1

4 )/2 = 0 and β4 = −1. It suõces to construct
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X over the ûeld of rational numbers. Note that the ûeld extension L0/K satisûes L0 =
k(x), K = k(t), and t = x2

−1
2x . Taking a = 1, the above construction yields the function

ûeld

k(X) = L0(
√

(x2 + 1)x
2 − 1
x

) ,

whose corresponding hyperelliptic equation is y2 = x5 − x. _e Z/4Z-action on X is
given by σ ⋅(x , y) ↦ (−1/x , y/x3), where σ is a generator ofZ/4Z. Note that this curve
has genus 2 and it was proved above that it does not mapG-equivariantly to any curve
of genus ≤ 1. Hence it is an explicit example of a strongly incompressible Z/4Z-curve
(recall that we are assuming ω4 /∈ k throughout). In general, this procedure will not
necessarily yield a strongly incompressibleG-curve, but aG-curve that can beG-com-
pressed to a strongly incompressible one.

8 Strongly Incompressible Curves for Even Dihedral Groups

8.1 The Klein 4-group

_roughout this subsection, let G denote the Klein 4-group with generators e1 , e2.
Recall that G acts faithfully on P1 over any ûeld k, but such an action is never versal.
Our goal is to prove the following proposition.

Proposition 8.1 _e following are equivalent.
(i) _ere are no strongly incompressible G-curves over k.
(ii) cd2(k) = 0.

Proof of (ii)⇒ (i) Suppose that k has cohomological 2-dimension 0 and let X be
any faithfulG-curve. _e ûxed ûeld K = k(X)G is a transcendence degree 1 extension
of k, whence cd2(K) ≤ 1 by [Se02, Proposition II.4.2.11]. _en, by [Se02, Proposition
II.2.3.4], it follows that Br2(K) is trivial. Let ρ∶ (Z/2Z)2 ↪ PGL2(k) be any embed-
ding. We claim that X can be G-compressed to ρP1. Indeed, note that ∆ρ(X) is the
class of a quaternion algebra deûned over K and therefore trivial. _e result then fol-
lows from Corollary 4.4. To conclude the proof of the suõciency, we need to prove
that ρP1 is not strongly incompressible. We are free to select ρ conveniently, so we
may assume that ρ is as in (5.1) with b = 1. _en, it is obvious that (x ∶ y) ↦ (x3 ∶ y3)
is a G-compression of ρP1 to itself that is not birational.

It remains to prove that (i)⇒ (ii). To achieve this, we need the following result.

Proposition 8.2 Let P,Q ∈ k[x] be separable polynomials of degree ≥ 1 satisfying the
following conditions.
(i) P and Q have no common roots.
(ii) P(0) ≠ 0, Q(0) ≠ 0.
(iii) _ere exists a root x1 ∈ k of P (resp. x2 ∈ k of Q) such that x1Q(x1) ∈ k×2 (resp.

x2P(x2) ∈ k×2).
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_en the curve X with function ûeld L = K(
√
xP(x),

√
xQ(x)), where K = k(x) is a

rational function ûeld, can be endowed with a faithful G-action such that every element
of G ûxes at least one geometric point of X.

Proof LetA3 be the aõne 3-space over k and let Y ⊂ A3 be the aõne variety cut out
by the ideal I = ⟨y2 − xP(x), z2 − xQ(x)⟩. Note that Y is an irreducible aõne curve
having a unique singularity at (0, 0, 0) and its function ûeld is precisely L. We can
endow Y with a faithfulG-action by setting e1 ⋅(x , y, z) = (x ,−y, z) and e2 ⋅(x , y, z) =
(x , y,−z). _is action can be li�ed to the unique nonsingular projective curve X
which is birational to Y , in such a way that the natural birational isomorphism X ⇢ Y
is G-equivariant. Note also that X can be seen as a Galois G-cover of P1 induced by
the inclusion K ↪ L.

We claim that every element of G ûxes at least one geometric point of X. We ûrst
prove the assertion for e1 ∈ G to illustrate the procedure. Note that

A = (x1 , 0,
√
x1Q(x1))

is a nonsingular k-rational point ofY ûxed by e1. _erefore, the naturalG-equivariant
rational map Y ⇢ X must be deûned at the point A and its image in X is ûxed by e1 as
desired. Analogously, we see that B = (x2 ,

√
x2P(x2), 0) is a nonsingular k-rational

point of Y ûxed by e2 and the result follows along the same lines.
It remains to prove that e1e2 ûxes a point in X. Unfortunately, the only ûxed point

of e1e2 in Y is O = (0, 0, 0), which is not smooth. To overcome this diõculty, we
consider the blowup of A3 at the origin O with exceptional divisor E and consider
the strict transform Y ′ of Y . _e G-action li�s naturally to Y ′, in such a way that the
birational morphism Y ′ → Y is G-equivariant. We claim that Y ′ has a smooth point
ûxed by e1e2, which has to be contained in Y ′ ∩ E. Recall that

BlOA3 = {((x , y, z), (t0 ∶ t1 ∶ t2)) ∈ A3 × P2 ∣ xt1 = yt0 , xt2 = zt0 , yt2 = zt1}

is covered by three aõne charts U i = {t i ≠ 0} isomorphic toA3. We pick coordinates
y, u = t0/t1 , v = t2/t1 in U1 (so that x = yu and z = yv) and compute Y ′ in these
coordinates. Any point in Y ′ ∩U1 must satisfy the equations

y − uP(yu) = 0 and yv2 − uQ(yu) = 0.

Moreover, note that the polynomial Q(0)(y − uP(yu)) − P(0)(yv2 − uQ(yu)) is
divisible by y and consequently we obtain that

Q(0) − P(0)v2 − u2Q(0)P1(yu) + u2P(0)Q1(yu) = 0,

for all points (y, u, v) ∈ Y ′ ∩U1, where

P1(x) = (P(x) − P(0))/x and Q1(x) = (Q(x) − Q(0))/x .
_en it is easy to see that the above three equations deûneY ′∩U1 and thatY ′∩U1∩E =
{(0, 0,±

√
Q(0)/P(0))}. (Actually one can see by looking at the other two charts that

Y ′∩E consists only of these two points.) We now look at theG-action onY ′∩U1. Note
that e1e2 ⋅ (y, u, v) = (−y,−u, v), since e1e2 ⋅ (x , y, z) = (x ,−y,−z) in Y . _erefore,
the points (0, 0,±

√
P(0)/Q(0)) are ûxed by e1e2. Moreover, by applying the Jacobian

criterion to the three polynomials deûning Y ′ ∩ U1, one can show that both points
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are smooth; the details are le� to the reader. Since the G-equivariant rational map
Y ′ → Y ⇢ X is deûned at all smooth points, it follows that e1e2 has a ûxed point
in X.

