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Abstract. We prove uniqueness of positive solutions for the boundary value
problems

—Au= M(u) in <,
u=20 on d%2,

where € is a bounded domain in R” with smooth boundary 92, A is a positive
parameter and f : (0, co) — (0, co) is sublinear at co and is allowed to be singular
at 0.
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1. Introduction. Consider the boundary value problem

—Au=M(u) inQ,
{ u=20 on d¢2, (.1

where € is a bounded domain in R” with smooth boundary 92, f : (0, co) — (0, co)
is possibly singular at 0 and X is a positive parameter.

We are interested in the uniqueness of positive solutions to (1.1) when f is sublinear
at oo and is singular at 0. Let us briefly recall the literature on uniqueness of positive
solutions for (1.1) when f is nonsingular. Schuchman in [7] showed that (1.1) has a
unique positive solution for A large when f (0) > 0 and there exists @ > 1 such that

0<f(u)<K(A+u™ foru=>0.

The result in [7] was improved by Dancer [2], in which the uniqueness and asymptotic
behaviour of positive solutions to (1.1) for A large were established for C! functions f
satisfying f(u) > C > 0, uf'(u) —> 0 as u — oo, f > 0 on (0, 00), and either f(0) > 0
or f/(0) > 0. The cases when there exist 8 € (0, 1)and C > 0 such that u!~#f"(u) - BC
as u — 00, or when there is an @ > 0 such that f > 0 on (0, a) and f(a) = 0 were also
studied in [2]. Wiegner in [9] included cases where f(u) — 0 as u — oo or f(u) does
not behave like «? at oo for some 8 € (0, 1) such as (1 +u)~? for y > 0 small and
In(2 + u), but required £(0) > 0. Related results when /" € C!(0, o) and f” is possibly
singular at 0 (but not f) were obtained by Lin [5] and Hai and Smith [4]. In [5],
uniqueness was established when #2f”(«) is bounded near 0 and f(u) ~ u? at co for
some B € (0, 1), while in [4], nonlinearities such as u” In(2 + u) for some g € [0, 1) are
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allowed but required that f(u#) be nondecreasing for u large. In this paper, we shall
establish uniqueness and asymptotic behaviour of positive solutions to (1.1) for A large
when £ is sublinear at oo and is possibly singular at 0, which have not been considered
in the literature to the best of our knowledge. Note that in the case when f(u) ~ u#
at oo for some 8 € [0, 1), we do not require that f be nondecreasing for u large. Thus,
our results provide an extension of the corresponding results in [2, 4, 7] to the singular
case. In particular, our results when applied to the model case

—Au=2x (u% + uﬁeﬁ) in Q,
u=20 on 0€2,

where a > 0, y, B € [0, 1), give the existence of a unique positive solution for A large.
Our approach depends on sharp upper and lower estimates on the solutions when X is
large.

2. Main results. We make the following assumptions:

(A1) f : (0, 00) — (0, 00) is differentiable and there exist a constant 4 > 0 and a
continuous function g : (0, oo) — (0, c0) such that g(u) is nondecreasing and ‘# is
decreasing for u > A,

lim@zl, lim ‘ﬂz
U—>00 g(u) u—00 Y

0.

(A2) For each ¢ > 0, there exist constants 4., B. > 0 such that
H '(cu) < A.H '(u) foru > B,

where H(u) = ﬁ.

(A3) There exists a constant y € (0, 1) such that

lim sup u” T |f'(u)| < oo.
u—0+

(A4) lim %gf@ > 0.
(A5) lim inf (f (1) — uf"(u)) > 0.

(B1) f : (0, c0) — (0, 00) is differentiable and there exist constants 8 € [0, 1) and
C > 0 such that

im 7% — ¢,
u—>o00 Y
and
lim sup ulf ()| <1
U— 00 f(u)

THEOREM 2.1. Let (Al)—(AS5) hold and let f be nondecreasing for u > A, or let
(Bl),(A3) and (A4 ) hold. Then there exists a positive number \y such that (1.1) has a
unique positive solution for . > L.

