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ABSTRACT. Two models are presented for the 
formulation of abrasion and basal drag due to rock-rock 
friction (debris drag) for the case of sparse debris entrained 
in the basal layers of a temperate glacier resting on a 
bedrock bed. The first model is formulated in terms of 
average basal melting rate, va' and the concentration, C, of 
basal debris fragments which make intermittent bed contact. 
The second model is formulated in terms of vn' the 
component of ice velocity normal to the bed flowing around 
rock fragments contacting the bed, and Cc' the 
concentration of debris actually in contact with the bed. 
The relationship between the two models is given for the 
case of a sinusoidal bed. Generalizations are discussed as 
well as potentially important physical processes which remain 
to be investigated. 

LIST OF SYMBOLS 

This list does not include symbols which are only used 
where they are first defined. 

a 
a 
A 

C 

d 

F 
k 
R 
R 
R. 

Amplitude of sinusoidal bed 
Local abrasion rate 
Abrasion rate averaged over a bed 
wavelength 
Concentration (projected area/ unit area) 
of local debris which makes intermittent 
bedrock contact 
Debris concentration which is actually 
in bedrock contact averaged over time 
t:J = Q/ ub' See Equation (17) 
Spacing of spherical debris fragments in 
square array 
Rock-rock contact force normal to bed 
k = 2rr/ Q 

Wavelength of sinusoidal bed 
Radius of spherical debris fragments 
A transitIOn radius = 0.1 m if n 
3 x I012Pas 
Basal sliding velocity 
Average basal melting rate at a point 
on the bed as the point travels 
distance Q. 

Basal melting rate due to geothermal heat 
Component of ice velocity normal to 
the bed 
Basal melting rate with regelation 
neglected 
Average of vn over interval X 1X 2 of 
rock-rock contact 
Average of vn over stoss surface 

Defined in Figure I 
Defined by Equation (3) 
Basal shear stress averaged over 
wavelength R 
Debris-drag stress averaged over 
wavelength R, computed from models 
developed in paper 
Debris-drag stress computed from Hallet's 
model 
Viscosity of basal ice 
Coefficient of rock-rock friction 
See Figure 3 

INTRODUCTION 

An analysis of the basal shear stress (debris drag) and 
abrasion produced by occasional rock fragments (sparse 
debris) entrained in the basal layer of temperate glacier ice 
was given by Hallet (1979, 1981). His analysis was restricted 
to a Newtonian ice rheology and utilized the non-separated 
flow results of Nye (1969) which assume slow sliding over 
a wavy bed with a relief of small slope. Hallet's analysis is 
appropriate to the case of a hard bed or bedrock bed . 

The important element identified by Hallet (1979), 
which is the dominant cause of both basal debris drag and 
abrasion, is the flow of ice towards the bed and past 
ice-entrained rock fragments which are in bed contact. This 
phenomenon presumably occurs on stoss slopes (Hallet, 1981, 
p. 25) and is due to a combination of regelation and creep 
(Nye, 1969, equation (32)). Hallet's general approach to 
sparse debris drag and abrasion supplants that of Boulton 
(1974) which must be rejected. 

Two models of debris drag and abrasion will be 
presented. First, an approach will be taken which is 
independent of Hallet's. Secondly, an approach similar to 
that of Hallet will be presented but which offers different 
results and conclusions than those obtained by Hallet. Both 
models will consider an idealized situation: plane 
non-separated flow over a hard sinusoidal wavy bed with 
equally spaced uniform spherical rock fragments entrained in 
the basal ice. Qualitative comparisons will then be made 
between these models and Hallet's. Generalizations of the 
models follow. Finally, a discussion of certain, possibly 
important, elements which are not considered here or in 
Hallet's theory will be presented. 

DEBRIS DRAG RELA TED TO UNIFORM BASAL 
MELTING 

The first model considers the spatially averaged friction 
force exerted by the bed upon a rock fragment which 
makes periodic bed contact. It will be shown that it is 
unnecessary to know where rock-bed contact occurs. The 
important factor is the average melting rate of basal ice. 
Throughout, assumptions will be denoted by A I, A2, etc. 

