
Fine mapping of linkage peaks is one of the great
challenges facing researchers who try to identify

genes and genetic variants responsible for the varia-
tion in a certain trait or complex disease. Once the
trait is linked to a certain chromosomal region, most
studies use a candidate gene approach followed by
a selection of polymorphisms within these genes,
either based on their possibility to be functional, or
based on the linkage disequilibrium between adja-
cent markers. For both candidate gene selection and
SNP selection, several approaches have been
described, and different software tools are available.
However, mastering all these information sources
and choosing between the different approaches can
be difficult and time-consuming. Therefore, this
article lists several of these in silico procedures, and
the authors describe an empirical two-step fine
mapping approach, in which candidate genes are pri-
oritized using a bioinformatics approach
(ENDEAVOUR), and the top genes are chosen for
further SNP selection with a linkage disequilibrium
based method (Tagger). The authors present the dif-
ferent actions that were applied within this approach
on two previously identified linkage regions for
muscle strength. This resulted in the selection of
331 polymorphisms located in 112 different candi-
date genes out of an initial set of 23,300 SNPs.

During the past decades, genetic epidemiologists have
tried to identify genes and genetic variants that under-
lie variation in diseases. Some diseases show a
Mendelian inheritance, but most are thought to result
from a complex interplay between multiple genetic
variants, each with a small to modest effect, and/or
environmental factors.

To decipher the effect of genetic variants on a
trait, two complementary designs are often used:
linkage and association analyses. Linkage analyses
focus on the co-segregation of a trait and a genetic
variant in successive generations of related individu-
als. Such analyses result in a rather broad genetic
region and one of the great challenges facing

researchers today is how to analyse (‘fine map’)
these regions further in order to detect the genetic
variant(s) responsible for the linkage signal. Genetic
association analyses aim to identify the association
of a particular allele (or haplotype) with a trait or
disease status. In the past, this approach has mainly
focussed on candidate genes and specific polymor-
phisms therein. More recently, thanks to the
declining costs of genotyping, genome-wide associa-
tion analyses have become feasible.

One often used strategy for fine mapping a region
found by linkage analysis is to focus on a limited
number of candidate genes because (a) only a limited
number of genes is present under the linkage peak, or
(b) some well established candidate genes are present
(Bergholdt et al., 2005; Curran et al., 2006; Lou et
al., 2007; Lowe et al., 2007; Palmer et al., 2006).
This approach has many advantages: (1) Limiting the
number of candidate genes also implies limiting the
number of polymorphisms to be assessed; (2) by using
established candidate genes, the chance of finding a
real causative allele (as opposed to a false positive
result) is augmented; (3) restricting the number of
polymorphisms diminishes the number of statistical
tests, avoids (more or less) stringent correction proce-
dures for multiple testing, as well as limits the chance
of a false positive result; and (4) complementary to
statistical evidence for association between a gene
variant and an examined trait, a real causality can be
proven by functional (physiological or biological) evi-
dence for an association. This can be achieved by
monitoring expression (at mRNA or protein level; in
sera or tissue biopsies), examining animal models
(e.g., transgenic mice) or specific cell lines by func-
tional tests. For established candidate genes extensive
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research has often already been done and these addi-
tional data may thus already be available.

However, disadvantages are also present. First, not
all traits have already been studied to the extent that a
list of candidate genes or functional studies are present
(e.g., preterm birth; Pennell et al., 2007). Especially
for complex traits that are influenced by multiple
genes, selecting suitable candidate genes can be diffi-
cult. Second, by using this approach one will fail to
detect new functions for known genes if their known
function is not directly related to the studied trait.
Third, this method a priori excludes unknown or
uncharacterised genes. Moreover, since linkage regions
are often very broad and may contain several hun-
dreds of genes, screening all of these genes will be
laborious and time consuming. To deal with these dis-
advantages, bioinformatics approaches have been
developed to prioritize genes within a genomic region
and aid in the selection of the most promising genes
for further analyses (Adie et al., 2005, 2006; Aerts et
al., 2006; De Bie et al., 2007; Lopez-Bigas &
Ouzounis, 2004; Moses et al., 2006; Perez-Iratxeta et
al., 2005; Rossi et al., 2006; Tiffin et al., 2006).