Lemma 8.3 Let X be any (smooth projective) G-curve obtained from Proposition 8.2.
_en X cannot be G-compressed to any curve of genus 1.

Proof Suppose that such a G-compression X → E exists. We may assume that E
is an elliptic curve since X has k-rational points. By parts (i) and (ii) of Lemma 3.3,
some element of G must act freely on E. _is contradicts the fact that every element
of G ûxes a point in X.

We are ready to prove that (i)⇒ (ii) in Proposition 8.1. Suppose that k does not
have cohomological 2-dimension 0. We will produce a faithful G-curve that cannot
beG-compressed to anyG-curve of genus ≤ 1 by using Proposition 8.2. _e following
well-known lemma provides more manageable conditions on k.

Lemma 8.4 Let k be a ûeld. _e following are equivalent:
(i) cd2(k) = 0.
(ii) k is hereditarily quadratically closed, i.e., every algebraic extension of k is quadrat-

ically closed.
(iii) ξ is a square in k(ξ) for every ξ ∈ k.
(iv) Br2(k(x)) = 0.

Proof _e equivalence (ii)⇔ (iii) is straightforward and le� to the reader, while
(i)⇔ (ii) follows directly from [EW87, Lemma 2]. We now prove that (i)⇒ (iv). If
cd2(k) = 0, it follows from [Se02, Proposition II.4.1.11] that cd2(k(x)) ≤ 1. _en we
conclude that Br2(k(x)) = 0 by [Se02, Proposition II.2.3.4]. To complete the proof,
it suõces to show that (iv) ⇒ (iii). Suppose that (iv) holds, but there exists ξ ∈ k,
which is not a square in k(ξ). Let h ∈ k[x] be the minimal polynomial of ξ over k.
_e quaternion algebra (x , h(x)) 2 must be split over k(x), which implies that ξ is a
square over k(ξ) by Lemma 2.1. _is contradiction completes the proof.

Construction 8.5 In view of Lemma 8.4, given that cd2(k) ≠ 0, we can choose an
element ξ algebraic over k, which is not a square in k(ξ). Let h ∈ k[x] be the minimal
polynomial of ξ over k and deûne polynomials

P(x) = (x − α)( (x − α − 1)h(x − α) + (α + 1)h(−α)
(α + 1)h(−α)x ) ,

Q(x) = α(α + 1 − x)h(0)h(x − α),

where α ∈ k is taken such that P has no multiple roots, P(0) ≠ 0, and Q(0) ≠ 0.
(It is not hard to see that such a selection of α is always possible.) We conclude that
P and Q satisfy the conditions of Proposition 8.2. In what follows, let X denote the
corresponding curve.
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Lemma 8.6 Let X be the curve obtained in Construction 8.5. _en there is no G-com-
pression X → Y, where Y is a curve of genus 0.

Proof By construction, X has k-rational points. Hence, such aG-compression could
only be possible if Y ≅ ρP1 for some embedding ρ∶G ↪ PGL2(k). From Proposi-
tion 8.2, we observe that k(X)G = K = k(x). Moreover, note that the class [X] ∈
H1(K ,G) corresponds to (xP(x), xQ(x)) ∈ (K×/K×2)2. By Lemma 5.1, we obtain
that ∆ρ(X) = [(axP(x), bxQ(x))2] ∈ Br(K) for some (a, b) ∈ (k×/k×2)2 such that
(a, b)2 is split.

Suppose that there exists a G-compression X → ρP1. _en by Corollary 4.4 the
quaternion algebra (axP(x), bxQ(x))2 must be split over K. Applying Lemma 2.1
to the roots α + 1 and α + ξ of bxQ(x), we obtain that a ∈ k×2 and aξ ∈ k(ξ)×2,
respectively. _is contradicts the assumption that ξ is not a square in k(ξ).

To ûnish the proof of Proposition 8.1, we use Lemma 8.3 and Lemma 8.6 to con-
clude that X cannot be G-compressed to any curve of genus ≤ 1. _us, it follows from
Lemma 3.1 that there exist strongly incompressible G-curves if cd2(k) > 0. _e proof
is now complete.

8.2 Even Dihedral Groups of Order ≥ 8
In this subsection, G will always denote the dihedral group D2n , where n ≥ 4 is an
even integer. A result similar to Proposition 8.1 holds in this case.

Proposition 8.7 Let k be a ûeld such that αn ∈ k. _en there exist no strongly incom-
pressible G-curves deûned over k if and only if cd2(k) = 0.

Proof Suppose ûrst that cd2(k) = 0. Similarly to the proof of Proposition 8.1, it fol-
lows that any faithful G-curve X can be G-compressed to ρP1, where the embedding
ρ∶G ↪ PGL2(k) is as in (6.1). Moreover, it follows from Lemma 6.1 that ρP1 is not
strongly incompressible.

To prove the converse, assume that cd2(k) > 0. We must show that there exists
a strongly incompressible G-curve under this assumption. We ûrst study the spe-
cial case where ωn /∈ k, i.e., βn is not a square in k. We only sketch the argument,
as it is very similar to the proof of Proposition 7.1. Using the cohomology sequence
associated to the central exact sequence 1 → Z/2Z → G → Dn → 1, one can con-
struct a hyperelliptic G-curve X, having a k-rational point ûxed by the hyperelliptic
involution. Suppose that X can be G-compressed to ηP1, where η is any embedding
G ↪ PGL2(k). Regard the G-compression as a Z/2Z-compression with respect to the
center of G. As a Z/2Z-variety, ηP1 is isomorphic to βnP1. As in the proof of Propo-
sition 7.1, we must have βn ∈ k×2, contradicting our assumption. Similarly, it follows
that X cannot be G-compressed to any curve of genus 1. By Lemma 3.1, there exists a
strongly incompressible G-curve in this case.

In what follows, assume that ωn ∈ k. By Lemma 8.4, there exists ξ ∈ k such that ξ
is not a square in k(ξ). Using this information, we construct a hyperelliptic G-curve
X that cannot be G-compressed to any curve of genus ≤ 1. Let m = n/2, and deûne X
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to be the hyperelliptic curve with equation

y2 = x f ( x
m + x−m

2
) ,

where f ∈ k[t] will be determined later. _is curve can be endowed with a faithful
G-action given by σ ∶ (x , y) ↦ (ω2

nx ,ωn y), τ∶ (x , y) ↦ (x−1 , yx−1). Note that we can
regard X as a (Z/2Z)2-variety under the action of the subgroup ⟨σm , τ⟩. We can then
write the function ûeld of X in the form

k(X) = k(x , y)/( y2 − x f ( x
m + x−m

2
)) .

