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Abstract

A rapid spherical harmonic calculation method is used for the design of Nuclear Magnetic
Resonance shim coils. The aim s to design each shim such that it generates a field described
purely by a single spherical harmonic. By applying simulated annealing techniques, coil
arrangements are produced through the optimal positioning of current-carrying circular
arc conductors of rectangular cross-section. This involves minimizing the undesirable
harmonics in relation to a target harmonic. The design method is flexible enough to be
applied for the production of coil arrangements that generate fields consisting significantly
of either zonal or tesseral harmonics. Results are presented for several coil designs which
generate tesseral harmonics of degree one.

1. Introduction

In Nuclear Magnetic Resonance (NMR), nuclei possessing the property of ‘spin’ are
placed in a strong static magnetic field usually produced by a superconducting magnet.
Nuclei that contain an odd number of protons, neutrons or both in combination, exhibit
nuclear ‘spin’ and a ‘magnetic moment’. Some common nuclei are 'H, 2H, 1*C, 3'P,
elc.

When placed in the strong magnetic fields, the nuclear magnetic moments interact
with the field and establish a number of energy levels (21 + 1 in fact, where I is the
spin quantum number). For 'H spectroscopy, which is the most common, I = 1/2
and the two energy levels correspond to an attempt either to align or to counter-align
with the applied field. As the molecules are in thermal motion, the resultant motion
is gyroscopic or precessional in nature around the applied field direction (1). The
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equation governing the precessional behaviour is that of Larmor,
wy = y By, (1)

where wy is the angular precessional frequency, y the gyromagnetic ratio, which is
specific to the nucleide under study, and By the applied flux density. For protons ('H),
y = 42.57 MHz/T and therefore spectroscopic investigations with resolution less than
10 Hz require the use of a magnet with purity across the sample of about 1.3 x 1073
if spectral lines at 17.6 Tesla (750 MHz) are to be distinguished. This is an extreme
requirement.

It is not possible to construct magnets with such precision. In addition, the intro-
duction of the sample into the magnet perturbs the field. In the 1950’s Garrett [6]
and contemporaries introduced a series of electromagnets to the magnet system to
attempt to reduce the impurity of the field. The electromagnets termed ‘shim coils’
are intended to generate spherical harmonics of the B, field component and thereby
exploit the orthogonal properties of these functions. Theoretically, these coils should
not interact when energised.

Typically, shim coils are designed by methods such as manipulating sets of equa-
tions in order to annul two or three undesirable harmonics or placing conductors at
specific locations to suppress source terms describing individual harmonics [1, 7-9].
Unfortunately, the resultant design of these coils was such that they interacted and
were therefore impure. The consequence of this is that the ‘shimming’ process is long
and tedious and often does not give the optimum result. In modern systems as many
as 30 shim coils may be used.

The purpose of this work was to investigate the use of large scale optimization
to design shims that are relatively pure and reduce interactions as far as possible.
Calculating the magnetic field produced by these coils is straightforward in principle,
however the important feature presented here is that the spherical harmonic represen-
tation of the magnetic field is computed directly. This by-passes the need to compute
the field itself and instead yields the coefficients of a harmonic decomposition at once.
The method is ideally suited to the main task of designing shims that generate only a
single harmonic component. Details of the algorithm are given in Section 2 and the
optimization technique for designing the required pure fields outlined in Section 3.
The more difficult of these designs are the tesseral coils (those that do not have total
azimuthal inclusion) and the design results of several such shim coils are presented.

2. The spherical harmonic calculation method

The method for calculating spherical harmonics for a given coil arrangement is
crucial when designing shim coils by optimization. We improve upon techniques
used in the past by utilising a new rapid calculation method which we outline here.
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Shim coils are constructed from a number of connected current-carrying circular
arc conductors, fashioned from bundles of wire, which we assume to have rectangular
cross-section. In NMR we are mainly concerned with the field in the direction of the
magnet axis (by convention in the z-direction) and so may ignore any conductors lying
along the z-direction. Thus, the spherical harmonics generated by an entire coil are
given simply by the sum of contributions from each circular arc conductor forming
that coil.

