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On an Identity due to Bump and Diaconis,
and Tracy and Widom

Paul-Olivier Dehaye

Abstract. A classical question for a Toeplitz matrix with given symbol is how to compute asymptotics

for the determinants of its reductions to finite rank. One can also consider how those asymptotics

are affected when shifting an initial set of rows and columns (or, equivalently, asymptotics of their

minors). Bump and Diaconis obtained a formula for such shifts involving Laguerre polynomials and

sums over symmetric groups. They also showed how the Heine identity extends for such minors, which

makes this question relevant to Random Matrix Theory. Independently, Tracy and Widom used the

Wiener–Hopf factorization to express those shifts in terms of products of infinite matrices. We show

directly why those two expressions are equal and uncover some structure in both formulas that was

unknown to their authors. We introduce a mysterious differential operator on symmetric functions

that is very similar to vertex operators. We show that the Bump–Diaconis–Tracy–Widom identity is a

differentiated version of the classical Jacobi–Trudi identity.

1 Introduction

1.1 Origin: Toeplitz Determinants

Fix σ(t) to be a function of the unit circle T in C that can be written in the form

σ(t) = exp
(

∑

k>0

pk

k
tk +

p̃k

k
t−k

)

for the sets of constants {pk ∈ C} and { p̃k ∈ C}.1 This requires σ to have winding

number 0 around the origin (since log σ(t) is defined, see [BS99, pp. 15–17] for more

details). This also defines a set of constants {dk} so that
∑

k∈Z
dktk := σ(t) (i.e., the

dk’s are the Fourier coefficients of σ(t)). We will further assume that the |pk|’s and

| p̃k|’s decrease fast enough, i.e., that all of the sums
∑

k
|pk|

k
,
∑

k
| p̃k|

k
, and

∑

k
|pk p̃k|

k

are bounded.

We now construct a matrix Mn having constant entries on diagonals parallel to
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the main diagonal (Toeplitz property with symbol σ):

Mn(σ) = Mn =

















d0 d1 · · · · · · dn−1

d−1 d0 d1 · · · dn−2

...
. . .

. . .
. . .

...
...

. . .
. . .

. . . d1

d1−n · · · · · · d−1 d0

















n×n

=
(

di− j

)

n×n
.

A classical problem for Toeplitz matrices is then to consider the asymptotics of

the determinant det(Mn) as n goes to infinity. Our identity will stem from the same

question for a slightly altered version of Mn.

For λ and µ partitions of length less than or equal to n, look at

Mλ µ
n (σ) :=

(

dλi−µ j−i+ j

)

n×n
.

Those new matrices are not Toeplitz, but at least they are minors of the Toeplitz

matrix Mm(σ), for some m larger than n. This is clear once illustrated. For example,

set n := 3, m := 5, λ := (2, 1), µ := (1). We then have the matrices

M
λ µ
3 (σ) =





d1 d3 d4

d−1 d1 d2

d−3 d−1 d0



 and M5(σ) =













d0 d1 d2 d3 d4

d−1 d0 d1 d2 d3

d−2 d−1 d0 d1 d2

d−3 d−2 d−1 d0 d1

d−4 d−3 d−2 d−1 d0













.

Observe that M
λ µ
3 (σ) is the minor of M5(σ) obtained by striking its first and third

columns and its second and fourth rows. If m had been bigger, we would only have

needed to strike more rows and columns.

The asymptotics of the determinants of Mλµ(σ) are well known through the Szegö

limit theorem, so it is natural to look at the ratios

Rλµ(σ) := lim
n→∞

det Mλ µ
n (σ)

det Mn(σ)
.

These ratios have indeed been studied by two pairs of researchers, independently.