It is not hard to see that

k(X)⟨σ
m
⟩ = k(x),

k(X)⟨τ⟩ = k( x + x−1

2
, y(1 + x−1))/( y2 − x f ( x

m + x−m

2
)) ,

k(X)⟨σ
m ,τ⟩ = k( x + x−1

2
) .

Recall that (xm + x−m)/2 = Tm((x + x−1)/2) for some polynomial Tm . For sim-
plicity, write s = (x + x−1)/2. _en note that

y2(1 + x−1)2 = x f ( x
m + x−m

2
)(1 + 2x−1 + x−2) = (2s + 2) f (Tm(s)),

whence k(X)⟨τ⟩ is obtained from k(s) by adjoining
√

(2s + 2) f (Tm(s)). On the
other hand, note that k(X)⟨σm

⟩ is obtained from k(s) by adjoining
√

s2 − 1. It fol-
lows that the class [X] ∈ H1(k(s), (Z/2Z)2) is equal to (2(s + 1) f (Tm(s)), s2 − 1) .

_e conjugacy classes of embeddings D2n ↪ PGL2(k) are parametrized by the
set D(⟨1,−βn⟩) of nonzero square classes represented by the binary quadratic form
x2 − βn y2 (see [Ga13, _eorem 1.3]). _e correspondence is as follows: to the class a
of the element a = x2 − βn y2 (x , y ∈ k), we assign

(8.1) ρa ∶ σ ↦ (αn + 1 βn
1 αn + 1) , τ ↦ (x −yβn

y −x ) ,

where σ , τ ∈ D2n satisfy σ n = τ2 = (στ)2 = 1. We claim that X cannot be G-equi-
variantly compressed to ηP1, where η is the embedding (8.1) for some class a. Note
that we are assuming that βn is a square in k, so the binary form ⟨1,−βn⟩ is universal
and therefore, a can be any element of k×/k×2. Since we have ωn ∈ k, the embedding
η can be conjugated to

σ ↦ (ωn 0
0 1) , τ ↦ (0 a

1 0) ,

so we may assume that η is of this form. It follows that ηP1 ≅ (a ,1)P1 as (Z/2Z)2-var-
ieties. Using Lemma 5.1, we compute ∆ρ(a ,1)(X) = [(2a(s + 1) f (Tm(s)), s2 − 1)2]. If
we regard the assumed G-compression X → ηP1 as a (Z/2Z)2-compression, then we
conclude that ∆ρ(a ,1)(X) is trivial in Br(k(s)).
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We will now select f to arrive at a contradiction. Let γ, δ ∈ k be such that γ2 = 1+ ξ
and δ2 = 1+ ξ−1. Replacing ξ by another element in ξ ⋅ k×2 if necessary, we can choose
f satisfying the following properties.

● f (Tm(γ)) = f (Tm(δ)) = 0.
● _e polynomial (s + 1) f (Tm(s)) is separable.

Since (2a(s + 1) f (Tm(s)), s2 − 1)2 is split over k(s), we can apply Lemma 2.1
to γ and obtain that ξ is a square in k(γ). It follows that k(γ) = k(

√
ξ), since

[k(
√
ξ)∶k(ξ)] = 2 by assumption. We can thus write γ = l1 + l2

√
ξ for some l1 , l2 ∈

k(ξ). Squaring, we obtain that ξ + 1 = l 21 + l 22 ξ + 2l1 l2
√
ξ, whence l1 l2 = 0. If l2 = 0, it

follows that ξ+1 is a square in k(ξ), contradicting the fact that [k(γ)∶k(ξ)] = 2. Hence
we must have l1 = 0, which implies that 1 + ξ−1 is a square in k(ξ), i.e., k(δ) = k(ξ).
However, applying Lemma 2.1 to δ implies that ξ−1 (and hence ξ) is a square in k(δ),
which contradicts our assumption. _is proves that a G-compression X → ηP1 is not
possible.

It remains to prove that X cannot be G-compressed to any curve of genus 1. Sup-
pose there is such a G-compression X → E. By construction, the hyperelliptic invo-
lution of X, namely σm , ûxes some k-rational point of X. Hence, σm must ûx some
k-rational point of E, which we may assume to be an elliptic curve. We adopt the no-
tation of Lemma 3.3(i) where π∶Aut(E) → Aut0(E) denotes the natural projection.
Since Aut0(E) is abelian, the relation (στ)2 = 1 implies that π(στ)2 = π(σ 2)π(τ2) =
π(σ 2) = 1. It follows that σ 2 acts as a translation on E. We claim that σ acts as a
translation as well. By Lemma 3.3(i), we may write σ = τP0 ○ α, where τP0 denotes
the translation by P0 ∈ E and α ∈ Aut0(E). Since σ 2 is a translation, it follows that
σ 2(P) − P = α2(P) − P + α(P0) + P0 must be constant for all P ∈ E. _is implies that
the isogeny α2 − id is constant, so it is the zero map. _is proves that α has order 2 in
Aut0(E), whence α is the inversionmap P ↦ −P. _is implies that σ 2 = id in Aut(E),
which is a contradiction because σ has order n ≥ 4. We have proved that σ acts as a
translation on E, and therefore so does σm . Hence σm cannot ûx any point of E.

9 Polyhedral Groups

It remains to study the incompressibility of curves endowed with a faithful action of
a polyhedral group G, i.e., G = A4, S4, or A5.

9.1 Serre’s Cohomological Invariant

Let Ĝ be the binary polyhedral group associated toG. IfG is an alternating group, then
Ĝ coincides with the unique nontrivial central extension ofG byZ/2Z. IfG = S4, then
Ĝ is the unique central extension of G by Z/2Z in which transpositions and products
of disjoint transpositions li� to elements of order 4. (_is is not the double cover
studied in [Se84], in which transpositions li� to involutions). We have a central exact
sequence

1 // Z/2Z // Ĝ // G // 1 ,
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which yields a corresponding sequence in cohomology

H1(K , Ĝ) // H1(K ,G) ∆̂ // Br2(K)

for any ûeld extensionK/k. Note that ∆̂∶H1(K ,G) → H2(K ,Z/2Z) = Br2(K) deûnes
a cohomological invariant. If X is a faithful primitive G-variety and L = k(X)G , we
denote the Brauer class associated to [X] ∈ H1(L,G) by ∆̂(X). Note that ∆̂(X) is
trivial if and only if [X] li�s to a Ĝ-torsor [X̂] ∈ H1(L, Ĝ). _e following result follows
from the deûnition of cohomological invariant.

