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Nonlinear machine learning for turbulent flows can exhibit robust performance even
outside the range of training data. This is achieved when machine-learning models
can accommodate scale-invariant characteristics of turbulent flow structures. This study
presents a data-driven approach to reveal scale-invariant vortical structures across
Reynolds numbers that provide insights for supporting nonlinear machine-learning-based
studies of turbulent flows. To uncover conditions for which nonlinear models are likely
to perform well, we use a Buckingham-Pi-based sparse nonlinear scaling to find the
influence of the Pi groups on the turbulent flow data. We consider nonlinear scalings
of the invariants of the velocity gradient tensor for an example of three-dimensional
decaying isotropic turbulence. The present scaling not only enables the identification of
vortical structures that are interpolatory and extrapolatory for the given flow field data
but also captures non-equilibrium effects of the energy cascade. As a demonstration,
the present findings are applied to machine-learning-based super-resolution analysis
of three-dimensional isotropic turbulence. We show that machine-learning models
reconstruct vortical structures well in the interpolatory space with reduced performance in
the extrapolatory space revealed by the nonlinearly scaled invariants. The present approach
enables us to depart from labelling turbulent flow data with a single parameter of Reynolds
number and comprehensively examine the flow field to support training and testing of
nonlinear machine-learning techniques.
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Figure 1. Concept of interpolation and extrapolation. (a) A one-dimensional example. (b) Evolution of
three-dimensional decaying isotropic turbulence over Reλ(t).

1. Introduction

Trained fluid mechanicians can identify similarities in vortical structures for a variety
of turbulent flows. Even if there are scale or rotational differences, we can visually
extract similar structures due to their geometrical features across spatial and temporal
scales. Analogously, recent machine-learning models have capitalized on such structural
similarities to achieve reliable performance for the given training data. However, it is
also known that machine-learning models often achieve satisfactory performance even
in the cases of unseen Reynolds numbers. Examples of models performing successfully
beyond the training data include, turbulence modelling (Guan et al. 2022), state estimation
(Guastoni et al. 2021) and super-resolution (Kim et al. 2021). This suggests that
machine-learning models are able to incorporate scale-invariant properties of the flows
while optimizing the output to meet their objectives.

These observations imply that nonlinear machine-learning models are capturing data
characteristics in a more holistic manner. Traditionally, interpolation and extrapolation of
models have been associated with a particular variable or parameter (Domingos 2012;
Marcus 2018), as illustrated in figure 1(a). In this example, test data outside of the training
data are captured by the temporal variable t. In the case of more complex data sets,
such as turbulent flows, describing whether a certain type of vortical structure appears
in training data or not requires additional considerations, beyond a single parameter such
as the Reynolds number.

Given this motivation, we revisit the idea of interpolation and extrapolation in the
context of turbulent flow structures. Here, we consider the capturing vortical structures
that have certain similarities across training and test data to be ‘interpolation’ and their
structural features to be ‘seen’. On the other hand, capturing structures in the test
data that do not share similarities with those in the training data are referred to as
‘extrapolation’ and their structures as ‘unseen’. With machine-learning models known to
perform well for approximating the nonlinear relationship between the input and output
from a large collection of data, the presence of seen (or common) features can provide
robust performance under untrained flow situations (Kim et al. 2021; Guan et al. 2022).
The current study presents a data-driven scaling approach to reveal seen/unseen structures
of turbulent flow data in machine learning.

To assess rotational and shear similarities between small- and large-length scales
in turbulent flows, we examine the flow field data in terms of the invariants of the
velocity gradient tensor. In the present analysis, the scaled invariants are found through
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sparse nonlinear regression using non-dimensional parameters from the Buckingham Pi
theorem (Buckingham 1914). The present approach offers the optimal nonlinear scalings
of the invariants, uncovering scale-invariant vortical structures in a turbulent flow field.
Analysing the data distribution of the present scaled invariants reveals what types of flow
structures are seen and unseen. Furthermore, the findings from this study provide guidance
in the choice of machine-learning functions to offer robustness for scale-invariant vortical
structures. The present paper is organized as follows. The proposed Buckingham-Pi-based
sparse nonlinear scaling of the invariants is introduced in § 2. We demonstrate the
current approach for three-dimensional isotropic turbulence in § 3. Concluding remarks
are provided in § 4.