Tracy and Widom [TW02] obtained the asymptotics Rλµ(σ) as determinants in-

volving the Fourier coefficients in the Wiener–Hopf factorization

σ(t) = exp
(

∑

k>0

pk

k
tk

)

· exp
(

∑

k>0

p̃k

k
t−k

)

(1.1)

=:
∑

k≥0

hktk ·
∑

k≥0

h̃kt−k

of σ(t). The second line serves as definition of the hks and h̃ks. We will present the

full expression they obtain in equation (4.1). Meanwhile, we refer to that expression

as TWλ µ(σ).
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Bump and Diaconis [BD02] instead generalized the Heine identity. This classical

identity gives

det Mn(σ) ∼n→∞

∫

U (n)

σ(g) dg,

with σ(g) :=
∏

σ(ti), ti being the eigenvalues of g. They extended this to

det Mλ µ
n (σ) ∼n→∞

∫

U (n)

σ(g)sλ(g)sµ(g) dg,

with sλ, sµ being the usual Schur polynomials applied to the eigenvalues of g. Thus all

results presented here for Toeplitz matrices apply for twisted integrals as well (hence

the interest for Random Matrix Theory), and Bump and Diaconis derived indepen-

dently from Tracy and Widom a second expression (presented in Section 3) for the

following limit:

BDλ µ(σ) := lim
n→∞

∫

U (n)
σ(g)sλ(g)sµ(g) dg
∫

U (n)
σ(g) dg

.

Tracy and Widom’s theorems are valid under slightly more general conditions than

Bump and Diaconis’. Lyons [Lyo03] discusses this point in detail.

We now wish to state the theorem alluded to in the title of this article.

Theorem 1.1 ([BD02, TW02]) Let λ, µ be partitions. Given σ(t) such that
∑

k
|pk|

k
,

∑

k
| p̃k|

k
, and

∑

k
|pk p̃k|

k
are bounded, we have

BDλ µ(σ) = Rλ µ(σ) = TWλ µ(σ).

The proof of this theorem thus comes from two entirely disjoint papers.

1.2 Concept

Theorem 1.1 raises an immediate question. If one forgets its origins, Theorem 1.1 is

a mysterious combinatorial identity BDλ µ(σ) = TWλ µ(σ). Our main goal for this

paper is to prove this identity more directly, without relying on Toeplitz determinants

(i.e., Rλ µ(σ)).

Let ∅ be the trivial partition. We will show how this identity is a differentiated

version of the Jacobi–Trudi identity. We proceed along the following stages:

(i) Both BDλ µ and TWλ µ are functions of σ, but can also be seen as functions of

the Fourier coefficients of log σ {p1, p2, . . . , p̃1, p̃2, . . . }. Those functions turn

out to be power series in those Fourier coefficients. This is present in [BD02]

and partly in [TW02].

(ii) As explained in Section 2, the variable set {p1, p2, . . . , p̃1, p̃2, . . . } can be re-

placed by {p1, p2, . . . , p̃1, p̃2, . . . }, the union of the two sets of symmetric pow-

er sums in two separate sets of variables (say X and Y ). Notationally, this will

replace BDλ µ and TWλ µ with BDλ µ and TWλ µ.

(iii) There are two related differential operators, ∆ and ∆∆∆, that act respectively on

BDλ µ or TWλ µ and on BDλ µ or TWλ µ (see Section 2.5).
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(iv) Theorem 1.2

∆
(

BDλ ∅ · BD∅ µ
)

= BDλ µ and ∆∆∆
(

BDλ ∅ · BD∅ µ
)

= BDλ µ.

(v) Theorem 1.3

∆

(

TWλ ∅ · TW∅ µ
)

= TWλ µ and ∆∆∆

(

TWλ ∅ · TW∅ µ
)

= TWλ µ.

(vi) BDλ ∅
= TWλ ∅ (Jacobi–Trudi identity, a classical identity in symmetric func-

tion theory).

As we can see, everything is proved through analogues in symmetric function the-

ory that specialize to the objects of original interest. This can only work by ignoring

the Toeplitz determinant origin of the expressions BDλ µ and TWλ µ, but still gives a

(new) corollary about the structure of the determinants.

Corollary 1.4 ∆
(

Rλ ∅ · R∅ µ
)

= Rλ µ.

1.3 Organization of this Paper

In Section 2, we will review the notions of symmetric function theory that we need.

In Section 3, we will define BDλ µ and prove Theorem 1.2. The next section ac-

complishes the same for the Tracy–Widom side and Theorem 1.3. Section 5 will be

devoted to the proof of Theorem 1.1. We give in Section 6 a couple of noteworthy

relations on the Rλ µ’s. Finally, we discuss in Section 7 how this paper fits into a more

general program.