Proposition 9.1 Let X ,Y be faithful primitive G-varieties and suppose that there ex-
ists aG-compression f ∶X ⇢ Y. Let i∶ k(Y)G ↪ k(X)G be the natural inclusion induced
by f and deûne i∗∶Br2(k(Y)G) → Br2(k(X)G) as the corresponding functorial map.
_en i∗(∆̂(Y)) = ∆̂(X).

Proof Le� to the reader.

J.-P. Serre has described an eòective way to compute ∆̂. An element of H1(K ,G)
can be viewed as (the isomorphism class of) an étale K-algebra E, which has trivial
discriminant if G is alternating. _en we have the following result.

Proposition 9.2 (cf. [Se84, _eorem 1]) Let qE be the trace form of E/K. _en
∆̂(E) = w2(qE) + [(−2, dE)2], where w2 denotes the second Stiefel-Whitney class and
dE is the discriminant of E.

Proof See [Se84, _eorem 1] or [Vi88, §2].

Remark 9.3 If the ûeld k satisûes some additional conditions, we may view ∆̂ as a
particular case of the cohomological invariant deûned in Section 4. Suppose that the
following assumptions hold.
(i) _ere exists an embedding ρ∶G ↪ PGL2. _is is the case if and only if −1 is

the sum of two squares over k, with the additional requirement that
√
5 ∈ k if

G = A5 (see [Beau10, Proposition 1.1]).
(ii) _ere exists an embedding ρ∶ Ĝ ↪ GL2 that ûts in a commutative diagram

1 // Gm // GL2 // PGL2 // 1

1 // Z/2Z //
?�

OO

Ĝ
?�

ρ

OO

// G
?�

ρ

OO

// 1.

_is is automatic if G is alternating. In the case G = S4, it is true if and only if√
2 ∈ k.

Passing to cohomology in the above diagram, we conclude that ∆̂ coincideswith ∆ρ
if we regard both their images to lie in the Brauer group.
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9.2 Computation of the Invariant for Curves of Genus ≤ 1

We ûrst compute the cohomological invariant ∆̂ for polyhedral actions on curves of
genus 0. Recall that up to equivariant birational isomorphism there is only one action
of a polyhedral group G on a curve of genus 0 (see e.g., [Ga13, _eorem 1.2 and 1.3]).
In what follows, let q0(x , y, z) = x2+y2+z2 and denote by X0 ⊂ P2 the corresponding
quadric. _en G acts on X0 via the standard embedding ρ∶G ↪ SO(q0) as a rotation
group. If G = A4 or S4, the action is deûned over any ûeld k, while for G = A5
the action is deûned over k if and only if

√
5 ∈ k. Recall also that K ∶= k(X0)G is

isomorphic to a rational function ûeld, i.e., X0/G ≅ P1.

Proposition 9.4
(i) If G is alternating, then ∆̂(X0) = [(−1,−1)2] in Br2(K).
(ii) If G = S4, then ∆̂(X0) = [(−1,−1)2] + [(2, t)2] in Br2(K), where t is some gen-

erator of K/k.

Proof (i) Let k′/k be a ûeld extension, and suppose that q0 is isotropic over k′. We
claim that ∆̂(X′

0) is trivial in Br2(k′(X′

0)G), where X′

0 = X0×Spec(k)Spec(k′). Indeed,
note that PGL2 ≅ SO(q0) over k′, whence there exists an embedding ρ∶G ↪ PGL2
deûned over k′ and a G-equivariant isomorphism X′

0 ≅ ρP1. It follows from Remark
9.3 that ∆̂(X′

0) = ∆ρ(X′

0) = ∆ρ(ρP1), which is trivial by Lemma 4.2. _is completes
the proof of the claim.

Let E be the étale algebra corresponding to the class [X0] ∈ H1(K ,G). _en qE ≅
⟨1, a, b, ab⟩ for some a, b ∈ K ifG = A4 (resp. qE ≅ ⟨1, a, b, c, abc⟩ for some a, b, c ∈ K
if G = A5). It follows that ∆̂(X0) = w2(qE) = [(−a,−b)2] + [(−1,−1)2] if G = A4

(resp. [(−ac,−bc)2] + [(−1,−1)2] if G = A5). In any case, we can write ∆̂(X0) =
[(u, v)2] + [(−1,−1)2] for some u, v ∈ K, so it suõces to prove that (u, v)2 is split
over K. Since q0 is isotropic over k′ ∶= k(s, t)/(s2 + t2 + 1) and (−1,−1)2 splits over
k′, it follows from the previous paragraph that (u, v)2 splits over

k′(X′

0)G ≅ K(s, t)/(s2 + t2 + 1).
Equivalently, the Pûster form ⟨1,−u,−v , uv⟩ is hyperbolic over K(s, t)/(s2 + t2 + 1),
which is the function ûeld of the quadratic form ⟨1, 1, 1⟩ deûned over K. By [Lam05,
_eorem X.4.5], either ⟨1,−u,−v , uv⟩ is isotropic (hence hyperbolic) over K or

⟨1,−u,−v , uv⟩ ≅ ⟨1, 1, 1, 1⟩
over K. Equivalently, either (u, v)2 splits or (u, v)2 ≅ (−1,−1)2. _e former case
yields the desired result, while the latter implies that ∆̂(X0) is trivial. Hence, it suõces
to prove that ∆̂(X0) is nontrivial whenever (−1,−1)2 is not split over K (equivalently
over k, since K is purely transcendental over k).
Assume for the sake of contradiction that (−1,−1)2 is not split over k and ∆̂(X0)

is trivial. _is implies that [X0] comes from a class in H1(K , Ĝ), i.e., there exists a
faithful primitive Ĝ-variety X̂0 such that X̂0/(Z/2Z) is birationally isomorphic to X0
as a G-variety. Note that X̂0 must be geometrically irreducible since 1 → Z/2Z →
Ĝ → G → 1 is not split. _us, we may assume without loss of generality that X̂0 is
a (smooth projective) Ĝ-curve, endowed with a 2-1 quotient morphism X̂0 → X0. It
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follows that X̂0 is a hyperelliptic curve (in the sense that its canonical divisor is not
very ample). Moreover, note that Aut(X̂0)(k) contains Ĝ, which equals SL2(F3) if
G = A4 (resp. SL2(F5) if G = A5). By [Sh03, Table 1], it follows that the genus of
X̂0 is even. However, it is well known that this implies that X̂0/(Z/2Z) = X0 has a
k-rational point (see e.g., [Me91, §2.1]), which is equivalent to the splitting of (−1,−1)2
over the ûeld k. _is contradiction concludes the proof of (i).