A I. A Newtonian ice rheology is assumed. 
A2 . The wavy bed is sinusoidal in the direction of ice 

flow with wavelength R. 
A3. Assume that the slope of the bed roughness is 

sufficiently small that the sliding velocity may be 
expressed as ub' a constant, approximately equal 
to the x-component of sliding velocity (Fig. I). 

A4. Assume no ice-bedrock separation. 
A5. Uniform spherical rock fragments of radius Rare 

equally spaced in the basal ice in a square array, 
distance d apart where d > 2R (Fig. 2). 

A6. The abrasion of the rock fragments is neglected 
and no additional fragments are created by 
quarrying. 

A 7. The component of the fragment velocity relative 
to and parallel to the bed is assumed to be the 
ice-sliding velocity ub' Thus, the component of 
fragment velocity parallel to the bed and 
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relative to the ice is neglected. (See Hallet (1981, 
p. 25) for amplification.) 

A8 . Periodic conditions, period R, exist for the ice 
flow, basal thermodynamics, and distance of the 
rock fragments from the bed. Thus, an 
individual rock fragment is in bed contact over a 
similar interval x1x2 (Fig. I) for each wavelength 
of the bed. One needs to analyze the situation 
only for one particular bed wavelength. 

A9. It is assumed that ice straining does not cause 
motion of the centre of a rock fragment relative 
to the ice when the fragment is not in bed 
contact. 

A I 0. Neglect the settling velocity of ice of a rock 
fragment due to gravity when the fragment is not 
in bed contact. 

All. Neglect the force exerted by bedrock upon a 
fragment due to the difference in density between 
rock and ice, the buoyant weight. 

None of these assumptions is inconsistent with HaBet's 
(1979, 1981) model, and AI, A3, A4, A6, A7, A9, AIO, 
and All were either explicitly or tacitly assumed by him. 
Various of the assumptions will later be examined and some 
will be relaxed . 

y 

Fig. J. Non-separated flow over a sinusoidal bed. A debris 
fragment is in bed coli/act on interval x 1x2 and its base 
follows the dOlled path outside this interval. Sliding 
velocity ub is uniform and time independent. 
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Fig. 2. Basal debris in a square array of uniform spheres. 

A convenient debris system is the four quarter-spheres 
within the dOlled square. 

Adopting the system rather than control volume point 
of view (Streeter and Wylie, 1981, p. 88), let va be the 
temporal averaged melting rate at a point on the base of 
the ice as the point moves through wavelength distance R 
relative to the bed. In the absence of basal debris and 
assuming basal ice of uniform properties, va would 
necessarily be constant over the bed because of the periodic 
conditions. With basal debris present, va will likely not be 
uniform, primarily because of localized energy dissipation 
produced by rock-rock friction. This should increase the 
melting rate near basal debris fragments, an effect which 
was not considered by HaBet and will be neglected here. 
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A 12. va is uniform over the base. 

There are contributions to va from geothermal heating 
and what is usually termed sliding friction (R6thlisberger, 
1968). As defined, va may be expressed as 

(I) 

where p is the density of ice, H is the heat of fusion, Vg 
is the average melting rate over wavelength R due to 
geothermal heat, and Tb is the average basal shear stress 
over R. 

From assumptions A6, A8, A9, AIO, and A12, it 
foBows that, over wavelength R, the average speed of 
penetration of a rock fragment into basal ice (or, 
equivalently, the average speed that ice moves past the 
fragment towards the bed) is va' Although ice only flows 
past the fragment while the fragment is in bedrock contact, 
from the linearity implied by A I the average force exerted 
by bedrock upon the fragment, normal to the bed, as the 
fragment traverses a wavelength is 

(2) 

(3) 

J\R was originally given by Watts (unpublished, p. 30); the 
introduction of a bed-influence factor f was made by Hallet 
(1981, equation (2» . n is the viscosity of basal ice and R. 
(Watts, unpublished, p. 30) is a transition radius analogous 
to the transition wavelength used in glacial sliding theory 
(Nye, 1969). 