The field in a volume through which no current passes, and hence the field compo-
nent in the z-direction, satisfies Laplace’s equation V2B, = 0. Solving this for a field
point r, measured in spherical polar coordinates (r, 8, ¢), gives the expression for the
magnetic induction inside some sphere of radius ry centred at the origin

B.(r) =) Y r"[amm COS(MB) + by Sin(m)] Pam(cos ). @)

Here, the P,, are orthogonal solutions (order n, degree m) to Legendre’s associated
differential equation. In this expression the terms r"a,,, and r"b,,, define respectively
the size of the cosine and sine dependent spherical harmonics. Thus the coefficients
a,, and b,,, give the spherical harmonics of the z-component of the magnetic induction
field within some sphere r < ry. In practice, the sphere of radius ry is known as the
DSV (diameter sensitive volume) and it defines the region of interest inside the magnet
system where samples would be placed.

Using the orthogonal properties of (2), on the surface of a sphere with radius r,
we obtain for a,, and b,,, the formulae involving double integrals, for degree m = 0,

2 1 2r b4
a0 = rn 2 / / B, (ro) P,(cos §) sin 6d0d¢, 3)
, 4n ¢=0 Jo=0
by =0, 4
and for degreem = 1,2,3, ...,
2n+ 1) (n—m)! (7 (7
gy = o AF D) (= m) / f B, (ro) Pom(cos 8) sin 8 cos(m¢)dods, (5)
2r (n+m)! Sy Jo—o
2 @Cr+1) (n—m)!

by =13

2r 4
i) ./¢=o /;=o B, (ro) P, (cos 8) sin 8 sin(m¢)dfde. (6)

These equations provide the means to calculate the spherical harmonic components
of B, within the sphere of interest. Here the vector ry is defined in spherical polar
coordinates by (ry, 6, ¢).

From Maxwell’s equations, the magnetic induction B is given by

B(r) = curl A(r), )
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where the vector potential A, in a medium with permeability 1, may be calculated by
the generalised Biot-Savart law

J(p)
A= 4”//./v|"‘ﬂ| ' ©

Our interest lies in determining the spherical harmonics produced by a current-carrying
circular arc of rectangular cross-section, such as that shown in Figure 1, where source
points p are measured in cylindrical polar coordinates (p, ¥, z). From the constant
current density Jp directed around the arc, the current density vector in (8) may be
replaced by

J(p) = Joey. )

Translating the unit direction vector e, to the spherical polar coordinate system
(r, 9, ¢) used to describe field points, the vector potential given by (8) becomes

A(r) = A,e, + Agey + Ayey, (10
with components
153 9
A, =B / / sin S'"(¢ w)pdzdpdlp, an
4r ¥=yn Jp=n Jz=¢ |r -
J 2 cos@sin
=K °/ / / ("’ "’)pdzdpdw, (12)
V- Ir -
J Z cos
Ay = B0 f / (¢ 1"),odzdpdzp. (13)
4 V=t Jp=n J 1=

The distance between a field and source point is measured by

Ir—pl=va>+p2+y?
= /r2 + p?+z2 —2rzcos® — 2rpsinf cos(p — ), (14)
" where it is convenient to define
o =7z—rcosb,
B = rsin@sin(¢ — ¥),
y = p —rsinfé cos(¢ — ¥). (15)

The singularity at r = p does not present a problem in this case, as the radius of the
DSV, on which field points lie, is somewhat smaller in magnitude than the radii of the
source conductors.

An expression for B, can be obtained by applying (7) which, translated to the
Cartesian coordinate system, yields, for the field component in the z-direction,

cosf A, A, . 0
B,(r) = —ind ( (sin8A,) — 7 ) ( 2% E(rAd’)) . (16)
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FIGURE 1. A typical circular arc with rectangular cross-section. Indicated are a source point p, measured
in cylindrical polar coordinates, and field point r, measured in spherical polar coordinates.

This completes the equations required to describe the spherical harmonics produced
by the circular arc conductor indicated in Figure 1.

Combining (3)—(6), (11)—(13) and (16) gives, for the coefficients a,,, and b,,, the
expressions, for m = 0,

wey Cn+ 1)
o LR (0 - e+ ), a7

bnO = Os (18)
andform=1,2,3,.