2. Methods

Machine-learning models for turbulent flow structures are known to remain accurate
beyond the coverage of training data. This is the case especially when the nonlinear
machine-learning models have scale and rotational invariances embedded in their
formulations. To explain this extended validity of machine-learning models, this study
aims to uncover nonlinear scalings that capture the similarities in turbulent vortical
structures across a range of Reynolds numbers. The central hypothesis of this study is that
the existence of such scalings enables nonlinear machine-learning techniques to perform
effectively across different flow fields beyond the range of Reynolds numbers provided in
the training data. With these identified scalings, turbulent flow structures that linearly and
nonlinearly span across a range of scales may be considered seen beyond the training data
due to their structural similarities.

To examine turbulent flows, we consider the invariants of the velocity gradient tensor
A = (∇u)T, where u represents the velocity, such that the observations are independent
of the frame of Chong, Perry & Cantwell (1990). These invariants are P = trace(A), Q =
[P2 − trace(A2)]/2 and R = det(A). For the present study, we consider incompressible
turbulent flows, which makes P = ∇·u = 0. The remaining two invariants of Q and R
characterize the local rotation and shear, respectively (Ooi et al. 1999). According to these
invariants, the flow can experience vortex compression (Q > 0, R < 0), vortex stretching
(Q > 0, R > 0), biaxial strain (Q < 0, R < 0) and axial strain (Q < 0, R > 0) (Davidson
2015). These invariants will be nonlinearly scaled with non-dimensional Pi groups using
a data-driven approach.

In this study, we consider three-dimensional incompressible decaying isotropic
turbulence. The flow field data are obtained from direct numerical simulation using
643 grid points with a Taylor microscale-based Reynolds number of 0.85 ≤ Reλ ≤ 252
(Chumakov 2008; Gopalakrishnan Meena & Taira 2021), satisfying kmaxη ≥ 1, where
kmax is the maximum resolvable wavenumber of the grid and η is the Kolmogorov length
scale, to resolve all important scales of motion. The present simulation is initialized
with random velocity fields of Gaussian profiles that satisfy incompressibility and the
Kolmogorov spectra for kinetic energy. The flow snapshots are curated after the flow
reaches the decaying regime at which we set time t to zero. Note that a large Reλ at
the early stage of decay is due to a small dissipation coefficient, which strongly depends
on the flow (Goto & Vassilicos 2009, 2015). We present representative flows with their
corresponding invariants on the Q–R plane over time in figure 2. The Reynolds number
decreases as vortical structures evolve as their characteristic size increases. Even at a large
time when Reλ = 4.18, large-scale structures are still observed while the flow is under
decay. During this process, invariants Q and R decrease in magnitude while the probability
density functions of these invariants remain geometrically similar. This suggests that there
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Figure 2. Example flow snapshots with Q–R distributions of three-dimensional decaying turbulence at
(a) Reλ = 214, (b) 14.6 and (c) 4.18. Each distribution is coloured by density. Turbulent vortices are visualized
with (d) Q = 10, (e) 0.3 and (f ) 0.02.

is some level of scale invariance in the distributions of the turbulent vortical structures
over the Q–R plane. That is, the decaying isotropic turbulence holds similar rotational and
shear structures whose sizes vary over the Reynolds number.