2 General Definitions and Notations

We summarize the definitions and notations employed in this paper.

2.1 Partitions and Symmetric Groups

A partition λ = (λ1, λ2, . . . , λn) is a finite weakly decreasing sequence of non-

negative integers. We define the weight |λ| of λ to be the sum
∑

λi . If this weight is k,

we also use the notation λ ⊢ k. If k = 0, we denote the trivial partition (0, 0, 0, 0, . . . )

by ∅. The length l(λ) of λ is the maximal i such that λi 6= 0.

There is a partial ordering on partitions: λ ⊆ µ if and only if λi ≤ µi for all i. In

a probable break of standard notation, λ(i) counts the number of λ j ’s equal to i, so

that (iλ(i))n
i=1 = (λ1, λ2, . . . , λn). In an even greater offense, if π is a permutation,

we will use π(i) for the number of elements of i’s in the cycle type of π, not for the

image of point i under π (with no risk of notational confusion in the whole paper).

As usual, partitions of fixed weight k index conjugacy classes in the symmetric

group on k points Sk. We set zλ :=
∏

i iλ(i)i!. This is the order of the centralizer of a

permutation in S|λ| of cycle-type λ.
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In order to present the formula of Bump and Diaconis, we will also need the irre-

ducible characters of the symmetric groups. For a fixed k, all irreducible representa-

tions of Sk are indexed by partitions of weight k (see the book by Sagan [Sag01] for a

friendly introduction). If λ ⊢ k, we will use χλ for the character of the representation

corresponding to λ.

2.2 Symmetric Functions

We now introduce a few functions in the graded algebras ΛΛΛ(X) and ΛΛΛ(Y ) of sym-

metric functions in countably many independent variables X := {x1, x2, x3, . . . } and

Y := {y1, y2, y3, . . . } over Q . The former can be most directly thought of as the ring

of formal sums S(x1, . . . ) of monomials in the variables xi that have the symmetry

property S(xρ(1), xρ(2), . . . ) = S(x1, x2, . . . ) for all ρ ∈ S∞. The most classic reference

on the topic is Macdonald’s book [Mac95, Sections 1.2–1.5].

We will use the notation pλ, hλ, sλ, and sλ/µ for the various interesting functions

living in ΛΛΛ(X). They will be the power sum, complete, Schur, and skew Schur func-

tions in the variables {xi} associated to the partition λ (to the skew partition λ/µ for

the latter), respectively. Similarly, we use p̃λ, h̃λ, s̃λ and s̃λ/µ for the same functions

in ΛΛΛ(Y ). We remind the reader that boldface font will be used for functions in ΛΛΛ( · ).

A tilde indicates the variable set Y , while the default (when there is no tilde) is to

assume that the variable set is X.

One can define an inner product on ΛΛΛ( · ) by setting the Schur polynomials to be

orthonormal: 〈sλ, sµ〉ΛΛΛ(X) = δλµ. The 〈 · , · 〉
ΛΛΛ(X) indicates that this inner product is

for ΛΛΛ(X). We will need the fact that the pλ’s form an orthogonal base: 〈pλ, pµ〉ΛΛΛ(X) =

zλδλµ.

We will also need to consider the algebra of symmetric functions in two sets of

variables

ΛΛΛ(X,Y ) = ΛΛΛ(X) ⊗Q ΛΛΛ(Y ).

This comes equipped with an induced inner product defined by extending linearly

〈a · ã, b · b̃〉
ΛΛΛ(X,Y ) = 〈a, b〉

ΛΛΛ(X) · 〈ã, b̃〉
ΛΛΛ(Y ).

2.3 The Derivations p⊥
n and p̃⊥

n

Let us first consider just the set of variables X.

Following Macdonald [Mac95, Example 3, Section 1.5, page 75], we define the

algebra homomorphism ⊥ : ΛΛΛ(X) −→ End(ΛΛΛ(X)) in such a way that

〈f⊥u, v〉
ΛΛΛ(X) = 〈u, fv〉

ΛΛΛ(X)

for all u, v ∈ ΛΛΛ(X). This is the adjoint of multiplication in the algebra ΛΛΛ(X).