Once a list of candidate genes has been selected,
the next step is to decide upon which variants within
each of these genes should be genotyped. As most
genes harbour tens to hundreds of single nucleotide
polymorphisms (SNPs) and other mutations or repeats
(depending e.g. on the size of the gene or the chromo-
somal region), a reduction of this number is often
desired. Strategies identifying or prioritising SNPs can
roughly be divided into two groups: those based on
the linkage disequilibrium (LD) between markers (i.e.
their tendency to segregate together), and those based
on the probability of the SNP to be biologically rele-
vant. Combinations of both LD-based and functional
approaches are also possible.

Here we describe a two-step approach for the fine
mapping of previously found linkage regions in which
candidate genes are first prioritized using a bio-
informatics approach, and then subsequently a
number of SNPs are selected for a chosen list of top-
ranked genes using a LD-based method. Additionally,
we list several alternative in silico procedures and
tools that provide similar or related information.

Materials and Methods
General Remarks

The proposed fine mapping strategy was born from
the necessity to select SNPs for fine mapping purposes
in our own studies. Since multiple alternatives (e.g.,
different software programs, databases, etc.) are
present for every step in the process, we developed
some criteria to guide us in selecting one possibility
over another.

Simple and practical methods. As familiarisation
always takes some time, we chose to develop a
method that is easy to use, with a minimal number of
different software programs or databases. Moreover,

we selected programs that are publicly available and
thereby preferred software programs that can be
downloaded (to avoid dependence on network status).
If these were not available, we selected web-based pro-
grams that provide direct output.

Easily adaptable and flexible methods. The choice of
software was also guided by the need to be able to
adapt the approach whenever necessary. Adding new
information should be easy and alternative strategies
should be testable.

Feasible within the available resources of the lab.
Even though genotyping costs have decreased substan-
tially over the last years and continue to do so,
available financial resources for genotyping often con-
strain the number of SNPs to be genotyped. Our
strategy was therefore also designed to optimise the
balance between the number of SNPs selected and the
information to be gained from genotyping these SNPs.
Notwithstanding this, the strategy can be used for
larger studies as well.

Candidate Gene Selection

Several software programs to select candidate genes
can be found in literature and are summarized in
Table 1. Most of these are largely based on keyword
similarity to known disease genes or phenotypes. For
example, Geneseeker (van Driel et al., 2003; 2005)
combines keyword search results from positional,
expression, and phenotypic databases from both
human and mouse. Tiffin et al. (2005) developed a
method based on expression profiles within tissues
related to a disease and combined these with clinical
and molecular data based on eVOC (a controlled
vocabulary for unifying gene expression data)
anatomy ontology (Kelso et al., 2003). Suspects (Adie
et al., 2006) compares functional annotations (Gene
Ontology [GO] terminology), InterPro (a database of
protein families, domains and functional sites;
Apweiler et al., 2001; Mulder et al., 2005; 2007)
domains, gene expression data between candidate
genes, and genes that are already known to influence
the disease. Similarly, TOM (Transcriptomics of
OMIM [Online Mendelian Inheritance in Man]; Rossi
et al., 2006) combines data on gene mapping, expres-
sion profiling and GO terminology. It can either look
for expression similarities between candidate genes
and genes known to influence a trait, or between two
bona fide linkage regions identified for the trait of
interest. G2D (Candidate Genes to Inherited Diseases;
Perez-Iratxeta et al., 2002, 2007; Perez-Iratxeta et al.,
2005) combines the extraction of relations between
phenotypes and gene functions in sequence, disease,
and literature databases with sequence similarity
searches. Genesniffer (Moses et al., 2006) interrogates
NCBI’s Gene, OMIM, and PubMed together with
Jackson’s Mouse Genome Informatics database, by
means of a list of user-specified disease-specific key-
words. Additionally homologues of each gene are
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identified by BLAST, and scored for content of their
Gene, OMIM, PubMed, and Jackson entries.

Other methods are based on sequence similarity
between genes and/or proteins. The Disease Gene
Prediction (DGP) program (Lopez-Bigas &
Ouzounis, 2004) compares conservation, phyloge-
netic extent, protein length, and paralogy between
the candidate genes and known disease genes.
Similarly, Prospectr (Adie et al., 2005) differentiates
between genes likely and unlikely to be involved in
disease by means of sequence-based features, such as
gene length, protein length, and the percent identity
of homologues in other species. For a review and a
comparison of most of these methods, and an
example of their use, see Tiffin et al. (2006), who
have applied these methods to the selection of candi-
date genes for Type 2 diabetes and obesity.