Ao = 7 0

(n+1) (2” 1) (n —m)! /LJO ) @) 3)
m Cl-C2+CY), 19
a 21 (n+m)! 4m (Com m m) (19
b 0_("+l) Rn+ 1) (n-m)! LLJO (D(l) D(Z) D(S)) (20)

2 (n+ m)! 4
where

e[ f3
" 0|

¥2
sinO/ cos(¢p — ¥)F(ro, 0, 95 ) dl//]
1

=y
X cosGP,,,,, (cos 6) cos(mep)db do, 21
V2
cm/f '—F,B,;d]
o Jomo 7% i w=¢|sm(¢ Y)F(ro, 0, ;) dy
X P,.(cos8)cos(mp)dlde, 22)
Y2
o = f f [r [ cos(¢—¢)F(r,9,¢;¢)dw]
—Oar y=y r=ry

x sin? @ P, (cos @) cos(mep) d d¢. (23)
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By replacing cos(m¢) with sin(m¢) in (21)-(23), the expressions D,,, in (20) are
obtained. Also defined here is the function

n 2

F(r,0, ;) = / / _pdudp 24)
It is possible to evaluate the integrals in p, ¥ and z explicitly, and details are shown
in [10]. The two remaining integrals in ¢ and 6 are evaluated numerically. Gauss-
Legendre quadrature is used for the numerical integration, with thirty points in each
integration parameter sufficient to maintain a high level of accuracy. In this instance,
Gauss-Legendre quadrature proves more accurate than the periodic trapezoidal rule,
since the integrands involve logarithms and arctangents which erode the accuracy of
the trapezoidal rule.

As has been demonstrated previously in [10], the method shown here for calculating
the spherical harmonics is both significantly faster and more accurate than the tradi-
tional alternative. This is because the field component B, is never computed explicitly;
rather, the coefficients a,, and b,,, of the harmonic expansion are obtained directly.
This makes our method ideal for incorporation into an optimization procedure based

_on designing shims that give a pure field with respect to a particular harmonic.

3. The design procedure

The simulated annealing optimization technique is used for design, with the po-
tential to find the global minimum of an error function. This occurs by allowing
the optimization procedure to accept an occasional increase in the error function and
hence the search path may escape from local minima. As the search proceeds, the
number of accepted positive error excursions is reduced as described by some anneal-
ing schedule, with the intention that the system descends into a frozen state at the
global minimum. The use of simulated annealing has been successfully demonstrated
for a number of MR design applications (see [2-5]).

For the design problem presented here, a pattern of circular arc conductors is
allowed to move randomly within a defined length (radial displacement is fixed) and
the spherical harmonics generated by each arrangement calculated. Having developed
a method for quick and accurate calculation, it is convenient to use harmonic values
directly within the optimization procedure. For a given coil arrangement constructed
from a number of arc conductors, we attempt to minimize all undesirable harmonics
in relation to the particular harmonic that we wish the arrangement to produce, with
all measurements taken on the surface of a sphere of radius ry centred at the origin of
the design. This problem is described by the error function

_ Z(kxja,'zj + lljbizj)

E
laz,,

, (25)
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where a,, is the amplitude of the desired cosine dependent harmonic, a; and b;; are
all other harmonics (that is, a; # a.») and k;, I; are weighting factors for individual
harmonics. In order to generate the sine dependent harmonic of corresponding order n
and degree m, the design is rotated by an appropriate angle about the z-axis. By taking
the cube in the denominator, greater emphasis is placed on the amplitude of the target
harmonic. This helps avoid poor designs that generate small fields by overlapping
conductors with opposing current directions, which can often give small error function
values. Constraints are easily enforced, by assigning the error function a large value
when a particular arrangement is deemed outside of an acceptable range, and hence
avoiding the computationally intensive need to calculate the harmonics.

Shim coils typically take the form of a number of conducting loop or saddle
coils, with symmetry through the planes passing through the origin in each Cartesian
coordinate. The direction of current flow is either symmetric or antisymmetric through
the z = O plane, depending upon the order and degree of the targeted spherical
harmonic.

In order to calculate an optimal shim design, the required number of conducting
arcs are defined with the proper symmetry. The choice of the number of loop or
saddle coils is generally left to the designer, although including more components
generally produces improved results. However, there are some restrictions placed on
the components forming a coil depending upon the order and degree of the target
harmonic. For example, zonal harmonics (degree m = 0) are produced by an array of
loops, while generating cosine dependent tesseral harmonics of degree m = 1 requires
saddle arrangements with current symmetry through the x = 0 plane. As a general
rule, more components are required and there is an increased difficulty in producing
a successful design, mainly due to the larger number of optimization parameters and
the decreasing amplitude of harmonics, as the order and degree increase. Roméo
and Hoult [9] present a general overview of the type of designs required to generate
spherical harmonics of various order and degree.