THEOREM 2.2. Let (Al )—( A4) hold with g(u) = Cu® for some B € [0, 1), C > 0. Let
uy, be a solution of (1.1). Then

)Lﬁlfluk — Cﬁwﬁ in C'(Q) asr — oo,

where wg is the unique positive solution of —Awg = wg inQ, wg=00n0dRQ.
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REMARK 2.1. Theorems 2.1 and 2.2 extend corresponding results in Theorem 1
and Remark 1 in [2] to include singular nonlinearities /. Note that the assumption ( Bl)
is weaker than the condition lim,_, o, u'~Pf"(u) = BC for some B € [0, 1) and C > 0 in

[2].
REMARK 2.2. It follows from (A2) that

H ™ u) = H ' (¢ (cw)) < A1) eH " (cu) for cu > By,

H Y (cu) > AI_/ICH*l(u) foru> ¢ 'By..

REMARK 2.3. Note that condition (A2) is satisfied if for each b > 1there exists a
function h : (1, 00) — R such that

lim sup ‘@ < h(b),
u—oo  8u)
and
h(b
lim sup Q =0.

b— o0
Indeed, let ¢ > 1 and choose b > 1 so that @ < % Since limy_, o H-'(x) = o0, there
exists a constant B, > H(A) be such that

gbH () _

b
<hb)+1< - forx> B,
H () O
which implies

H'(ex)  cH (%) - bH'(x)
gH(ex)  g(H'(x)) ~ g(bH ' (x))

for x > B.. Hence, H"'(cx) < bH™'(x) for x > B,.

H(H \(cx)) = = H(bH ' (x))

REMARK 2.4. It should be noted that the assumptions

(1) (A1)—(AS) and f are nondecreasing for u large, and

(i) (B1), (A3) and (A4) are different.
Indeed, it follows from Remark 2.3 that the function g(u) = Cuf with C > 0 satisfies
(A2). Hence, it is easily seen that (B1) implies (A1),(A2) and (A5). However, (B1) does
not imply that f is nondecreasing for u large as the following example shows:

LetB €[0,1)andk € (B, 1). Let ¢ : [0, 00) — R be a continuous function such that
0<¢<k+B, ¢m=k+pBforallme N, ¢ =00n](0,1/2], andfo"";(z)dz < o0. For

0]

u > 0, define /() = uP p(u), where ¢(u) = e~/ 79 Then f > 0 on (0, 0,

uPfu)y > C asu— oo,

where C = e~ /7 %4 and
u'(w) o'W _ . -
1o =B+ o) =B—¢(w)=z(u) foru>D0.
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Since —k <z < B and z(n) = —k for all n € N, it follows that f’(n) < 0 or all n € N
and

k<1.

lim sup ulf W) <
u—oo S T

Thus, f satisfies (B1) but f is not nondecreasing on (4, co) for any 4 > 0. Note
that f also satisfies (A3) and (A4). On the other hand, a function such as f(u) =
u™" +u® In(1 4 u), where y, § € (0, 1), is nondecreasing for u large and satisfies (A1)—
(AS), but does not satisfy (B1) since there do not exist 8 € [0, 1) and C > 0 such that
uPf(u) - Casu— oo.

3. Preliminary results. Let A; be the first eigenvalue of —A with Dirichlet
boundary conditions and ¢; be the corresponding normalized positive eigenfunction,
Le [|Pillo = 1.

LEMMA 3.1. [5] Let (A4) hold. Then there exist positive numbers § and B such that
any positive solution u of (1.1) satisfies

u>38¢p, inQ fork>Ar/B.
Proof. Lemma 3.1 was proved in [5] using Serrin’s sweeping principle. Here we give
a short, new proof. By (A4), there exist positive numbers §, 8 > 0 such that
f(w) > Bu foru e (0, 9).