Recently, an effort was made to develop a program
that incorporates most of the above mentioned
sources of information in one candidate gene prioriti-
zation tool. ENDEAVOUR (Aerts et al., 2006)
software prioritizes candidate genes based on their
similarity to genes known to influence the trait of
interest. Multiple heterogeneous data sources are used
by the program (literature, functional annotation
(GO), micro array expression, EST expression, protein
domains, protein-protein interactions, pathway mem-
bership, cis-regulatory modules, transcriptional motif,
and sequence similarity) and integrated into a global
ranking using order statistics. Very recently (De Bie et
al., 2007), the same research group developed a new
method based on the same principle as the ENDEAV-
OUR software, namely prioritising genes based on
their similarity to known genes. They use a new
kernel-based method for data fusing and show that is
has a better performance and computational efficiency
than ENDEAVOUR.

Out of these programs we favour the ENDEAV-
OUR program (Aerts et al., 2006) for a number of
reasons. First, the program makes use of several possi-
ble inputs for training and candidate genes. One can
search not only on gene identifiers (HUGO name,
ENSEMBL-id, …), but also on GO terms, KEGG
(Kyoto Encyclopedia of Genes and Genomes) pathway
numbers, OMIM classification, or chromosomal posi-
tion. This means that no additional programs or
databases have to be scanned to get this information.
Second, all gene lists and models can be saved for later
use. This makes it possible to adjust analyses rather
easily. Third, ENDEAVOUR mines multiple heteroge-
neous data sources. However, one can choose to use
all data sources or only a subset. This makes it possi-
ble to deselect data sources that do not provide
additional information, thereby reducing analysis
time. Moreover, the results for each data source are
provided, allowing the assessment of the specific con-
tributions of each data source to the overall ranking.
Finally, the program is freely accessible and regularly
updated. A drawback of the ENDEAVOUR program
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is that the results are highly dependent on the initial
selection of the genes in the training set. This implies
some a priori knowledge about the examined trait.
However, the multiple input possibilities (GO, OMIM,
...) should make it feasible to design a set of possible
training genes for most traits. Moreover, to reduce the
dependency on the selected training genes, we suggest
the use of several different training sets and to
combine the results in a global ranking statistic.

Alternative candidate gene selection strategies are
obviously also possible. Oliveira et al. (2005) identi-
fied a linkage peak for Parkinson disease, and
suggested fine mapping using a ‘genomic convergence’
method, whereby genes that underlie a linkage peak,
and are differentially expressed between cases and
controls in a relevant tissue, are tested for association.
They selected this method because of the limited
understanding of the biological systems involved in
Parkinson disease. A similar approach was suggested
by Rodd et al. (2007). Other researchers did not use
available programs, but developed their own bioinfor-
matics approach (Dash et al., 2006; Wilson et al.,
2006; Yang et al., 2005)

SNP selection

For the selection of SNPs within candidate genes of
interest, several approaches have been suggested,
mostly based on SNP tagging and/or predicted func-
tionality. A large body of literature about this topic is
present and it is out of the scope of this article to
review all methods in detail. Excellent reviews describ-
ing and comparing SNP selection procedures have
been published and we refer the reader to these arti-
cles (Bhatti et al., 2006; Chi et al., 2006; Halldörsson
et al., 2004; Ke et al., 2005; Stram, 2005). An updated
list of tagging and functional SNP selection software
can be found in supplementary Table 2.

SNP tagging programs need genotypic information
in order to select tagSNPs. As the purpose of fine
mapping is to determine which SNPs should be geno-
typed, this genotypic information needs to be
imported from some other genotyped population. For
this reason, the HapMap (The International HapMap
Consortium, 2003, 2005) project was started. Several
studies have already shown that tagSNPs selected
based on the HapMap data are transferable to other
populations with similar ancestral backgrounds
(Conrad et al., 2006; de Bakker et al., 2006; Ke et al.,
2004; Montpetit et al., 2006; Mueller et al., 2005;
Smith et al., 2006). A useful feature of the HapMap
project is that genotypes for different populations can
be downloaded and filtered according to several crite-
ria, such as SNP rs-number, minor allele frequency in
the selected population, validation status, and so on.
By doing this, the number of polymorphisms entering
the tagging process can be reduced, and the analyses
will become less computer intensive.