(ii) Note that S4 embeds into SO(q0) as the matrices of the form DP, where D is
diagonal with entries ±1 and P is a permutation matrix. (_ere are 24 such matrices
of determinant 1.) _e étale K-algebra corresponding to [X0] ∈ H1(K , S4) is the ûeld
extension k(X0)H/K, whereH is any copy of S3 inside S4. For convenience, we choose
the subgroup H generated by

σ =
⎛
⎜
⎝

0 1 0
0 0 1
1 0 0

⎞
⎟
⎠
, τ =

⎛
⎜
⎝

0 0 −1
0 −1 0
−1 0 0

⎞
⎟
⎠
.

Note that S4 = V ⋊H, where V is the subgroup of diagonal matrices inside S4.
We write k(X0) = k(a, b)/(a2 + b2 + 1), where a = x/z and b = y/z in the usual

coordinates of X0. Note that σ(a) = b/a and σ(b) = 1/a, while τ(a) = 1/a and
τ(b) = b/a. An easy computation then shows that k(X0)H = k(α), where

α = a + b/a + 1/b + 1/a + b + a/b.
By Galois theory, the minimal polynomial of α over K is equal to

P(Y) = ∏
g∈V

(Y − g(α)) = Y 4 − 6Y 2 + 8Y + t + 24,

where

t = (a − 1)2(a + 1)2(2a2 + 1)2(a2 + 2)2

a4(a2 + 1)2

is a generator of K/k, which proves that k(X0)H = K[Y]/( p(Y)) . By a simple com-
putation, it is not hard to see that the trace form of K[Y]/( p(Y)) over K is isomor-
phic to ⟨1, 3,−(t + 27),−3t(t + 27)⟩. It follows that its Stiefel-Whitney class is equal
to [(−3t, t(t + 27))2] + [(−1,−t)2]. _e ûrst quaternion algebra is split over K be-
cause (−3t)32 + t(t + 27) = t2. It follows that ∆̂(X0) = [(−1,−t)2] + [(−2, t)2] =
[(−1,−1)2] + [(2, t)2]. _e proof is complete.

We now focus our attention on polyhedral actions on curves of genus 1. In this
case, we only need to consider A4-actions, since S4 and A5 cannot act faithfully on
curves of genus 1.

Proposition 9.5 Let C be a curve of genus 1 endowedwith a faithful A4-action deûned
over a ûeld k. _en the following properties hold.
(i) _e Jacobian E ≅ Pic0(C) has j-invariant 0.
(ii) _e elliptic curve E can be endowed with a faithful A4-action deûned over k.
(iii) _e curve C is A4-equivariantly isomorphic to E over some extension k′/k of odd

degree.
(iv) We have the equality ∆̂(C) = [(−1,−1)2] in Br2(k(C)A4).
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Proof We will extensively use the results and notation from [Sil09, §X.3] (see also
[LT58]). Recall that C is a principal homogeneous space under E. A k-automorphism
g∶C → C induces a group automorphism of Pic0(C), hence also a k-automorphism
ĝ∶ E → E ûxing the origin. Explicitly, it is not hard to see that ĝ(P) = g(p0+P)−g(p0),
where the deûnition is independent of p0 ∈ C(k). Note also that ĝ is the identity if
and only if g is a translation by an element of E(k). _is proves that we have an exact
sequence

1 // E(k) // Aut(C)(k) π // Aut0(E)(k).

Regard A4 as a subgroup of Aut(C)(k). It follows that E(k) ∩ A4 ≅ (Z/2Z)2 and
π(A4) = Z/3Z ⊂ Aut0(E)(k). By Lemma 3.3(ii), it follows that j(E) = 0.

Wenowproceedwith the proof of part (ii). Note that E(k) contains a subgroup iso-
morphic to (Z/2Z)2, whence the 2-torsion points of E are k-rational. Using Lemma
3.3 (ii), we conclude from part (i) that k contains a primitive third root of unity ω3
and Aut0(E)(k) = Z/6Z. We now explicitly construct the A4-action on E. Since E
has j-invariant 0, it has a Weierstrass equation y2 = x3 + b for some b ∈ k×. Let the
normal subgroup V = (Z/2Z)2 ⊂ A4 act on E via translation by 2-torsion points (as
it does on C as well). _en we can write A4 = V ⋊ H, and let H ≅ Z/3Z act on E by
α ⋅ (x , y) = (ω3x , y), where α is a generator of H. For convenience, we ûx the above
notation for the remainder of the proof.

To prove part (iii), we ûrst show that C has a k′-rational point over some extension
k′/k of odd degree. Fix an element g ∈ A4 ⊂ Aut(C)(k) of order 3 and assume
without loss of generality that ĝ = α. Note that g(q) = g(p) + α(q − p) for any
p, q ∈ C(k). Taking q = pσ for any σ ∈ Gal(k/k) and using the fact that g is deûned
over k, we obtain that g(p)σ − g(p) = α(pσ − p), i.e., (1 − α)(pσ − p) = Pσ − P for
P = p − g(p) ∈ E(k). By [Sil09, _eorem X.3.6], it follows that the class {C/k} ∈
H1(k, E) belongs to the kernel of the map (1 − α)∗∶H1(k, E) → H1(k, E) induced
by 1 − α ∈ End(E). However, note that (2 + α) ○ (1 − α) = 3, which implies that
the class {C/k} is 3-torsion. It follows that there exists an extension k′/k such that
[k′ ∶k] is a power of 3 and C has a k′-rational point (see [LT58, Proposition 5] and the
remark that follows). We claim that a�er possibly taking a cubic extension of k′, we
can ûnd an A4-equivariant isomorphism C → E. Fix a point p0 ∈ C(k′). We would
like to ûnd P0 ∈ E(k) such that (1 − α)(P0) = g(p0) − p0 ∈ E(k′). It is not hard to
see that such a point P0 can be found over some cubic extension of k′. (For example,
this can be done by noting that the coordinates of P0 satisfy cubic polynomials with
coeõcients in k′.) Without loss of generality, assume that P0 ∈ E(k′) and deûne
q0 = p0 + P0 ∈ C(k′). Note that g(q0) = g(p0) + α(P0) = p0 + P0 = q0. We claim
that the k′-isomorphism ϕ∶C → E deûned by q ↦ q − q0 is A4-equivariant. Since it
clearly commutes with translations, it suõces to show that ϕ(g(q)) = α(ϕ(q)) . We
compute ϕ(g(q)) = g(q)−q0 = g(q)− g(q0) = α(ϕ(q)) , which completes the proof
of the claim.