Equation (2) clearly shows the importance of the 
uniform basal melting rate va' If va is assumed to be zero, 
there can be no rock-rock contact under the above 
assumptions. There could, however, be transient contact. 
Consider, for example, a rock fragment which is placed in 
bedrock contact on a stoss surface by an outside agency. 
The centre of the fragment would be pushed into the ice 
on the stoss surface. While traversing the subsequent lee 
surface, the fragment would be covered by regelation ice. 
On a sinusoidal bed the fragment would never return to 
bedrock contact, assuming that va = O. The condition 
va > 0 is necessary in order to return rock fragments to the 
bed after losing bedrock contact. This point will be 
amplified later. 

By A5 we may define a basal debris concentration C 
in units of projected area/ unit basal area, as 

(4) 

Note that C is not a measure of debris actually in bedrock 
contact at any fixed time, but rather a measure of the 
debris which periodically contacts bedrock. 

If IJ. is the coefficient of rock-rock friction, the 
debris-drag stress, T d' is 

(5) 

having used Equations (4) and (2). Note that Td must be 
interpreted as being averaged over a bed wavelength and 
also averaged over time !:J = R/ ub' On other length- and 
time-scales there are fluctuations in T d ' 

DEBRIS DRAG ON INTERVALS OF ROCK-ROCK 
CONTACT 

Hallet (1979) approached debris drag by considering the 
average rock-rock contact force on stoss surfaces, assuming 
contact on the entire stoss surface. A more general approach 
of this nature is taken here with very different results than 
those obtained by Hallet. 

Let the sinusoidal bed relief be given by 

y(X) asin kx (6) 
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(Fig. I), where k ; 2TI/ R. Under assumptions A I, A2, A3 , 
and A4, the x and y components of ice velocity, as given 
by Nye (1969, equation (32», are 

where 

U ; ub + UbaBk2ye-kYsin kx 

v ; ubflBk(J + ky)e-kycos kx 

(7) 

(8) 

(9) 

k. was given by Nye (1969), p. 452) as 0.1 cm-I. By A3 
and A4, it is assumed that ak « I. 

The component of ice velocity normal to the bed, 
positive if towards the bed, is from Equations (7) and (8) 

vn = ubak[1 - B(J + ky)e-kY]coskx + vm(x) (10) 

where vm(x) is the local contribution to the melting rate 
due to geothermal heat and sliding friction. In general, 
vm(x) is not equal to va but they have the same average 
value over wavelength R, even if AI2 is not invoked. 

For simplicity of illustration, we will consider only the 
limiting case of regelation-dominant flow. This corresponds 
to B .... O. For this case, Equation (10) reduces to 

(11 ) 

and regelation melting on stoss surfaces alternates with 
refreezing on lee surfaces. The ice velocity normal to the 
bed is now independent of y. Provided R is small compared 
with R, we may assume that the ice flow is uniform around 
the sphere when it is in bedrock contact and that the ice 
velocity towards the bed relative to the sphere may be 
computed from Equation (11) by letting x be the coordinate 
of the centre of the sphere. 

The interval X l x 2 (Fig. I), where a rock fragment is in 
bedrock contact, must now be determined. A necessary 
condition for contact is vn ~ O. If vn < 0, the center of 
the fragment is being carried away from the bed. Thus, 
point x 2 (Fig. I), where rock.ock contact ceases, is 
determined by the condition 

Since vm(x) is difficult to determine, in order to exhibit the 
qualitative nature of the results, we make a final 
assumption. 

x 2 is then given by 

Point xl (Fig. I), where the fragment re-establishes 
contact with the bed, is determined by the condition that 
the total distance that the fragment center is pushed into 
basal ice, while in bedrock contact on x I X 2 ' equals vaR / ub . 
Here, vaR / ub is the known penetration distance over 
wavelength R calculated from the first model. Note that by 
A9 and A I 0 there is no motion of the fragment relative to 
the ice except on interval x l x 2. Thus, xI is determined by 
the equation 

t(x2) 

J vn(x)dt 

t(x I ) 

After substitution from Equation (11), and using AI3, we 
obtain 

(14) 

Shoemaker: Formulation 0/ basal debris drag 

It is easy to see from Equations (13) and (14) that both 
x/R and x 2/ R depend only the parameter vaR / 2TIuba. 

Throughout the previous derivation we have made the 
tacit assumption that the flow field around the rock 
fragment while in bed contact does not alter the velocity 
field given by Equation (10). This assumption should be 
valid if R « R but, if Rand R are of the same order of 
magnitude, Equation (10) loses accuracy. 