Macdonald (following Foulkes) shows that p⊥
n = n∂pn

, and so p⊥
n is a derivation.
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Indeed, we have

〈p⊥
n (pλ), pµ〉ΛΛΛ(X) = 〈pλ, pµpn〉ΛΛΛ(X)

=

{

0 if λ 6= (n) ∪ µ,

zλ if λ = (n) ∪ µ

=

{

0 if µ 6= λ \ (n),

zλ if µ 6= λ \ (n)

= 〈zλz−1
µ pλ\(n), pµ〉ΛΛΛ(X).

But zλz−1
λ\(n)

= nλ(n), so p⊥
n (pλ) = n∂pn

(pλ), and we get our claim that p⊥
n = n∂pn

.

A similar result is of course true for ΛΛΛ(Y ) (for the adjoint with respect to the inner

product 〈 · , · 〉
ΛΛΛ(Y )).

Observe that (a · ã)⊥ = a⊥ ⊗ ã⊥, and so ⊥ is a homomorphism ΛΛΛ(X,Y ) →
End(ΛΛΛ(X,Y )).

2.4 Specializing Symmetric Objects

Let P = {p1, p2, . . . } and p̃ = { p̃1, p̃2, . . . } be sets of variables. We define VP =

Q[[P]],V p̃ = Q[[P̃]] and V = Q[[P̃ ∪ P]].

Any σ(t) = exp(
∑

k>0
pk

k
tk + p̃k

k
t−k) induces an evaluation map Eσ : V → C

obtained by replacing the variables in V by the values of the Fourier coefficients of

log σ. This is of course only convergent on a subset of V , but we will limit ourselves

to that subset.

We define algebra homomorphisms

FX : ΛΛΛ(X) −→ VP ⊂ V (resp. for Y , P̃)

pk 7−→ pk

F : ΛΛΛ(X,Y ) −→ V

pk 7−→ pk

p̃k 7−→ p̃k.

Clearly, F restricts to FX and FY , and merely forgets that the range was a vector space

of symmetric polynomials. The variables X and Y are completely lost.

For a given σ(t), we observe that the generating function for the hk is the same as

the generating function for the hk, i.e., compare Equation (1.1) with the generating

function identity

exp
(

∑

k>0

pk

k
tk

)

=

∑

k≥0

hktk.

This very classical identity (Newton’s identity describing the roots of a polyno-

mial) was already discussed in the context of Pólya’s enumeration theory in the paper
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by Bump and Diaconis [BD02]. In any case, this guarantees that

Eσ ◦ FX(hk) = hk.

Of course, a similar map Eσ◦FY : ΛΛΛ(Y ) → C exists, and both maps together induce

a third one, Eσ ◦ F : ΛΛΛ(X,Y ) → C. We will call this whole process specialization: start

with a series in symmetric functions of countably many variables, forget through F

that each symmetric function is a function itself (and thus assign a new variable for

each function), and finally replace each of these new variables by a complex number

through Eσ .

The advantage in setting up specialization in this way is that derivations are sent

to derivations by F. Thanks to Section 2.3, we know that for f ∈ ΛΛΛ(X,Y ),

k∂pk
(F(f)) = F(k∂pk

(f)) = F(p⊥
k (f)).

We can use this property to create differential operators and specialize them from one

algebra to another.

2.5 Differential Operators ∆ and ∆∆∆

Consider still V = Q[[P ∪ P̃]]. We define a (generalized) differential operator ∆ as

∆ = exp
(

∑

k

k∂pk
∂ p̃k

)

=

∏

k>0

∑

i≥0

ki

i!
(∂pk

∂ p̃k
)i ,

where (∂pk
∂ p̃k

)i is composition. Note that sums and products will be finite for any

element of V , but that the order of ∆ is not uniformly bounded on V .

We define the operator ∆∆∆ on ΛΛΛ(X,Y ) in the same way (merely replacing ∂pk
by

∂pk
). This implies the commutation relation

(2.1) F ◦∆∆∆ = ∆ ◦ F.