It remains to prove part (iv). We reduce the problem to curves of genus 1 with
k-rational points. Assume the result is true in this case. _en we must have ∆̂(E) =
[(−1,−1)2] in Br2(k(E)A4), where E is the Jacobian of C. By part (iii), we can ûnd
an odd degree extension k′/k such that Ek′ ≅ Ck′ as A4-varieties. _erefore, we
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must have ∆̂(Ck′) = [(−1,−1)2] in Br2(k′(C)A4). _e natural map Br2(k(C)A4) →
Br2(k′(C)A4) is injective since [k′(C)A4 ∶k(C)A4] is odd, so it follows that ∆̂(C) =
[(−1,−1)2] in Br2(k(C)A4). _is implies that it suõces to prove the statement for E.

We explicitly compute ∆̂(E) ∈ Br(k(E)A4). It is easy to check that the rational
map E ⇢ P1 given by

(x , y) ↦ t = (y4 + 18by2 − 27b2)
y3

is an A4-invariant map of degree 12, so it coincides with the rational quotient map
E ⇢ E/A4. We may view the element [E] ∈ H1(k(t),A4) as the A4-Galois ûeld
extension k(E)/k(t). _erefore, its corresponding étale k(t)-algebra is (isomorphic
to) the ûxed ûeld k(E)H = k(y) (recall that A4 = V ⋊H). Note that y is a root of

p(Y) = Y 4 − tY 3 + 18bY 2 − 27b2 ,

so it follows that k(y) = k(t)[Y]/(p(Y)). A computation shows that the trace form
of this étale algebra is isomorphic to ⟨1,A, B,AB⟩, where A = 3t2 − 144b and B =
(192b − 3t2)(144b − 3t2). It follows that its Stiefel-Whitney class is equal to

[(−A,−B)2] + [(−1,−1)2].

By Proposition 9.2, it suõces to show that (−A,−B)2 is split over k(t). Note that we
have an isomorphism (−A,−B)2 ≅ (144b−3t2 , 192b−3t2)2. Recall that −3 is a square
in k because k contains a primitive third root of unity. Hence the identity

(144b − 3t2)22 + (192b − 3t2)(
√
−3)2 = (

√
−3 t)2

holds over k(t), which proves that the above quaternion algebra is split.

9.3 Strong Incompressibility

Proposition 9.6 Let G be a polyhedral group. _e following are equivalent.
(i) _ere are no strongly incompressible G-curves deûned over k.
(ii) cd2(k) = 0.

Proof of (ii)⇒ (i) Suppose that cd2(k) = 0. By Lemma 8.4, it follows that k satisûes
the hypotheses of Lemma 9.7 below. In particular, there exists an embedding ρ∶G ↪
PGL2 deûned over k. We claim that any faithful G-curve X can be G-compressed to
ρP1. Indeed, the ûeld K = k(X)G satisûes cd2(K) = 1 and therefore, Br2(K) = 1.
Hence ∆ρ(X) = 1 and the claim follows from Corollary 4.4. To ûnish the proof, we
must show that ρP1 is not strongly incompressible. _is is achieved in Lemma 9.7.

Lemma 9.7 Let G be a polyhedral group. Suppose that ω4 ∈ k if G = A4 or S4 (resp.
ω5 ∈ k if G = A5) and let ρ∶G ↪ PGL2 be an embedding deûned over k (it is unique up
to conjugacy). _en the G-variety ρP1 is not strongly incompressible.

Proof As the group A4 is contained in S4, it suõces to ûnd non-birational compres-
sions for S4 and A5.
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Case 1. Suppose that G = S4. _e matrices

(ω4 0
0 1) , (ω4 ω4

−1 1 ) ,

generate a subgroup isomorphic to S4 inside PGL2(k), whence we may assume that
ρ(G) is this particular subgroup. _en an easy computation shows that

(x ∶ y) ↦ (7x4 y3 + y7 ∶ −x7 − 7x3 y4)
is a G-compression ρP1 → ρP1, which is clearly not birational.

Case 2. Suppose that G = A5. Consider the matrices

(ω5 0
0 1) , (ω5 + ω−1

5 1
1 −ω5 − ω−1

5
) .

_ey generate a subgroup isomorphic toA5 inside PGL2(k). Again, assume that ρ(G)
coincides with this subgroup. _en the morphism

(x ∶ y) ↦ (x 11 + 66x6 y5 − 11xy10 ∶ −11x 10 y − 66x5 y6 + y11)
is a non-birational G-compression ρP1 → ρP1.

It remains to prove (i)⇒ (ii) in Proposition 9.6. _e following lemmawill be useful
in the sequel.

Lemma 9.8 Let k be a ûeld, let (a, b)2 be a quaternion algebra deûned over k, and
let n ≥ 4 be an integer. _en we have the following properties.
(i) _ere exists an n-dimensional étale k-algebra E1 with trivial discriminant such

that the Stiefel-Whitney class w2(qE1) = [(a, b)2] + [(−1,−1)2],
(ii) If (a, b)2 /≅ (−1,−1)2, there exists an n-dimensional étale k-algebra E2 with non-

trivial discriminant dE2 such that w2(qE2) = [(a, b)2] + [(−1,−dE2)2].

Proof It suõces to prove the results for n = 4, as adding copies of the trivial étale
algebra k to E does not change the discriminant of E, or w2(qE). By [Se03, Lemma
31.19], the k-algebra E[A, B] = k[X]/(X4 −2AX2 +B) is étale when AB(A2 −B) ≠ 0,
has discriminant 64B(A2 − B)2, and its trace form is isomorphic to

⟨1,A,A2 − B,AB(A2 − B)⟩.
An easy computation shows that

w2(qE[A,B]) = [(−A,−B(A2 − B))2] + [(−1,−B)2].

To prove part (i), select c ∈ k× such that b2c4 − 1 ≠ 0, and put A = −a(bc2 − 1)2

and B = a2(b2c4 − 1)2. It is easy to see that −A ≡ a mod k×2 and −B(A2 − B) ≡ b
mod k×2, whence E1 = E[A, B] satisûes the required properties.