2-.---------------------------r----. 

o 

2X1 d 
2 2x2d 
3 2(X2-X1 )1£ 

-1 .0 -t----,-----,---.---,-------'t-----j 

o 0.2 0.4 0.6 0.8 1.0 1.2 

Y 
Fig . 3. 2x/ R, 2x2/R, and 2(x2 - xl)/R computed from 

Equations (13) and ( 14) versus 1/1 = vaR / 2TIuba. 

Figure 3 summarizes results for the variation of contact 
points xl'x2 , and contact interval x l x 2 as a function of 
parameter 1/1 = va R / 2TIUba. At the limiting state 1/1 .... 0, the 
contact interval reduces to a single point at x = R/ 4 
(Fig. I). Since ub is finite, this limiting state can only be 
attained if va R .... O. However, there is no physical basis for 
expecting that va can ever be zero. The condition 
vaR ; 2TIUba corresponds to a critical state. For this 
condition, Equation (13) gives x 2 ; R/ 2 and Equation (14) 
gives xl = -R / 2, so that rock.ock contact occurs 
everywhere. Equations (13) and (14) do not apply if 1/1 > I 
but it is clear that (x2 - x l )/ R = I as shown in Figure 3. 

Consider Figure 3 from the point of view that C, "R' 
and va are fix~d with a varying . Then T d is fixed but the 
average force F over contact interval x I X 2 is proportional to 
1/ (x2_- xl). Thus, as a increases, 1/1 decreases towards zero 
and F increases. 

Insight is gained by considering the balance of debris 
flux normal to the bed computed separately from the two 
models. Consider a basal debris system consisting of the 
parts of the four spheres which are inside the square shown 
in Figure 2 . From the definition of va ' the temporal 
averaged flux of the system, positive if into the basal ice, 
of projected debris area per unit basal area is 

( 15) 

where C is defined by Equation (4). The flux is measured 
relative to the bed. The contributions to cl> from individual 
rock fragments are positive over interval X l x 2 and are 
nowhere negative in view of A9 and AID. Therefore, cl> can 

also be computed from the second model by considering the 
flux of individual fragments over the interval of contact 
X I X 2• 

Let v nc be the average of vn 
the contact interval x

I
X

2
. Then, cl> 

form 

from Equation (J I) over 
can be expressed in the 

(16) 
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where the factor (x 2 - x l )/ R is required because the flux is 
averaged over wavelength R, not over (x2 - xl). It is 
convenient to think of C(x2 - x l ) / R as the basal debris 
concentration which is, on average, actually in contact with 
the bed. Thus, define 

(17) 

as the effective or contact-debris concentration. It is clear 
from Equations (17), (13), and (14) that Cc is not a 
constant but depends upon the parameter 1/1 = vaR/2rruba. 

Assuming that vm(x) = va in Equation (I I), it is 
possible to compute vnc in Equation (16) by integrating 
Equation (11), assum ing that xl and x 2 are known. 
Alternatively, v nc may be obtained by equating Equations 
(IS) and (16). Thus, 

(I Sa) 

By using Equation (17), this becomes 

(ISb) 

Equation (ISb) is a statement of debris-flux balance. The 
term v nlYCc is the debris flux directed into the ice on the 
contact Interval X l x 2. In magnitude, the term vaC may be 
interpreted as the debris flux being returned to the bed by 
uniform basal melting . Note that, if vaR /2 llUba > I, both 
Equations (IS) reduce to va = vnc. 

Equations (IS) link the two models. We see, for 
example, that the debris-drag stress in Equation (S) may be 
written as 

( 19) 

COMPARISON WITH HALLET'S MODEL 

Hallet's (1979, 19SI) approach is similar to the second 
model presented here. However, he assumed that there is 
rock-rock contact everywhere on stoss surfaces, regardless of 
the value of the parameter va R / 2rruba. In fact , va is 
neglected in his analysis. Within the context of the 
regelation - only example considered here, a debris-drag 
stress predicted by Hallet's model could be obtained by 
setting x 2 - Xl = R/ 2, so that Cc = C/ 2 from Equation 
(17). When this value of Cc is substituted into Equation 
(19) along with vns in place of vnc' we obtain 

(20) 

Here, vns is the average velocity normal to the bed in stoss 
surfaces with v m(x) deleted. 