Let u be a positive solution of (1.1) and v =u — §¢;. Define D = {x € Q: u(x) <
8}. Then v > 0 on 0D and

—Av—Av=—Au—Au>AB—Au>0inD
for A > A;/B. By the maximum principle [8, Theorem 2], v > 0 in D. Clearly, v > 0 in
Q\D, andsov > 0in ,

le.u> 8¢ in Q.
O

LEMMA 3.2. Let (A5 ) hold and a € (0, 1). Then there exist positive numbers K and
Cy, such that

Slew) —of (u) > K(1 — @)
Jora € [ag, 1), u > C,,,

Proof. By (AS), there exist constants C, K > 0 such that
f@)—uf'(w)y> K foru>C,

which implies

0

<f(u) - K)’ _ W —f@+K _

u u?
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for u > C. Hence, if u > C/ay,

flaw—K _ fw)— K
au - u

for @ € [, 1), and therefore
flau) —af(u) > K(1 —a) foru> C/ay.
O

The next Lemma gives sharp lower and upper estimates for positive solutions of
(1.1). Let ¢ be the solution of —A¢ = 1in 2, ¢ = 0 on 9.

LEMMA 3.3. Let (Al)—(A4) hold. Then there exist positive constants Cy, Cy and x
such that any positive solution of (1.1) satisfies

CH 'MW <u< GH'W¢ inQ 3.1
for & > A.

Proof. Let u be a positive solution of (1.1). By (Al), for each ¢ > 0, there exist
constants K., K, > 0 such that

K.g(2) = f(z) = Keg(z) forz=>c. (3.2)
In particular, there exists a constant M, > 0 such that
f(e)= M. forz=>c.

Let D be an open subset of Q with D ¢ Q. By Lemma 3.1, u > 8¢ > 8, > 0 in D for
A large. Hence,

_ )»M[go in D,
—Au=Mw = {0 in Q|D.

and the weak comparison principle [6, Lemma A2] implies u > AM;,¢ in 2, where ¢
is the solution of

~ 1 inD, v
—A¢p = {O in Q\D, ¢ =0on Q2.
Let ¢, be the largest number such that u > cx¢ in ©, and ko = infp ¢. Then
u>c ko > AMsko>A inD

for A > (M(gol’cg)’1 A, which we shall assume. Hence, it follows from (3.2) and the fact
that g is nondecreasing on (A4, co) that

Ay — LK 4g(ciko) in D,
Au =) = {0 in Q|D,
which implies # > 1K 4g(c,ko)¢ in  and therefore

o, = AK4g(crko).
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Consequently,

C)Lk()
H(c ko) = MK k.
(ciko) ko) > LK ko

This, together with Remark 2.2, implies the existence of a positive constant k; such
that

ciko = H'(WK ko) > ki H (1)
for A large. Let k > 0 be such that ¢ > k¢ in . Then
u>ck¢ > CiH '(\)¢ inQ (3.3)
for A large, where C; = k(k, / ko).

Next, let ¢ be the solution of

{ —Ay =L inQ,
(3.4)

v =0 onadQ,

and let k; > 0 be such that ¥ < k¢ in Q. (see e.g. [1, Theorem 2.25], [3, Lemma
3.1]. From (3.3), (A3) and (3.2) with ¢ = A4, we deduce the existence of positive
constants M and K = K, such that

—Au<x (% + kg(u)) <A ( + kg(||u||m)> in Q.

__M
(CLH'(1)g)

By the comparison principle,

<X M K
u=< (mlﬂ‘l‘ g(||u||oo)¢>

Mk N ) |
< (m + Kg(HuHoo)) ¢ < 2.Kg(llull)p in Q (3.5)

if A is large enough. Consequently,

[l oo >
H(|lulloo) = < 21K19llos,
g(|[ulloo)

which implies

llulloo < H™'Q1K11¢l10). (3.6)
From (3.5), (3.6) and (A2), we get

. . H 20K ||¢l0
= 2Rt Q2RI = Ty < g in

for X large. This completes the proof of Lemma 3.3. O
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4. Proofs of main results. We are now ready to give the proof of main results.