Linear scaling for the Q–R distributions based on the kinematic viscosity ν and
energy dissipation rate ε such as Q/(ε/ν) and R/(ε/ν)3/2 do not completely collapse
the distributions, given their long tails especially at high Reynolds number, as presented
in figure 3. This seems to be caused by the wide range of Reynolds numbers and
strong unsteadiness contained in the present decaying turbulence data, implying that
Kolmogorov’s similarity hypotheses do not hold in an instantaneous manner. For example,
skewness SR of the linearly scaled distribution for R in figure 2 is 2.74, 0.299 and 0.186
for Reλ = 214, 14.6 and 4.18, respectively. These observations suggest that nonlinear
scaling needs to be considered to accommodate non-equilibrium effects. Identifying such
nonlinear scalings of Q and R distributions with data-driven techniques can also reveal
how nonlinear machine learning extracts seen (or common) vortical structures that share
similarities with structures outside of the training data sets. Moreover, unseen structures
can be captured by uncovering the invariant space that does not overlap for the scaled data.

Let us consider scaling the invariants Q and R in a nonlinear manner using
non-dimensional Pi groups from the Buckingham Pi theorem (1914), which distils a
number of dimensional parameters into a smaller number of dimensionless groups (Bakarji
et al. 2022; Xie et al. 2022). We assume that the scaling can be obtained through
superposing appropriate polynomials of the Pi variables. Denoting these invariants as φ

(either Q and R), the candidate polynomials are assumed to have the form of

θk(x, t) = Πm
i (t)Πn

j (t)φ(x, t), where i, j = 1, 2, . . . , m, n ∈ Z, k = 1, . . . , nL.

(2.1)
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Figure 3. Linearly scaled Q–R distributions based on the kinematic viscosity ν and energy dissipation rate ε.
A zoom-in view for Reλ = 14.6 and 4.18 is also shown.

Here, nL is the number of library-basis functions. Given these library candidates θk, we
can express the scaled invariants φ∗(x, t) as

φ∗(x, t) =
nL∑

k=1

akθk(x, t), (2.2)

with a = (a1, a2, . . . , anL)
T ∈ R

nL . Spatiotemporal discretization of this equation yields
Φ∗ = Θa, where

Φ∗ =

⎡
⎢⎢⎣

φ∗(t1)
φ∗(t2)

...

φ∗(tnt)

⎤
⎥⎥⎦ ∈ R

nxnt , Θ =

⎡
⎢⎢⎣

θ1(t1) θ2(t1) · · · θnL(t1)
θ1(t2) θ2(t2) · · · θnL(t2)

...
...

. . .
...

θ1(tnt) θ2(tnt) · · · θnL(tnt)

⎤
⎥⎥⎦ ∈ R

nxnt×nL,

(2.3a,b)

with φ(t) = (φ(x1, t), . . . , φ(xnx, t))T ∈ R
nx and θk(t) = (θk(x1, t), . . . , θk(xnx, t))T ∈

R
nx being the scaled invariant and the library candidate, respectively, discretized in space.

Here, the invariants are spatiotemporally stacked into a tall vector. The coefficients a are
determined through the sequential threshold least squares method (Brunton, Proctor &
Kutz 2016), promoting sparsity of the coefficient matrix in a computationally efficient
manner (Fukami et al. 2021b). Since excessive sparsity promotion leads to a high
regression error, the sparsity coefficient in the threshold least square method needs to
be carefully tuned (Kaiser, Kutz & Brunton 2018).

For the present decaying turbulence, the Taylor length scale λ can be expressed as
the function of the characteristic velocity u (the square root of the spatially averaged
kinetic energy), the kinematic viscosity ν, the computational domain size L and viscous
dissipation ε such that λ = f (u, ν, L, ε). Through the use of the Buckingham Pi theorem,
we can find three Pi variables, which namely are Π1 = uλ/ν, Π2 = uL/ν and Π3 =
εν/u4. The first Pi variable Π1 is the Taylor Reynolds number Reλ. In the present study,
we take these Pi variables as a function of time. Given these Pi variables, we can construct
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the library candidates for (2.1) as first- and second-order polynomials of the Pi variables
such that