Upon integrating Equation (11) from -R / 4 to R/ 4, we 
obtain 

(21 ) 

and Equation (20) becomes 

(22) 

The ratio of the debris-drag stress from Equations (S) and 
(22) is therefore 

(p-1H-1TbUb + vg)R 

2uba 

where Equation (I) was employed. 

(23) 

As a rough qualitative comparison of the debris-drag 
stresses predicted by Hallet and the present author, set 
Vg = 0 in Equation (23). Then, if Tb = 105 Pa, we obtain 
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Td/ TdH = 1.6 x 10-· R/ a . The parameter R/ a is subject 
only to the restriction that R/a» I. It is clear that 
T d/ T dH can have a wide range, from the order of 10-2 to 
values much greater than unity as a smooth bed is 
approached. 

The physical reason for the lack of agreement between 
the two models can be understood with the aid of Figure 3. 
It is seen that if 1/1 « 1 then 2(x2 - x l )/ R « I . For this 
case, since HaBet assumed that 2(x2 - x l )/ R = I, his model 
overestimates debris drag. 

At the other extreme, as a smooth bed is approached 
and R/ a increases, 1/1 eventually exceeds the critical value 
1/1 = I . In the range 1/1 ~ I, the rock fragments do not lose 
bed contact so that 2(x2 - x l ) / R = 2, instead of I as 
Hallet's model assumes. However, the primary reason why 
T d/ T dH > I for this case is that the influence of va 
dominates the influence of the cosine term in Equation (11) 
upon T d. But, Hallet's model does not include va . (Note 
that, for this case, the cosine term in Equation (11) does 
not contribute to vnc and hence does not affect T d.) 

Hallet's (1981, p. 26) conclusion that debris drag can 
slow glacier sliding should be re-examined . In Equations (3) 
and (S), we use Hallet's values of jl = I, / = 2.4, T/ = 
3 x 1012 Pa s, and R. = 0.1 m. For fixed va ' drag is 
maximized for dense debris packing, C = rr/ 4 from 
Equation (4). (The exact form the model takes for densely 
packed particles is unknown. For the purpose of obtaining 
an upper bound on T d' it is appropriate to maximize C.) In 
addition, we choose va = I cm a- l as a normalized value . va 
can be expected to lie in the range 1-11 cm a- l with · the 
high value corresponding to a fast-sliding glacier -300 m a- l 

(Rothlisberger, 1965, p. 91). We also find that flR/ R2 is 
maximized if R = R.. Equation (5) then gives an upper 
bound of 1.3 x 10· Pa, corresponding to va = I cm a- l

. We 
conclude that it is still possible for debris drag to be a 
significant component of total drag, particularly for 
fast-sliding glaciers. 

Comparisons will now be made between abrasion rates 
predicted by the present models and those predicted by 
Hallet's (l9SI) model. We base the analysis upon Hallet's 
(1979, equation (2)) formulation 

(24) 

where a is a local abrasion rate (thickness of bedrock 
removed / unit time), a is an attritivity coefficient which will 
be taken as constant, and ub the sliding velocity. CrF is the 
product of Cr' the number of rock fragments in contact 
with the bed/ unit area, and F, the average force normal to 
the bed exerted on these fragments which are included in 
the calculation of Cr. (We have taken the liberty of 
replacing fragment velocity (Hallet, 1979, equation (2)) by 
sliding velocity. See Hallet (1979, 1981) for justification.) 

One comparison which will not be made is the effect 
of differences between T d and T dH upon abrasion rates. 
Clearly, if ub in Equation (24) is sensitive to debris drag, 
i.e. debris drag dominates conventional drag, Hallet's and 
the present model could predict very different abrasion 
rates, depending upon the value of 1/1. However, I take the 
view that not enough is known of either conventional drag 
or debris drag to warrant quantitative comparisons of the 
effect of debris-drag formulations upon abrasion rates. 