Proof of Theorem 2.1. By Theorem 2.1 in [3], (1.1) has a positive solution u €
C'*(Q) for A large when f is sublinear at co and there exist constants a > 0, 8 € (0, 1)
such that limsup,_, o+ #?|f(1)| < oo and f(u) > -4 for u large. Thus, we only need to
establish the uniqueness part. Let u;, uy be positive solutions of (1.1). Since (A1)-(A4)
hold, it follows from Lemma 3.3 that for A large enough, apur < u; < o "4, in €,
where ag = C;/ C;. Let a be the largest number such that aus < u; < o~ 'u in Q and
suppose @ < 1. Then

u in Q. @.1)

lug —u| <

Suppose (A1)-(AS) hold and f is nondecreasing for u > A. Then it follows from
Lemma 3.2 that

Su) — of () = flaur) — of (uz) = K(1 — ) (4.2)

for up > max{A4/ag, Cy,} = B.
By (A4), there exists a constant K; > 0 such that

K1a2+7’
zlf'(2)] < z—l? for z € (0, B/wo], 4.3)
and
f(z) < g for z € (0, B]. (4.4)

Using (4.1), (4.3) and the Mean Value Theorem, we obtain for u; < B,

) — )] = luy — ]l ()] < lojo%zlf/(cn
L ) (@) LK~ @.5)
o ¢ u,

for some ¢ between u; and u,. Here we have used the fact that ¢ < uy/ay < B/ and
¢ > apuy. This, together with (4.4), implies

) — o )] < 1) — f)] + (1 — a)f () < % (4.6)
2
for u, < B. Since
K < 5}/2 for u, < B,
Uy

where K, = KB, we deduce from (4.2), (4.6) and Lemma 3.3 that

A — as) = () — of 1) = (K— %) (1-a)
2
K3 .
=7 (K_ (CIHI(A)qs)V) (1= me,
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where K3 = 2K + K;. By the comparison principle,

uy —ouy > M1 —a) (K¢ B (ClHK—i(A))Vw>

¢ in Q

> )\.(1 _0[) (K K3k2 ) > )»(1 —205)K

(CHY(W)

if X is large enough, where v is defined in (3.4). Consequently, there exists a number
& > « such that @u, < u; <& 'uy in Q, a contradiction with the maximality of .
Thus, « = 1, and u; = u, in Q.

Suppose next that (B1), (A3) and (A4) hold. In view of Remark 2.4, we see that
(A1)-(A4) hold and therefore Lemma 3.3 applies. We need only to show the existence
of a positive constant K > 0 such that

f(u) —of (un) > K(1 — @) for uy large. 4.7)
The rest of the proof then follows the same way as above. Let ) € (0, 1) be such
that
hl;llsolip CL/:(/g)' < a12+ﬂ. 4.8)
By the Mean Value Theorem,
l -«

[f (1) = f(u2)| = |(u1 — u2)f"(¢)] < wlf" (0],

o

where ¢ 1s between 1 and u;. Note that ¢ < up < (1/a)¢. Suppose @ > «;. Then
S) = of (u2) = f(wr) = f(u2) + (1 = @)f (u2) = (1 — )[f (u2) — & s /(2]

T )
z (1 —e)tt) [f(;“) o2f () } |

fw) _ f(w) (_2>'3 i )Mﬁ S\ [ # )
@ b \¢ ©) ="\ ©)

for @ > oy, it follows from (4.8) that

- (f(uz)_cm<;)|>
f@)  a¥f(©)

which, together with (4.9), implies (4.7) when o > «.
Next, suppose @ < «;. Then we have

B
fu) — of (up) = u’f (ff;l) _ af(l?) (ﬂ) )

1 u, \ui

(4.9)

Since

> ﬂ_ —21' é‘lf/(g)l
=T TP T

> 0,

o (f(ul) _ a}‘%&))
- " .

u‘f ;
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Since u;”f(u) — o| P15, () - C(1 —a{ ) > 0 as uy — oo, (4.7) follows. This

completes the proof of Theorem 2.1.
1
Proof of Theorem 2.2. Let v, = (C1)™ wg and note that v, is the solution of

—Av, =10V inQ,
on 0%2.