It follows from the previous sections that

∆∆∆ = exp
(

∑

k

p⊥
k p̃⊥

k

k

)

.

3 The Bump–Diaconis Side

Assume λ ⊢ l and µ ⊢ m. Then Bump and Diaconis define for each

σ(t) = exp
(

∑

k>0

pk

k
tk

)

· exp
(

∑

k>0

p̃k

k
t−k

)

an expression BDλ µ(σ) = Eσ(BDλ µ), where they have

BDλ µ
=

1

l!

∑

π∈Sl

1

m!

∑

ρ∈Sm

χλ(π)χµ(ρ)
∏

k>0

Fk(π, ρ),
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with

Fk(π, ρ) =







kρ(k)ρ(k)!L
(π(k)−ρ(k))
ρ(k)

(

− pk p̃k

k

)

p
π(k)−ρ(k)
k if π(k) ≥ ρ(k),2

kπ(k)π(k)!L
(ρ(k)−π(k))
π(k)

(

− pk p̃k

k

)

p̃
ρ(k)−π(k)
k if ρ(k) ≥ π(k),

and where

L(α)
n (t) =

n
∑

k=0

(

n + α

n − k

)

(−t)k

k!
=

n
∑

k=0

(

n + α

k

)

(−t)n−k

(n − k)!

is the usual Laguerre polynomial (the former expression is the standard definition,

while the latter formula is only a reindexing of it that will be more useful here).

We define BDλ µ and Fk(π, ρ) similarly.

Lemma 3.1 Let maxk = max(π(k), ρ(k)) and mink = min(π(k), ρ(k)). Then

Fk(π, ρ) =

mink
∑

i=0

ki i!

(

maxk

i

)(

mink

i

)

pπ(k)−i
k p̃

ρ(k)−i
k .

Proof We just need to expand the Laguerre polynomial in the definition of Fk while

keeping track of the degrees in pk and p̃k. The key is to observe that all the monomials

will have the correct degrees, i.e., will be pπ(k)−i
k p̃

ρ(k)−i
k for 0 ≤ i ≤ min(ρ(k), π(k)).

Proof of Theorem 1.2 When one of the partitions is trivial, the BDλ µ reduce3 to

BDλ ∅
=

1

l!

∑

π∈Sl

χλ(π)pπ and BD∅ µ
=

1

m!

∑

ρ∈Sm

χµ(ρ)p̃ρ.

We thus need to evaluate

∆∆∆
(

BDλ ∅ · BD∅ µ
)

= ∆∆∆

(

1

l!

∑

π∈Sl

χλ(π)pπ ·
1

m!

∑

ρ∈Sm

χµ(ρ)p̃ρ

)

=
1

l!

∑

π∈Sl

1

m!

∑

ρ∈Sm

χλ(π)χµ(ρ)∆∆∆
(

pπp̃ρ

)

.

Each term is of the form

∆∆∆
(

pπp̃ρ

)

=

[

∏

k>0

ek∂pk
∂p̃k

](

∏

k>0

pπ(k)
k p̃

ρ(k)
k

)

=
∏

k>0

[

ek∂pk
∂p̃k (pπ(k)

k p̃
ρ(k)
k )

]

,

2We remind the reader of our unconventional usage of π(k) for the number of k-cycles in π.
3Here we use here permutations as an index for the power sum functions. We mean by pπ the function

pλ, where λ is the cycle-type of π.
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where

[ek∂pk
∂p̃k ](pπ(k)

k p̃
ρ(k)
k ) =

∑

i≥0

(k∂pk
∂p̃k

)i

i!
(pπ(k)

k p̃
ρ(k)
k )

=

∑

i≥0

ki i!

(

π(k)

i

)

pπ(k)−i
k

(

ρ(k)

i

)

p̃
ρ(k)−i
k

= Fk(π, ρ)

by Lemma 3.1.

Summing over all terms, we have

∆∆∆
(

BDλ ∅ · BD∅ µ
)

=
1

l!

∑

π∈Sl

1

m!

∑

ρ∈Sm

χλ(π)χµ(ρ)∆∆∆
(

pπp̃ρ

)

=
1

l!