We prefer Tagger (de Bakker et al., 2005) to iden-
tify tagSNPs based on LD between adjacent
polymorphisms, based on the fact that Tagger is

implemented in Haploview (Barrett et al., 2004), and
genotype information of the CEPH families of the
HapMap can therefore be easily used as input data.
Haploview can also be downloaded.

If the number of tagSNPs still exceeds the number
of polymorphisms to be genotyped, a further selection
can be made based on the informativeness of the
tagSNP (i.e., the number of other SNPs it tags; de
Bakker et al., 2005), validation status, or the initial
ranking of the candidate gene the SNPs reside in. For
example, it could be decided that all available tagSNPs
will be genotyped in the top 5 genes, the 3 to 5 most
informative tagSNPs will be genotyped for the top 20
genes, and only 1 or 2 tagSNPs will be genotyped for
the remaining genes.

Other approaches described in the present litera-
ture propose genotyping of all the coding SNPs
(Bergholdt et al., 2005) or a selection of (validated)
intragenic SNPs (Curran et al., 2006; Moses et al.,
2006), sequencing the gene and comparing discordant
subjects (Dash et al., 2006; Lowe et al., 2007), using
evenly spaced SNPs throughout the gene (Lou et al.,
2007; Palmer et al., 2006), or combinations of the
previous methods (Hinks et al., 2006; Nicolae et al.,
2005; Wang et al., 2007; Wilson et al., 2006; Yang et
al., 2005). This field is clearly evolving rapidly, but it
is beyond the scope of this manuscript to go into
detail on each of these methods.

Most, but not all, of the previously described
approaches, identified significant associations between
one or more polymorphisms and the observed trait.
However, as far as we are aware, no articles have
compared the efficacy of the different SNP selection
procedures on a single dataset. The increasing avail-
ability of genome wide, high-density SNP panels might
make these analyses, albeit retrospectively, possible.

Application

In a previous study from our laboratory (Huygens et
al., 2004; Huygens et al., 2005), a linkage analysis
was performed to investigate the possible linkage
between genes encoding key proteins from the myo-
statin pathway and isometric and concentric knee
strength. Three regions were found to be signifi-
cantly/suggestively linked with a quantitative trait
locus for knee muscle strength: 12q12-14 (LOD score
3.4), 12q22-23 (LOD score 2.7), and 13q14.2 (LOD
score 2.7). Besides the initial candidate genes from the
myostatin pathway, several other interesting muscle-
associated genes are located within these regions. As
an illustration of the methodology that we applied to
select candidate genes and SNPs therein, we present
here the results from our analyses in the linkage
regions observed on chromosome 12 — a similar two-
step procedure was applied to the chromosome 13
region. A graphical representation of the methodology
used is shown in Figure 1.

First, in an attempt to reduce the number of candi-
date genes, we identified the 1-LOD confidence
interval of the linkage regions on chromosome 12.
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Figure 1
Graphical overview of the two step fine mapping approach, together with results for the application of the approach on two previously identified
linkage regions on chromosome 12 for muscle strength.
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The genes within these intervals were then prioritised
using ENDEAVOUR software (version 1.37.02.01).
Five different training sets were used and subse-
quently combined into a global ranking: (1)
candidate genes from the original myostatin pathway
(Huygens et al., 2004; Huygens et al., 2005), (2)
structural elements of muscle (actin and myosin
related genes, together with troponin, titin, and
nebulin), (3) GO term ’contraction’, (4) GO term
’muscle development’, and (5) GO term ’regulation
(negative and positive) of contraction’. The top 30
genes of the global ranking, and of each sub-model,
were further investigated regarding expression levels
and functionality, using available online databases
(e.g., Genecards, Entrez Gene, Ensembl). Genes that
were not expressed in muscle were excluded from
further analysis. Additionally, some genes known to
have a role in muscle strength, but not prioritised by
ENDEAVOUR, were added to the analyses
(‘common sense’ genes). A description of the top 10
candidate genes and of the ‘common sense’ genes,
together with their ranking, can be found in supple-
mentary Tables 3 and 4 for the 12q12-14 and the
12q22-23 region, respectively. The resulting genes
were further processed in the SNP selection process.