U)LZO

Note that Lemma 3.3 holds for u; and v, when A is large enough, which we shall

assume. As in the proof of Theorem 2.1, let g = C;/C, and « be the largest number
v, iIn Q. Let0 <& <1 —¢pandsuppose thate <1 —e. Let

such that qv, < u; < o™
0 <eg <1—(1—¢e)#andchoose 4y > 0 so that

czf
I > f(z) > (1 —&))Cz*  forz > A,.
— &

Hence, for v, > Ag/ag = A,
f(u) — anf > [(1 — so)Cuf — anf] > [(1 — &0)Clav,)? — anf]

= CaP[l —gy — ' PP > &, (4.10)
where 8y = Caf) [1 —& — (1 —&)'#] 4} > 0, and
cl? v’ v’ v’
1B A A A X
— vl < — _
J) = Cy < 1 — s a ~ (1 —gyaf a
C 1 1 g C 1 1 8
- - < — — <4y, 4.11
ab (1—80 al‘ﬂ)v)‘_(xﬂ (1—80 (1—5)1—ﬁ>v)‘_ ! (4.11)

where §; = C((1 —g9)™' — (1 — e)f~1)4? < 0.
On the other hand, for v, < A;, there exists a constant K > 0 such that

K
[f) —aCVf| < - (4.12)
A

Combining (4.7)-(4.9), we obtain
K+ 8047
& in 97

f(u,\)—osz,’\3 > 8y — >
v

and
K -84

fw)—a™'Cvf <8+ ———L Q.
v

A

Hence, by Lemma 3.3,
K+ 804}
+ %0 ) in Q,

— A, — avy) = )»(f(u,\) — oszf) > A (50 - (CLH-'(0)$)”
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and

K — 6847
Ay, —a ) = k(f(ux) - a_lef) <X (81 + %) in Q.
vy

Hence, by the comparison principle,

K+ 50A’1/

“ﬂ‘“”m(%“"m

1//) > M80/2)¢ in g,

and

K —814]

u _a—lv)\ <A <8l¢+ m

W) <A(61/2)¢ inQ

if A is large enough, where ¢ is defined in (3.4), which is a contradiction. Therefore,
a > 1—¢ for Alarge, ie. (1 — &), <u, < (1 —¢e) vy in Q for A large. Consequently,

1 1 1 1 .
—eCThwg < A7 Tu;, — Ciwg < Chwge(1 —e)™! inQ

for A large. In particular, APy, — CTF wg in C(Q) as A — oco. To show the C1(Q)
convergence, let i, = kﬁu,\ — Cﬁ wg. Then

— Al = 2 f() — CPIwh =h, in Q.

By writing

Cﬁw’s

I = (ﬁunﬂ% ~ s,

B

we see that there exist constants 4,, Ky > 0 such that |/;| < K, for A large and u;, > 1.

On the other hand, it follows from (A3) and Lemma 3.3 that there exists a constant
K; > 0 such that

1
|hy| < ¢—y + K
for A large and u; < 1. Thus, there exists a constant K, > 0 such that |4;| < (I;—j in

Q for A large. By [3, Lemma 3.1], there exist constants v € (0, 1) and K > 0 such
that i1, € C""V(Q) and |ii;]1., < K. Since C""(R) is compactly imbedded in C'(Q) and
i, — 0in C(Q) as A, — oo, it follows that i, — 0in C'(€) as A — oo. This completes
the proof of Theorem 2.2.
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