∑

π∈Sl

1

m!

∑

ρ∈Sm

χλ(π)χµ(ρ)
∏

k>0

Fk(π, ρ)

= BDλ µ.

The identity ∆
(

BDλ ∅ · BD∅ µ
)

= BDλ µ follows from

BDλ µ
= F(BDλ µ)

= F
(

∆∆∆
(

BDλ ∅ · BD∅ µ
))

= ∆
(

F(BDλ ∅ · BD∅ µ)
)

(equation (2.1))

= ∆
(

BDλ ∅ · BD∅ µ
)

,

completing our proof of Theorem 1.2.

We will need an additional lemma later.

Lemma 3.2 BDλ ∅
= sλ and BD∅ µ

= s̃µ.

Proof This is immediate from the definitions of BDλ ∅ and BD∅ µ. We get the clas-

sical expansions4

1

|λ|!

∑

π∈S|λ|

χλ(π)pπ = sλ and
1

|λ|!

∑

π∈S|λ|

χλ(π)p̃π = s̃λ

for Schur polynomials in terms of power sums, a fact that was already pointed out by

Bump and Diaconis in their paper.

4Again, we use permutations as an index for the power sum functions.
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4 The Tracy–Widom Side

Since σ(t) = exp(
∑

k>0
pk

k
tk + p̃k

k
t−k), it is reasonable to consider the functions

σ+(t) :=
∑

k≥0

hktk := exp

(

∑

k>0

pk

k
tk

)

σ−(t) :=
∑

k≥0

h̃kt−k := exp

(

∑

k>0

p̃k

k
t−k

)

.

It is a classical theorem from operator theory for Toeplitz matrices (see Böttcher and

Silbermann’s book [BS99, page 15]) that we then have

lim
n→∞

(Mn(σ+) · Mn(σ−))i j = lim
n→∞

Mn(σ)i j .

This is called the Wiener–Hopf factorization of the symbol σ.

Tracy and Widom use the Fourier coefficients hk’s and h̃k’s of σ+ and σ− to for-

mulate their result.

We are now ready to define TWλ µ for the partitions λ ⊢ m and µ ⊢ p. Let d be an

integer large enough that λd+1 = µd+1 = 0. Obviously, d = max(l(λ), l(µ)) would

do, but d could be taken larger without affecting the result. Then we set

(4.1)

TWλ µ := det
(

(

h̃i− j+µd−i+1

)

d×∞
·
(

h j−i+λd− j+1

)

∞×d

)

= det





















h̃µd
≻ h̃1−d+µd

h̃−d+µd
≻ ≻ h̃0 0 ··· 0 ···

Ã ≻ ≻ ≻ h̃0 0 ··· 0 ···

h̃µd−i+1
≻ ≻ h̃0 0 ··· 0 ···

Ã ≻ ≻ h̃0 0 ··· 0 ···

h̃d−1+µ1
≻ h̃µ1

h̃−1+µ1
≻ ≻ h̃0 0 ··· 0 ···











d×∞

·





















































hλd
hd−1+λ1

g Ã g

hλd−i+1

g Ã g

h1−d+λd
hλ1

h−d+λd
h−1+λ1

g g g g g

g g

h0 h0 g g

0 0 h0 h0

...
... 0 0 g

...
... h0

...

0 0 0 0 0

...
...

...
...

...





















































∞×d





















































.

The structure of the matrices is important. We now attempt to describe it in words.
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We have here the determinant of a product of two “half-strip” matrices of sizes

d × ∞ and ∞ × d. The entries along the main diagonal (marked by the arrows

Ã) are all of the form hλi
or h̃µi

. The first matrix (resp. second) has a privileged

direction, ≻ (resp. g), in which the indices of h⋆ (resp. h̃⋆) are decreasing. This

guarantees that the product is well defined. Each line on the first column has only

finitely many non-zero entries.5

We define TWλ µ := F(TWλ µ), and note that indeed the expression TWλ µ(σ) =

Eσ(TWλ µ) is what appears in [TW02]. We make the pedantic distinction here be-

tween TWλ µ and TWλ µ(σ) to highlight that the former is an element of V , i.e., a

power series in the variable set P ∪ P̃, and can thus be differentiated, unlike the latter

which is only a complex number.