{Π1, Π2, Π3, Π
−1
1 , Π−1

2 , Π−1
3 , Π2

1 , Π2
2 , Π2

3 , Π−2
1 , Π−2

2 , Π−2
3 ,

Π1Π2, Π2Π3, Π3Π1, Π
−1
1 Π2, Π

−1
2 Π3, Π

−1
3 Π1, . . . , Π

m
i Πn

j , . . .}, (2.4)

where |m| + |n| ≤ 2.
With the Buckingham-Pi-based library matrix Θ , we seek coefficients a by maximizing

the similarity of data distributions of the invariants over space and time. Here, we utilize
the Kullback–Leibler (KL) divergence (Kullback & Leibler 1951) to assess the difference
between a probability distribution f1 and the reference probability distribution f2. For two
probability (data) distributions, the KL divergence is defined as

D( f1‖f2) ≡
∫ ∞

−∞
f1(φ∗)log

f2(φ∗)
f1(φ∗)

dφ∗. (2.5)

The minimization of the KL divergence finds the optimal coefficients a∗ for maximum
similarity of the scaled invariant distributions, which yields an optimization problem of
a∗ = argmina[D( f1‖f2)]. Below, the data distribution from a snapshot at high Reλ is used
as the reference f2.

3. Results

We apply the present nonlinear scaling analysis to three-dimensional decaying isotropic
turbulence over 0.85 ≤ Reλ ≤ 252. The present data comprised 800 snapshots over time
and 643 grid points in a tri-periodic cubic domain. Here, we aim to (1) uncover the
nonlinear influence of characteristic variables on the evolution of the invariants Q and
R, (2) identify common (seen) vortical flow features through the scaled invariants and (3)
provide guidance on proper training and formulation of machine-learning models.

Based on sparse regression, we find the scaling factors for Q and R to be

Q∗ = (5.76Π1 + 4.17Π−2
2 − 3.59Π2Π3)Q, (3.1)

R∗ = (5.53Π1 − 0.826Π−1
2 + 4.42Π−2

2 − 3.44Π2Π3)R. (3.2)

While isotropic turbulence is complex, the nonlinearly scaled invariants turn out to be
surprisingly compact in their expressions. For both scaled invariants, we have Π1 which is
the Taylor Reynolds number Reλ. This reflects the decaying nature, corresponding to the
fact that the data spread on the Q–R plane shrinks with decreasing Taylor Reynolds number
over time, as shown in figure 4(a,b). The present scaling also identifies the influence
of Π2 = uL/ν, the box-size-based Reynolds number, revealing that the computational
domain size influences the turbulent flow, especially as time advances and vortical
structures become comparable in size to the computational domain. This is evident from
the inverse and quadratic inverse nature of the scalings. The size of the periodic box affects
not only the large-scale vortical motion over the domain but also the energy dissipation of
turbulence (Davidson 2015).

Furthermore, the present analysis uncovers the importance of Π2Π3 = uL/ν·εν/u4 =
εL/u3, which is the ratio between the instantaneous energy dissipation rate determined
by small length scales and the cascading energy flux from the system-size vortices.
Thus, Π2Π3 plays a similar role to the dissipation coefficient Cε ≡ εl/u3, quantifying the
degree of non-equilibrium (Vassilicos 2015), i.e. the violation of Kolmogorov’s similarity.
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Figure 4. The data-driven Buckingham Pi scaling for three-dimensional decaying turbulence. The time series
of the identified non-dimensional variables as a function of (a) time and (b) the Taylor Reynolds number.
(c) Scaled Q∗ and R∗ invariants with their probability density functions. A zoom-in view is also shown as an
inset.

Although Π2Π3 is constant when the energy flux of large-scale vortices and energy
dissipation rate are in balance, that is not the case for the present decaying turbulence (Goto
& Vassilicos 2016). The present Π2Π3 accounts for the time delay of the energy-cascade
process between energy flux and dissipation due to strong nonlinearities in decaying
turbulence. This is achieved by correcting non-equilibrium effects in a nonlinear manner.
Note that the present formulation provides a similar scaling expression in a range of similar
Reynolds numbers even with different initial flow fields since sparse regression captures
how the turbulent flow decays over time.