From (21)-(24) we can obtain a useful expression relating the azimuthal inclusion
of an arc conductor to the degree of the generated spherical harmonics. For degree
m > 0, replace ¢ with ¢+ in the expressions (21)—(23). Considering the periodicity
of the integral for ¢, the ¥ integral can be performed exactly to give

Cc) = —/ f —[sm9cos¢F(r0,9 ¢:0)]
¢=0 J o= 089

x {sin[m(¢ + ¥1)] — sin[m(¢ + )]} cos 8 P,,,(cos 8)dEd ¢, (26)

o = _] / —[sm¢>F(ro,9 ¢.0)]
2]

x {sin[m(¢ + ¥)] — sin[m(¢ + ¥)]} Pam(cos 6)dOd¢, 27
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2 T
co =2 / f 2 reos 6 F (1,0, $;0),-,
m $=0 J6=0 3r
x {sin[m(¢ + V)] — sin[m(¢p + ¥,)]} sin® P, (cos 0)d0d¢. (28)
The common expression sin{m(¢ + ;)] — sin[m(¢ + ¥,)] vanishes when
Y2 — Y =2nk/m, (29)

where m is the degree of a spherical harmonic and k an integer. By (29) it is possible
to choose the azimuthal inclusion v, — ¥, such that spherical harmonics of certain
degrees are not generated.

Once a layout has been defined, it becomes necessary to adjust its components in
order to best generate the spherical harmonic of interest. Our method is a two-stage
process. The initial optimization stage allows the position of conductors forming
each loop or saddle arrangement as well as the current within each arrangement to
vary, while maintaining the proper current and position symmetry. Every conductor
in the coil has the same rectangular cross-section, so the result determines a ratio
which describes the required number of turns of wire forming each loop or saddle
‘arrangement.

The design is analysed, considering any overlapping or unnecessary components,
and the layout finalised. A second optimization stage further refines the conductor
positions, while the number of wire turns (defining the cross-section of each conducting
arc) remains fixed. It is often useful to restart the optimization during either of the
two design stages in order to help avoid local minima.

4. Results

To demonstrate the method presented in this work, several designs for producing
cosine dependent tesseral spherical harmonics of degree one have been optimized
and analysed. Figure 2 illustrates the typical form of shim coils which generate such
harmonics. These shims produce fields consisting only of cosine dependent harmonics
with odd degree. Current symmetry or antisymmetry through the z = 0 plane result
in harmonics of only odd or even order respectively. Harmonics do not exist when the
degree is greater than the order (a property of associated Legendre functions) and in
general the amplitude of the harmonics decreases as the order and degree increases.
Therefore, excluding the undesirable harmonics of degree one, the harmonics of degree
three are responsible for the greatest contamination in the generated field. By (29) it
can be seen that an azimuthal inclusion of 120 degrees for the arc conductors forming a
shim eliminates all harmonics of degrees 3, 6, 9, etc. By considering these properties,
only the necessary harmonic calculations need be performed within the optimization
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-
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(@ (b)
FIGURE 2. Shim coil designs constructed from symmetric arrangements of saddle coils which generate

fields described primarily by tesseral spherical harmonics of degree one. The arrows indicate the current
direction required to generate harmonics of (a) odd order and (b) even order.

process. For the shim designs considered here, all contributing harmonics up to order
and degree seven are indicated in the tabulated results.

Once complete, a design may be scaled to any appropriate size. This allows
measurements to be taken in reference to a general unit length. For the first design
stage, the mean radius of the arc conductors had length one and other measurements
were multiples of this. The conductors had a square cross-section with sides 1/1000
and all spherical harmonic measurements were taken on a sphere with radius 1/3.
The z-positions of the conductors were restricted to a range within a displacement
from the z = 0 plane of 2.5 times the conductor radius. In each symmetric set of
saddle coils the current was allowed to vary between +1. The number of iterations
used in each application of the optimization routine varied from one design to the
next, generally depending upon the number of optimization variables required for
each design. Figure 3 shows a typical error function descent to an optimal position.

Shim designs which generate spherical harmonics of order one or two and degree
one have been optimized. These shims are commonly called by the names X for the
order one, degree one coil and ZX for the order two, degree one coil (see [3]). Two
shim designs for each target harmonic, based on the layouts indicated in Figure 2,
were considered. Harmonic results are shown in Table 1. For the X coil, the 8 arc
design shown in Figure 2 (a) has arc conductors with current magnitude 1.0 at z-
displacements .38 and 2.5. The 16 arc design, which introduces a second set of saddle
coils, has conductors with current .5 at displacements .22 and 1.38, and current 1.0 at
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FIGURE 3. A typical error function path for shim coil design optimization. The example shown here is
-for the first optimization of the four arc ZX shim (order two, degree one) described in the text, with the
results shown in Table 1.

displacements .82 and 2.29. The 4 arc ZX coil shown in Figure 2 (b) has conductors
with current 1.0 at displacement .68. The 8 arc ZX coil, constructed from two pairs
of the saddle coils, has conductors with current .2 at displacement .46 and current 1.0
at displacement 1.16. Optimization took several hours on a multi-user Sun Ultra 5.