To prove part (ii), we may assume without loss of generality that −b /∈ k×2 and
b ≠ 1, by changing the presentation of (a, b)2 if necessary. Deûne A = −a and B =
−4ba2/(b − 1)2. _en we obtain that A2 − B ∈ k×2. _e algebra E2 = E[A, B] has
discriminant −b /∈ k×2 and satisûes w2(qE2) = [(a, b)2] + [(−1, b)2].
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Remark 9.9 _e conclusion in part (ii) of the above theorem might fail if (a, b)2 ≅
(−1,−1)2. Indeed, suppose that k = R. By [Se03, _eorem 31.18], we observe that the
trace form of any 4-dimensional étale algebra E has the form

qE = ⟨1,A,A2 − B,AB(A2 − B)⟩,
which has second Stiefel-Whitney invariant

w2(qE) = [(−A,−B(A2 − B))2] + [(−1,−B)2].
For the discriminant to be nontrivial, B must be negative, so

w2(qE) = [(−A,A2 − B)2].
_is class is obviously trivial because A2 − B > 0, so we cannot obtain [(−1,−1)2].

Proof of (i)⇒ (ii) Suppose that cd2(k) > 0 and let K = k(x). Note in particular
that the ûeld K is Hilbertian (see [FJ08, Prop. 13.2.1]).

Case 1. Suppose that G = An , where n = 4 or 5. By Lemma 8.4, there exists a nonsplit
quaternion algebra A deûned over K. Using Lemma 9.8(i), we can construct an n-
dimensional étale K-algebra E with trivial discriminant such that w2(qE) = [A] +
[(−1,−1)2]. By [EK94, _eorem. 1], there exists a ûeld extension L/K of degree n
whose trace form is isometric to qE ; moreover, we may assume that its Galois closure
L̃/K has Galois group G. _erefore, the class of L (viewed as an étale K-algebra) in
H1(K ,G) corresponds to a faithful G-curve X deûned over k with function ûeld L̃.
By Proposition 9.2, we must have ∆̂(X) = [A] + [(−1,−1)2].

We claim that X cannot beG-compressed to any curve of genus ≤ 1. Recall that any
faithful G-curve of genus 0 is G-equivariantly isomorphic to the quadric associated
to ⟨1, 1, 1⟩, which we denoted earlier by X0. Suppose that there exists aG-compression
X → X0. By Proposition 9.1, the image of ∆̂(X0) in Br2(K) under the induced map is
equal to ∆̂(X) = [A] + [(−1,−1)2]. By Proposition 9.4(i), it follows that [A] is trivial,
which is a contradiction.

IfG = A5, the claim follows becauseA5 does not act on any curve of genus 1. On the
other hand, suppose that there exists an A4-compression X → C, whereC has genus 1.
(A word of warning: here we cannot assure that C is an elliptic curve because it might
not have k-rational points.) As before, it follows that ∆̂(C) maps to ∆̂(X) ∈ Br2(K)
under the map induced by the compression. However, Lemma 9.5(iv) contradicts the
fact that A is not split. _is completes the proof of the claim. By Lemma 3.1, there
exist strongly incompressible G-curves.

Case 2. Suppose that G = S4. We claim that there exists a quaternion algebra A /≅
(−1,−1)2 over K which does not split over k′(x), where k′ = k(

√
2). If 2 is a square

in k and (−1,−1)2 is split over K, the result follows immediately from Lemma 8.4.
If 2 is a square but (−1,−1)2 is not split over K, we choose A = (−1, x)2. Note that
A ≅ (−1,−1)2 over K if and only if (−1,−x)2 is split. By Lemma 2.1, if either A is
split or A ≅ (−1,−1)2, it would follow that −1 is a square in k, which contradicts our
assumption that (−1,−1)2 is not split.
Finally, if 2 is not a square over k, we choose A = (x , x2 −4x +2)2. Suppose for the

sake of contradiction thatA splits over k′(x). By Lemma 2.1, 2+
√

2 is a square over k′,
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i.e., 2+
√

2 = (l1+ l2
√

2)2 for some l1 , l2 ∈ k. Taking norms with respect to k′/k yields
2 = (l 21 − 2l 22 )2, which contradicts our assumption. We now prove that A /≅ (−1,−1)2,
where we may assume that (−1,−1)2 is not split. Indeed, such an isomorphism would
imply that the quadratic forms

⟨1, 1, 1⟩ and ⟨−x ,−(x2 − 4x + 2), x(x2 − 4x + 2)⟩
are isomorphic over K. It follows that ⟨1, 1, 1⟩ represents −x, i.e., there exist coprime
polynomials p, q, r, s ∈ k[x] such that p(x)2 + q(x)2 + r(x)2 = −xs(x)2. Making
x = 0 yields p(0) = q(0) = r(0) = 0 since we are assuming that ⟨1, 1, 1⟩ is anisotropic
over k. _is implies that p(x), q(x), r(x) are divisible by x, whence s(x) is divisible
by x as well. _is contradicts the fact that p, q, r, s are coprime.
By Lemma 9.8(ii), we can construct a 4-dimensional étale K-algebra E with non-

trivial discriminant dE such thatw2(qE) = [A]+ [(−1,−dE)]. By [EK94,_eorem 1],
we can ûnd a ûeld extension L/K of degree 4 whose trace form is isometric to qE ,
whose Galois closure L̃/K has Galois group G. As before, its class in H1(K ,G) corre-
sponds to a faithfulG-curve X deûned over kwith functionûeld L̃. By Proposition 9.2,
it follows that ∆̂(X) = [A] + [(−1,−1)2] + [(2, dE)2].
As in Case 1, suppose that there is aG-compression f ∶X → X0 and let f ′∶X′ → X′

0
be the base extension of f to k′ = k(

√
2). _ere exists a commutative diagram

Br2(k(X0)G) i∗ //

j0
��

Br2(K)

j
��

Br2(k′(X′

0)G)
i′∗ // Br2(k′(x)),

where the vertical arrows are induced by base extension and the horizontal arrows are
induced by f and f ′. By Proposition 9.1, wemust have i∗(∆̂(X0)) = ∆̂(X) in Br2(K).
By Proposition 9.4(ii), it follows that j0(∆̂(X0)) = [(−1,−1)2], since 2 is a square in
k′. Consequently, we conclude that

[(−1,−1)2] = i′
∗
( j0(∆̂(X0))) = j(i∗(∆̂(X0))) = j(∆̂(X)) = [A] + [(−1,−1)2],

whence Amust be split over k′(x). _is contradicts our initial assumption.
Since G does not act faithfully on any curve of genus 1, it follows from Lemma 3.1

that there exist strongly incompressible G-curves.