It remains to compare abrasion-rate models, given that 
ub in Equation (24) is independent of which model is being 
considered . We first compare abrasion rates averaged over a 
sinusoidal bed. A spatially averaged abrasion rate A may be 
obtained, using the first model developed above, if Cr in 
Equation (24) is consistent with C defined by Equation (4), 
and F is as in Equation (2). For the square array of 
uniform spherical debris fragments we therefore have 

(2S) 

Substituting from Equations (2S) and (2) into Equation (24), 
with a replaced by A, gives 

A (26) 
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As in the formulation of basal debris drag, the present 
approach diverges from Hallet's model. If his model is used 
to formulate the average abrasion rate A, the result, from a 
similar analysis which led to Equation (26), would be 

where vns is 
dominated flow. 

<XUbC 
--ARvns 

2nR 2 
(27) 

given by Equation (21) for regelation­
From Equations (26) and (27) , we obtain 

111/1 . (28) 

It must be noted that Hallet did not compute a 
spatially averaged abrasion rate. His numerical results 
(Hallet, 1981) are apparently confined to the local abrasion 
rates, as' at the centre of stoss surfaces. It is possible to 
show that the present model gives results for as which 
agree with Hallet's, provided that the debris-drag component 
is dominated by conventional drag, i.e. provided that ub in 
Equation (24) is the same for both models. 

The abraded region is confined to the interval X I X 2 of 
rock-rock contact. In general, the entire stoss surface is not 
abraded . The local abrasion-rate pattern on interval x 1x 2 
may easily be found for a sinusoidal bed by utilizing the 
second model developed above. This will not be done but 
we note that th~ average .abrasion rate over x 1x2 is given 
by (R I (x2 - x 1»A , where A is given by Equation (26). 

Hallet's (1981, figs 3, 4, and 5) results indicate a 
dependence of local abrasion rate upon bed wavelength . 
This conclusion is probably true for the case he considered, 
the local abrasion rate at, say, the center of a stoss surface. 
However, it is clear from Equation (26) that there is no 
explicit dependence of average abrasion rate A upon Rand 
no dependence whatever provided Tb and ub are held 
constant. 

GENERALIZA TIONS 

I. With the removal of the restrtctlOn that the ice flow 
over the sinusoidal bed is dominated by regelation, /3 in 
Equation (9) enters as a parameter in the second model. /3 
has the range [0,1) wi th 13 = 0 corresponding to regelation 
- only flow and /3 = I corresponding to flow by creep. 
Because, for given va ' /3 does not enter the first model., the 
(average) debris drag T d and average abrasion rate A are 
unchanged. Note that parameter AR in Equations (3) and (5) 
is affected by the relative importance of the regelation and 
creep mechanisms for flow around rock fragments when in 
bed contact. Thus, the ratio RI R. influences T d' 

If Equation (10), which contains /3, is used in place of 
Equation (11) in the development of the second model, Xl 

and x 2 will depend upon /3 as well as 1/1. A third parameter 
also enters since, from Equation (10), the flow around a 
sphere in bed contact depends upon coordinate y. If Hallet's 
(198 I ) procedure is followed, vn in Equation (10) is 
evaluated at y = R, the center of the sphere. Thus, Xl and 
x 2 are dependent upon 1/1, /3, and RI R.. The development 
of this analysis will not be presented here. 

2. The only assumptions actually used in developing the 
first model were A I, A3, A6, A 7, the periodicity part of 
A8, A9, A I 0, All, and A 12. Thus, the model would 
appear to apply, without modification, to separated plane 
flow over non-sinusoidal but periodic beds with a single 
period. 

3. A case can be made that the first model can also be 
applied to an arbitrary three-dimensional wavy bed. 
Consider a flow-line segment of sufficient length such that 
average values of Tb, ub' and Vg are either known from 
field studies or can reasonably be assigned. Then, an 
average value of v~ can be computed from Equation (I). 
Using reason.able estlmates of C, Vg, and AR, average values 
of T d and A can then be computea from Equations (5) and 
(27), respectively. 

Shoemaker: Formulation of basal debris drag 

4. Generalizations are not as simple if we are interested in 
studying local abrasion patterns, since intervals of rock-rock 
contact can be difficult to determine, particularly if 
separated flow is included . However, the generalization to 
plane non-separated flow over a non-sinusoidal periodic bed 
with a single period is straightforward. One need only use 
more terms from Nye' s (1969) equation (32) in place of 
Equation (10). 