These results can be used as a starting point for more specific designs. Current
ratios are used to define the number of wire turns forming each set of saddle coils and
the conductor positions scaled to a size more useful to describe a final design. The
number of turns of wire determines a fixed cross-section for the arc conductors, with
details such as the specific wire layering to be considered. The z-displacements are
refined by further optimization.

To demonstrate the process we consider the 8 arc X shim and 4 arc ZX shim. For
both shim coils the number of wire turns forming each arc conductor is the same for
every conductor. To allow some variation in possible cross-section, each conductor
is formed from two turns of wire in one or two radial layers. The inner radius of
each conductor is 5 cm and the wire diameter 2 mm. Thus a two turn layering gives
a rectangular cross-section with sides 4 mm in the r direction and 2 mm in the z-
direction. These values are reversed when the wires are layered side by side in the
z-direction for one radial layer. All harmonic measurements are taken on a sphere
with radius 1/3 the inner radius of the conductors. Optimization occurs only in the
z-displacements (current need no longer be considered) and refined values for the
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TABLE 1. The spherical harmonics generated by the shim coil designs described in the text, expressed as
a percentage of the target cosine dependent harmonic. The number of circular arc conductors forming
each coil is indicated in brackets.

NMR shim coil design

Harmonic Percentage of 1,1 Percentage of 2,1
order, degree | X shim (8) | X shim (16) | ZX shim (4) | ZX shim (8)

1,1 100.0 100.0 - -
2,1 - - 100.0 100.0
3,1 .0270 .0499 - -
4,1 - - .0049 .0600
5,1 .3082 .0009 - -
55 .0002 .0002 - -
6,1 - - .2999 .0000
6,5 - - .0000 .0001
7,1 .0354 .0001 - -
7,5 .0000 .0000 - -
7,7 .0000 .0000 - -

z-displacements obtained. With the scaling from the original displacements in mind,
the z-displacements for the X coil arcs shown in Figure 2 (a) are 2.0 cm and 12.8 cm
for the one layer conductors, and 2.0 cm and 12.7 cm for the two layer conductors.
For the ZX coil shown in Figure 2 (b), both the one and two layer designs have arcs
with z-displacement 3.5 cm. The spherical harmonics generated by these designs are
shown in Table 2.

5. Conclusion

We have demonstrated the use of simulated annealing optimization in conjunction
with our rapid spherical harmonic calculation method for the design of NMR shim
coils. These coils are designed to generate magnetic fields described by harmonics of
particular order and degree with a minimum of impurity. Our method proves flexible
enough to design shim coils that produce primarily spherical harmonics of any order
and degree. Also, the rapid and accurate harmonic calculation method allows as many
harmonics as required to be incorporated into the optimization process. This method
need not be restricted to shim coil design and may be easily adapted to other problems
in NMR and other areas.

Several shim coil designs have been described in this paper and the contributing
spherical harmonics for the optimized designs shown in Tables 1 and 2. From Table 1
it can be seen that the contaminant harmonics are generated in amounts less than 1%
of the target harmonics. This figure is less than 0.1% when the more complex designs
involving an increased number of conducting arcs were considered. Designs have
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TABLE 2. The spherical harmonics generated by the wire layered shim coil designs described in the text,
expressed as a percentage of the target harmonic. The number of wire layers is indicated in brackets.

Harmonic Percentage of 1,1 Percentage of 2,1
order, degree | X shim (1) | X shim (2) | ZX shim (1) | ZX shim (2)
1,1 100.0 100.0 - -

2,1 — - 100.0 100.0
3,1 .0281 .0299 - -
4,1 - - .0041 .1860
5,1 .2825 2648 - -
55 .0002 .0002 - -
6,1 - - 2757 .2558
7,1 .0311 .0282 - -

been scaled to a size useful for real life NMR applications. Several wire winding
patterns have been compared and the results demonstrate the need for consideration of
such details as specific wire layering. Furthermore, we note the purity of harmonics

_for these designs will suffer in practice, especially for designs with few wire windings,
due to physical limitations in construction.
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