Next, the identified scalings are applied to the original Q and R data distributions, as
shown in figure 4(c) along with their probability density functions. The identified factors
in (3.1) and (3.2) yield the optimal overlap of Q∗ and R∗ over space and time. The scaled
data distribution for the high-Reynolds-number flow spreads over a larger area than that for
the low Reynolds number, especially for Q∗ > 0. This implies high occurrence of vortex
stretching and compression at high Reynolds number.

Let us focus on the vortical structures for overlapping and non-overlapping regions of
the data over the Q∗–R∗ plane, as illustrated in figure 5. For Q∗ > 1, similar shapes of
vortical elements can be observed across a range of length scales. These identified vortical
structures are assessed as ‘interpolatory’ (common) with the present scaling approach.
The isosurfaces of Q∗ > 3 are also visualized in figure 5. These strong rotational elements
that barely appear in low-Reynolds-number flows are ‘extrapolatory’ structures. Moreover,
such extrapolatory vortical structures against the low-Reλ flow field can be seen in the
portion of R∗ < −1.2 and R∗ > 1.2. The region of Q < 0 and R < 0 corresponds to
biaxial strain, while that of Q > 0 and R > 0 reflects vortex stretching (Davidson 2015).
Hence, the scaled data distribution suggests that these structures caused by strong biaxial
strain and vortex stretching correspond to ‘extrapolation’ for the present turbulence data.
While not shown here, the portion of R∗ > −0.5 and −3.5 < Q∗ < 0.5 also includes
extrapolatory vortical structures. The scaled Q–R data distribution gives insights into
turbulent flows, in addition to the identified scaling.

The present Buckingham-Pi-based sparse nonlinear scalings can identify interpolatory
and extrapolatory vortical structures in isotropic turbulence. Nonlinear machine-learning
models are likely to capture the characteristics and behaviour of what we refer to as
the interpolatory structures even in untrained Reynolds number cases. This explains why
well-trained machine-learning models may perform well even for test data. However, we
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Figure 5. Interpolatory and extrapolatory vortical structures in three-dimensional decaying isotropic
turbulence.

caution that when the test data includes extrapolatory structures, machine-learning models
are no longer guaranteed to be valid. With regard to these points, classifying interpolatory
and extrapolatory structures solely by Reλ is not encouraged for assessing nonlinear
machine-learning models.

Based on the insights from the scaled invariants above, let us consider
machine-learning-based super-resolution reconstruction of turbulent flows (Fukami,
Fukagata & Taira 2023). Super resolution reconstructs the high-resolution flow field
qHR from its low-resolution data qLR with a reconstruction model F through qHR =
F(qLR). Recently developed machine-learning-based super-resolution analysis captures
the nonlinear relationship between small- (unresolved) and large-scale (resolved)
structures. This study considers the ability of machine-learning-based reconstruction to
recognize and reconstruct common turbulent flow structures for a variety of flow field
snapshots, even outside of the training data.

For super-resolution reconstruction of turbulent flows, a machine-learning model
should be carefully constructed to account for a range of spatial length scales while
enforcing rotational and translational invariance of vortical structures. To satisfy these
properties, we use the hybrid downsampled skip-connection/multi-scale (DSC/MS) model
(Fukami, Fukagata & Taira 2019, 2021a). The DSC/MS model based on convolutional
neural networks (CNNs; LeCun et al. 1998) is composed of three main functions:
namely, (A) up/downsampling operations, (B) skip connection, and (C) multi-scale filters.
The up/downsampling provides robustness against rotation and translation of vortical
structures. The skip connection allows communication between the input low-resolution
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data and the intermediate output of the DSC model, which is crucial in learning a
step-by-step internal process towards the high-resolution output from the low-resolution
input while expanding the dimension of the flow field snapshot (He et al. 2016). The
multi-scale filters apply filtering with a number of different sizes of filter (e.g. three here)
in parallel to capture a broad range of scales in turbulent flows. Further details on the
present neural network model are in Fukami et al. (2019). We will discuss which function
inside the present model contributes to gaining robustness for scale invariance later.