It should be recognized that the effective debris 
concentration Cc on a particular bedrock bump of an 
arbitrary wavy bed depends not only upon the geometry of 
the particular bump but also upon the geometry of 
up-stream bumps. For example, a particular bump could act 
to cover rock fragments with ice of sufficient thickness that 
no bed contact would occur down-stream on smaller bumps , 
until several had been traversed. 

5. One generalization which will be investigated is the 
effect of removing A I 0 and A 11. The settling velocity U 
and buoyancy force F B should be considered together , 
because both result from (wr - wi)' the difference in the 
specific weights of rock and ice. 

The appropriate change to the first model is simply the 
addition of the term 

(29) 

to the right-hand side of Equation (2). The settling velocity 
does not then enter into the first model. To evaluate the 
importance of F B' we consider the ratio W BI F 1 where F 1 is 
computed from Equation (2) using va = I cm a'l, as a 
typical low value of va' Table I gives W ri F 1 values based 
upon (Wr - Wi) = 10~ N m ' 3, n = 3 x 10 Pa s, and R. = 

0.11 m. It is clear that the buoyancy force only becomes 
important for large clasts. 

TABLE I. RATIOS WB I F1 AND WB / F2 FOR VARIOUS 
R VALUES (m) 

R 

0 .01 
0.1 
I 

0.018 
0 .032 
1.48 

0.032 
1.47 
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There is some evidence that the viscosity of debris-rich 
basal ice could be up to two orders of magnitude lower 
than for ordinary glacier ice (Echelmeyer and Zhongxiang, 
1987). Part of the effect could be due to the increased 
water content of ice near the bed (Duval, 1977). Using 
va = I cm a'l, n = 3 x 1010 Pa s, and R. = 0.011 m (Watts , 
unpublished, equation (23» to compute F 2 from Equation 
(2), we determine the ratios WB/ F2 shown in Table I. 
Noting that conventional drag is proportional to n, it is 
apparent that W B could be important for moderate to large 
clasts, particularly for soft basal ice. 

Both U and W B enter into the second model. Contact 
points xl'x2 are affected and W B is added to the contact 
force over interval X

1
X

2
. The analysis is straightforward and 

will not be presented . 

POSSIBLE IMPORTANT FACTORS NOT INVESTIGATED 

There are at least two remaining potentially important 
influences on debris drag, both of which are difficult to 
analyze. The first, previously noted, is the effect of 
rock-rock friction in causing localized melting near debris 
fragments . This will serve to increase melting rates near 
rock fragments and thus increase T d ' I believe that this 
effect will prove to be significant. 

The second influence upon T d brings A9 into question . 
It is possible to show that on a stoss face a rock fragment 
not in bedrock contact will tend to be moved away from 
the bedrock by the action of the strain field. On a lee 
face, the opposite effect occurs. However, it is not clear 
that the two effects cancel because, for separated flow, the 
boundary conditions are very different on the two faces . I 
have been unable to solve this problem for realistic 
boundary conditions. I can only identify the ejection of 
rock fragments from the ice face in separated flow on lee 
surfaces as being potentially important. 
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CONCLUSIONS 

The two models of debris drag and bedrock abrasion 
developed here are formulated for the easily understood case 
of non-separated flow on a sinusoidal bed. Generalizations 
to arbitrary beds are possible for the first model and a 
certain degree of generalization is possible for the second 
one. The critical role of va (commonly called uniform basal 
melting), in terms of which the first model is formulated, 
has been established . Consistent inter-relationships between 
the two models have been emphasized. Quantitative 
comparison between debris drag and conventional drag have 
been avoided; such numbers are probably meaningless at this 
stage. 

Referees objections to the contrary, I believe that it 
has been established that the debris concentration C is more 
natural to deal with than Cc' which depends upon 
parameter I/J for a sinusoidal bed but would have a much 
more complex dependency for an arbitrary bed. At least for 
theoretical studies, it is easier to assign reasonable values to 
C, a constant, than it is to deal with Cc and its complex 
functional dependency. Not do I agree that in field work it 
would be easier to determine Cc than C. 
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