The matrices involved in the definitions of TWλ µ and TWλ µ are obviously very

similar to the Jacobi–Trudi matrix. We remind the reader that the Jacobi–Trudi ma-

trix of dimension d × d for the partition λ (d ≥ l(λ)) is the matrix

JTd
λ =















hλ1
≺ ≺ hd−1+λ1

Ã ≺

hλi

≺ Ã

h1−d+λd
≺ ≺ hλd















d×d

,

where we respected the same conventions with arrows. We define J̃T
d

λ in a totally

analogous way (i.e., using h̃’s). It is a central theorem of the theory of symmetric

functions that det(JTd
λ) = sλ (see [Bum04, Theorem 37.1]) and is thus independent

of d (as long as d ≥ l(λ)). Similarly, det(J̃T
d

λ) = s̃λ.

We are now ready to comment on the result of Tracy and Widom a bit further.

Lemma 4.1 TWλ ∅
= sλ and TW∅ µ

= s̃µ.

Proof We will only prove the case µ = ∅. Pick d ≥ l(λ). The matrix on the left-

hand side in the definition of TWλ ∅ is then lower triangular, with 1’s on the main

diagonal. Without affecting the final determinant, we can row-reduce this matrix to

(δi j)d×∞, with δi j the Kronecker delta.

Hence we easily compute

TWλ ∅
=













hλd
hd−1+λ1

g Ã g

hλd−i+1

g Ã g

h1−d+λd
hλ1













d×d

= det
(

(JTd
λ)d+1− j,d+1−i

)

= det JTd
λ = sλ.

5This is not important, but there is also a “cascading effect” among non-zero entries. In the first matrix

for instance, the last non-zero entry on each row (i.e., h̃0) has to be (weakly) to the right of any non-zero
entry on the rows above.
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The key observation is thus that the d × d truncation of the matrix on the right-

hand side in the Tracy–Widom determinant is the anti-transpose6 of the Jacobi–Trudi

matrix, and that a determinant is not affected under anti-transposition.

We can now get started on the proof of Theorem 1.3.

Proof of Theorem 1.3 We need to compute ∆∆∆(TWλ ∅ · TW∅ µ). We have

∆∆∆ = exp

(

∑

k

k∂pk
∂p̃k

)

= exp

(

∑

k

pkp̃k

k

)⊥

.

The exponential can easily be expanded to obtain

∆∆∆ =

(

∑

ν

1

zν
pν p̃ν

)⊥

,

where the sum is over all partitions ν. We now make use of the Cauchy identity

∑

ν

1

zν
pν p̃ν =

∏

xi∈X
y j∈Y

1

1 − xi y j

=

∑

ν

sν s̃ν

and obtain our final expression:

∆∆∆ =

(

∑

ν

1

zν
pν p̃ν

)⊥

=

(

∑

ν

sν s̃ν

)⊥

.

Coming back to our original computation, we just obtained

(4.2) ∆∆∆

(

TWλ ∅ · TW∅ µ
)

=

∑

ν

s⊥ν (sλ)s̃⊥ν (s̃µ).

Observe that

s⊥ν (sλ) =

∑

µ

〈s⊥ν (sλ), sµ〉sµ =

∑

µ

〈sλ, sµ · sν〉sµ =

∑

µ

cλ
µνsµ = sλ/ν .

The last sum, which involves the Littlewood–Richardson coefficients, is precisely the

definition of sλ/ν .

Armed with this observation, we can thus rework equation (4.2) into

∆∆∆
(

TWλ ∅ · TW∅ µ
)

=

∑

ν

sλ/ν s̃µ/ν .