Appendix A Proof of Theorem 3.2

Lemma A.1 Let P,Q be two polynomials in k[x], not both zero, and let A ⊂ k be the
set of their common roots. _en for all but ûnitely many c ∈ k, the polynomial P + c Q
has no multiple roots outside of A.

Proof It suõces to show that given two coprime polynomials P,Q ∈ k[x], the poly-
nomial P + c Q has simple roots for all but ûnitely many c ∈ k. If both polynomials
are constant, the result is immediate, so we may assume that is not the case. Note that
ξ ∈ k is a multiple root of P + c Q if and only if P(ξ) + c Q(ξ) = P′(ξ) + c Q′(ξ) = 0,
which implies that P(ξ)Q′(ξ)−P′(ξ)Q(ξ) = 0. _e polynomial PQ′−P′Q cannot be
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identically zero because P and Q are coprime and not both constant, so it has ûnitely
many roots. If we take c ∈ k outside the ûnite set

{−P(ξ)/Q(ξ) ∣ ξ ∈ k satisûes P(ξ)Q′(ξ) − P′(ξ)Q(ξ) = 0, Q(ξ) ≠ 0} ,
it follows that P + c Q has simple roots. _e proof is complete.

Deûnition A.2 We deûne a ramiûcation condition to be an l-tuple of integers P =
(b1 , . . . , b l), where l ≥ 1 and b i ≥ 2 for all i. We say that P ∈ k[x] has a local decom-
position of type P at β ∈ k, if there exists a factorization

P(x) − β = a(x − α1)b1 ⋅ ⋅ ⋅ (x − α l)b l (x − α l+1) ⋅ ⋅ ⋅ (x − αr),

where a is the leading coeõcient of P, and α1 , . . . , αr are distinct elements in k.

Proposition A.3 Let Pi = (b i ,1 , . . . , b i , l i ) (1 ≤ i ≤ n) be a collection of ramiûcation
conditions (not necessarily distinct), and let β1 , . . . , βn be distinct points in k. _en
there exists a polynomial P ∈ k[x] that satisûes local decompositions of type Pi at β i for
1 ≤ i ≤ n. Moreover, we can choose deg(P) to be any suõciently large positive integer.

Proof Choose distinct points a i j ∈ k for 1 ≤ i ≤ n, 1 ≤ j ≤ l i . By the Chinese
Remainder _eorem, there exists Q ∈ k[x] such that

Q(x) ≡ β i + (x − a i j)b i j mod (x − a i j)b i j+1 ,

for 1 ≤ i ≤ n, 1 ≤ j ≤ l i . We deûne H(x) = ∏i , j(x − a i j)b i j+1 and we let A = {a i j}i , j
be the set of its roots. Applying Lemma A.1 to g i = Q − β i and H for 1 ≤ i ≤ n,
we conclude that there exists a ûnite set S ⊂ k such that if c ∈ k lies outside S, the
polynomials g i + c H contain no multiple roots outside of A for 1 ≤ i ≤ n. Choose
any such c and deûne P = Q + c H. We claim that P satisûes the desired conditions.
Indeed, note that the following properties hold.
(i) For 1 ≤ i ≤ n, 1 ≤ j ≤ l i , the polynomial P − β i has a root of multiplicity b i j at

the point a i j .
(ii) If i′ ≠ i, we have P(a i′ j) = β i′ ≠ β i and therefore P − β i cannot have any root

of the form a i′ j .
(iii) By construction, P − β i does not have multiple roots outside of A.

It remains to prove that we can take deg(P) to be any suõciently large positive
integer d. To show this, take n = max(deg(Q), deg(H)). We claim that there exists
P satisfying the desired properties such that deg(P) = d for any d > n. Indeed, if we
replace H(x) by (x − a11)d−deg HH(x) and ensure that c ≠ 0 in the deûnition of P, it
follows easily that deg(P) = d.

Proof of_eorem 3.2 Without loss of generality, we may assume that G = Sm for
somem ≥ 2. Given a partition b1+⋅ ⋅ ⋅+bs ofm, where b1 ≥ ⋅ ⋅ ⋅ ≥ b l > 1 = b l+1 = ⋅ ⋅ ⋅ = bs
for some l ≥ 1, we can deûne a ramiûcation conditionP = (b1 , . . . , b l). LetP1 , . . . ,Pn
be the ramiûcation conditions obtained as we range over all possible partitions of m,
except for 1 + ⋅ ⋅ ⋅ + 1. By Proposition A.3, we can construct a polynomial P ∈ k[x]
satisfying local decompositions of typePi at distinct points β i for 1 ≤ i ≤ n. Moreover,
we may assume that deg(P) is some suõciently large prime number p.
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Let the group Sp act on p letters and embed Sm inside Sp as the subgroup that
ûxes the last p −m letters. We want to construct X as a ramiûed Sp-cover of P1. Let
Pt(x) = P(x) − t, where t is an indeterminate, and deûne L as the splitting ûeld of
Pt over k(t). It is clear that Gal(L/k(t)) is a transitive subgroup of Sp ; we claim
that equality holds. Since Gal(Lk/k(t)) is a subgroup of Gal(L/k(t)) , it suõces to
prove that the former is isomorphic to Sp . (Note that this also implies that L is regular,
i.e., L ∩ k = k.) We use a technique similar to [Se08, _eorem 4.4.5]. We may view
the polynomial Pt as a ramiûed cover P1 → P1 of degree p. Note that β1 , . . . , βn ,∞
are among the ramiûcation points. If Pi = (b(i)1 , . . . , b(i) l i ), the inertia subgroup at
β i is generated by an element of Sp of cycle type (b(i)1 , . . . , b(i) l i , 1, . . . , 1), while the
inertia group at ∞ is a p-cycle. In particular, Gal(Lk/k(t)) contains the subgroup
generated by a p-cycle and a transposition, which is all of Sp since p is prime. _e
claim follows immediately.

Let X be the (unique) smooth projective curve deûned over k with function ûeld
L, which is geometrically irreducible since L/k is regular. Note that X can be endowed
with a natural faithful Sp-action via the Galois action on L. If Q is a closed point in
Xk lying above β i , then its stabilizer is a cyclic subgroup generated by an element of
Sp of cycle type (b(i)1 , . . . , b(i) l i , 1, . . . , 1). Since any two subgroups of this form are
conjugate, they all occur as stabilizers of points in the ûbre above β i . Clearly, any
nontrivial element of Sm has one of the above cycle types inside Sp , so it ûxes at least
one geometric point in X. _e proof is complete.
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