Here, we consider two cases of training and testing for super-resolution reconstruction
of turbulent flows: (1) a model trained with a low-Reλ data set and tested with a high-Reλ
data set (low-Reλ training); (2) a model trained with a high-Reλ data set and tested with
a low-Reλ data set (high-Reλ training). We expect that the low-Reλ training cannot cover
the non-overlapping portion of the scaled invariants, which corresponds to extrapolation.
The high-Reλ training, which covers a wide portion of the scaled invariants, may amount
to interpolation in terms of the turbulent flow structures. For the present analysis with the
two training scenarios, the threshold Reλ between the low- and high-Reλ training cases is
set to Reλ = 15. The velocity vector is used as data attributes q with F reconstructing the
high-resolution flow field on a 643 grid from the low-resolution data on a 43 grid.

The reconstructed flow fields are shown in figure 6(a). The vortical flows are visualized
using Q-criteria and coloured by the third invariant R computed from the reconstructed
velocities. For the low-Reλ training case, the model reconstructs the vortical structures for
the training Reλ with an L2 error of approximately 0.1. In contrast, the visualized Q variable
at the high-Reλ exhibits significant level of error rendering the reconstruction grossly
incorrect. Such high errors can be explained using the scaled variables in figure 6(b) due
to the flow features residing over the non-overlapping region on the present plane. The
high error is also observed around the bottom left of figure 6(b). This extrapolation region
cannot be reconstructed with the low-Reλ training because these structures are barely seen
in the low-Reλ data sets, as presented in figure 5.

Next, let us consider the high-Reλ training case. The reconstructed flow from the
overlapping case (interpolation) is in agreement with the reference data. In contrast to
the extrapolatory low-Reλ training, reasonable reconstruction can still be achieved at
Reλ = 4.18. This suggests that the high-Reλ training data holds insights into a wider range
of vortical structures that also appear in the low-Reλ regime, which is confirmed from the
scaled Q∗ and R∗ data. It is worth pointing out that the scaled invariants at the low Reλ
include some non-overlapping portion (scale-variant structures) in the region of Q∗ < 0
and R∗ < 0. This implies that the model trained with only the high-Reλ regime cannot
cover vortical structures of Q∗ < 0 and R∗ < 0. For better reconstruction over this regime,
we need to include training data that covers Q∗ < 0 and R∗ < 0. Such an observation
provides guidance on how the vortical flow data should be prepared to enable reliable
reconstruction.

We further examine the nonlinearly scaled invariants to assess which inner functions of
the machine-learning models contribute to robustness for scale-invariant regression. We
here consider six models using the aforementioned functions A, B and C (figure 7a):

(i) the original DSC/MS model (functions A, B and C),
(ii) the original model without multi-scale filters (functions A and B),

(iii) the original model without the skip connection (functions A and C),
(iv) the original model with up/downsampling only (function A),
(v) the original model with multi-scale filters only (function C),

(vi) a regular convolutional neural network (without any of the functions above).
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Figure 6. (a) Super-resolution reconstruction of three-dimensional decaying turbulence. The reconstructed
flow fields are visualized with the Q-criteria, coloured by R. The values underneath each figure represent the
L2 error norm. The grey and red boxes, respectively, highlight snapshots for training and testing the Reλ regime.
(b) Scaled Q∗ and R∗ at test Reλ’s for low- and high-Reλ training cases, coloured by the spatial L2 reconstruction
error.

These six models consider all possible combinations that can be constructed with the
DSC/MS model. We perform the low-Reλ training for all of these six cases. The
corresponding error distributions are presented in figure 7(b). For model (ii) which
removes the multi-filter function from the baseline model, the error behaviour on the
scaled data is similar to that of the original model. A similar observation is seen for models
(iii) and (iv) which have no multi-filter functions. Since models (ii–iv) include function A,
up/downsampling operations are crucial for robust super-resolution reconstruction of
turbulent flows.