When ν runs through all partitions, the skew function sλ/ν runs through all d × d

minors (h j−i−νi +λd− j+1
)d×d of the matrix (h j−i+λd− j+1

)∞×d. Similarly, s̃µ/ν will run

6The anti-transpose of a matrix is its transposed along the main anti-diagonal.
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through the minors (h̃i− j−ν j +µd−i+1
)d×d of (h̃i− j+µd−i+1

)d×∞. Moreover, the minors

obtained with s⊥ν and s̃⊥ν are paired up just as in the Cauchy–Binet identity. There-

fore, we obtain

∆∆∆
(

TWλ ∅ · TW∅ µ
)

= det
(

(h̃i− j+µd−i+1
)d×∞ · (h j−i+λd− j+1

)∞×d

)

= TWλ µ,

and we are done. The proof for TWλ µ simply follows from applying the homomor-

phism F.

5 The Proof of Theorem 1.1

Proof We have from Lemmas 3.2 and 4.1 that

BDλ ∅
= sλ = TWλ ∅ and BD∅ µ

= s̃µ = TW∅ µ.

Tracing back to those lemmas, this is a direct consequence of the Jacobi–Trudi iden-

tity.

The theorem now follows. We have

BDλ µ
= ∆∆∆

(

BDλ ∅ · BD∅ µ
)

(Theorem 1.2)

= ∆∆∆

(

TWλ ∅ · TW∅ µ
)

(Lemmas 3.2 and 4.1)

= TWλ µ (Theorem 1.3).

6 Some Relations among Rλ µ’s

We now consider Rλ µ as an element of V , and immediately see that Corollary 1.4

is a consequence of the previous theorems. Two very natural properties of Rλ µ also

pop out of the presentation due to Tracy and Widom. The proofs rely only on basic

properties of determinants and the Tracy–Widom expression TWλ µ, and their state-

ment does not involve differential operators. Unlike Corollary 1.4, they could thus

be stated by evaluation at a specific σ.

Proposition 6.1 Let (r) and (s) denote partitions with just one part each, of size r ≥ 1

and s ≥ 1, and let λ, µ be partitions with max(l(λ), l(µ)) ≤ d. Then

R(r) (s)
= R(r) ∅ · R∅ (s) + R(r−1) (s−1)(6.1)

and

Rλ µ
= det

(

R(λi +d−i) (µ j +d− j)
)

1≤i, j≤d
.(6.2)
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Proof Both results follow from the same fact:

TW(r) (s)
= det

(

(h̃1− j+s)1×∞ · (h1−i+r)∞×1

)

= h̃shr + h̃s−1hr−1 + · · ·

= h̃shr + TW(r−1) (s−1)

= TW(r) ∅TW∅ (s) + TW(r−1) (s−1),

which proves equation (6.1).

For equation (6.2), we just need to observe that TWλ µ is defined as the determi-

nant of a matrix M that itself is a product of two matrices. The coefficient on the ith

row and the jth column of M is given by

Mi j =

∞
∑

k=0

h̃i−1−k+µd+1−i
h j−1−k+λd+1− j

,

where this sum is actually finite (because the terms eventually vanish).

By the reasoning of equation (6.1), we actually know that

Mi j = TW( j−1+λd+1− j ) (i−1+µd+1−i ).

Equation (6.2) then follows from the invariance of determinants under transposi-

tion and anti-transposition.

7 Conclusion and Speculation

To summarize this paper, we have reproved the Bump–Diaconis, Tracy–Widom iden-

tity (and proved Corollary 1.4) through specialization from the deeper symmetric

function identity

∆∆∆
(

sλ · s̃µ

)

=

∑

ν

sλ/ν s̃µ/ν .

We feel that this more axiomatic approach to random matrix theory integrals

through the theory of symmetric functions has a lot of potential. The backbone of

symmetric function theory is common with much of the work of Fauser and Jarvis

[FJK, FJKW06, FJ04] on group branchings (which they sometimes specialize for per-

turbative quantum field theory). In particular, the operator ∆ appears as a twisted

product or “Cliffordization” in [FJ04], and results generalizing Theorems 1.2 and 1.3

to other groups have been obtained in [FJKW06]. Our methods, however, seem to

be much simpler, mostly because the differential operator ∆ allows us to encode the

Newell–Littlewood formula in a generating series form. We thus hope the techniques

presented here will naturally expand to all classical compact Lie groups. Note that

this generalization for expressions of the type R∅λ has already been achieved (inde-

pendently) in [Deh07].
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