This can be further confirmed with model (v) which comprises only the multi-scale
filters (function C). The reconstruction error is significantly higher without the
up/downsampling operations. Including dimension compression and expansion plays
an important role in obtaining robustness for scale-invariant characteristics, which
agrees with a number of studies on CNNs for scale invariance characteristics in image
science (Jarrett et al. 2009; Van Noord & Postma 2017). In contrast, multi-scale filters
have secondary importance in reconstructing the flow (model (v)) as evident from its
comparison with the results from CNN (model (vi)). While the regular CNN without
functions A, B and C returns pixelized flow fields, model (v) achieves qualitative
reconstruction. The use of skip connections is also important for successful training to
address issues related to the convergence of neural network weights (He et al. 2016). These
findings suggest that robust turbulent flow reconstruction can be achieved by selecting
machine-learning functions based on the implication of scaled invariants.

The current approaches to identify important model functions that accommodate scale
invariance could be combined with emerging methods to investigate the role of networks in
capturing flow physics, such as the sensitivity analysis (Lee & You 2021; Jagodinski, Zhu
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Figure 7. (a) The three functions used in the DSC/MS super-resolution model. (b) The scaled Q∗–R∗ data
for six models. The two-dimensional sections of the reconstructed streamwise velocity are also shown with
velocity errors.

& Verma 2023) and Fourier analysis of the CNN filters (Subel et al. 2023). Along with
these techniques, model effectiveness and accuracy should be carefully examined in terms
of its construction and the richness of training data for machine-learning applications of
turbulent flows.

4. Concluding remarks

For nonlinear machine-learning models for turbulent flows, there is generally not a
single parameter that can reveal whether such models are performing an interpolation
or extrapolation. This is due to the turbulent flow data containing similarities in
flow structures across a range of spatiotemporal scales. These properties contribute to
machine-learning models being accurate beyond the coverage of training data in some
cases. To shed light on the validity of machine-learning models, we nonlinearly scaled the
invariants of the velocity gradient tensor Q and R with non-dimensional parameters using
a Buckingham-Pi-theorem-based sparse regression, which maximizes the similarity of
invariant data distributions over space and time across Reynolds numbers. As a canonical
turbulent flow example, we considered three-dimensional decaying isotropic turbulence
for 0.85 ≤ Reλ ≤ 252. The present approach found nonlinear scalings that express the
influence of the decaying nature of the present flow, domain size of the simulation, and
non-equilibrium effects of energy cascade on the invariants Q and R. With the scaled
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invariants Q∗ and R∗, we were able to determine that the training data lacked flow
structures associated with strong biaxial strain and vortex stretching.

We further analysed which types of machine-learning functions contribute to gaining
robustness for scale-invariant vortical structures within the context of super-resolution
reconstruction. We found that fluid flow reconstruction can be achieved for data of
the overlapping portion on the scaled Q∗–R∗ plane even under untrained Reλ with an
appropriate construction of machine-learning models. The present findings suggest that
transfer learning could be effective for training nonlinear machine-learning models of
turbulent flow across Reynolds number provided that extrapolatory structures do not alter
the physics significantly (Inubushi & Goto 2020; Guastoni et al. 2021). Including fractional
exponents for Pi variables would likely enhance the generalizability of the present method
for discovering additional nonlinear scaling in turbulent flows. Incorporating nonlinearly
scaled invariants into the training process could also support the generalizability of
the models. While we can consider the scaled invariants as the input and output of
machine-learning models, they could also be incorporated into the loss function of
machine-learning optimization. The present procedure to examine nonlinear scalings of
turbulent flow structures provides guidance on how to develop robust machine-learning
models and compile the necessary training data, enabling us to depart from naïve training
and being unaware of the validity of these complex models.
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