Since the Illumina GoldenGate Custom Panels
genotyping method was to be used in our analyses, a
list of the candidate genes was sent to Illumina, in
San Diego, California, in order to get a list of possi-
ble SNPs within these genes, including codes for the
feasibility of assay development, validation status,
and minor allele frequency for a number of selected
populations. From this list, all SNPs with a des-
ignability rank of 1 (high success rate of assay
development), and a minor allele frequency of at
least 0.05, were selected, and CEPH (Utah residents
with ancestry from northern and western Europe)
family genotype data for these SNPs were down-

loaded from the HapMap website (release #20,
January 2006, based on NCBI build 35; The
International HapMap Consortium, 2003, 2005).
These data were then used to determine tagSNPs
using Tagger (de Bakker et al., 2005), implemented
in the Haploview software (Barrett et al., 2004). In
addition to the default settings, aggressive tagging
was selected. From these tagSNPs, a subset was then
chosen based on validation status and initial ranking
of the candidate gene. Finally, nonsynonymous SNPs
were added for the top genes. For the regions with a
low coverage, additional tagSNPs were identified and
evenly spaced tagSNPs were selected in order to span
those regions.

Results
Two linkage regions on chromosome 12 were analysed
using the two-step fine mapping approach: one on
12q12-14 encompassing ca. 40cM or 53Mb and one
on 12q22-23 of ca. 15cM or 10Mb. Within these
regions respectively, 454 and 143 genes were analysed.

ENDEAVOUR analysis and exclusion of nonex-
pressed genes resulted in a list of, respectively, 78 and
51 genes. An additional 10 ‘common sense’ genes, all
located in or around the 12q12-14 region, were added.

Within these genes, Illumina identified 15,920 and
7380 SNP for the 12q12-14 and the 12q22-23
regions, respectively. Of these SNPs respectively 9344
and 4310 had a designability rank of 1, and genotype
data was present in the HapMap for 5871 and 2454
of these SNPs. SNP selection resulted in a total of 331
SNPs, of which 298 are located in 112 genes (range 1-
9 SNPs per gene), and 33 are spaced in the genomic
regions in between the genes. A graphical representa-
tion of the localisation of the SNPs is shown in Figure
2. A similar two-step procedure was applied to the
chromosome 13 region, in which 52 tagSNPs were
selected (not included in Figure 2).
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candidate genes. Small bars are evenly spaced tagSNPs selected in-between genes.
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Discussion
Selecting polymorphisms for follow-up fine mapping
of a linkage peak is a great challenge for researchers
within the field of genetic epidemiology. Several differ-
ent approaches exist, and different software tools are
available for most methods. In an attempt to stream-
line our fine mapping analysis efforts, we developed a
flexible two-step fine mapping approach, consisting of
candidate gene selection in a genomic region of inter-
est, followed by a SNP selection within these genes.
Additionally, we listed several alternatives in silico
tools useful in these analyses. Most of these methods
are not new, but as far as we know, a recent overview
is not present in current literature.

Application of our fine mapping approach to two
previously identified linkage regions for muscle
strength, shows that when SNPs are selected within
prioritised candidate genes, the polymorphisms are
evenly distributed under the linkage curve, with a
higher density where LOD score peaks are present.
Therefore, we believe our chances of finding variants
that influence our trait have been markedly improved
by our fine mapping approach, but actual linkage and
association analyses will be needed to show whether
this assumption is true.

Some advantages of our two-step approach are
worth mentioning. First, it is very flexible. One can
easily alter the number of genes selected after prioriti-
zation or the number of SNPs after tagging. Also, the
broad input and output possibilities of the
ENDEAVOUR software (Aerts et al., 2006) make
flexible analyses possible. The researcher can choose
to use all possible data sources in the analyses, or
select specific data sources to speed up the process.
Additionally if all data sources are chosen, besides the
global ranking, the results for each data source sepa-
rately can also be obtained. This makes it possible to
assign weights to each data source, depending on the
importance or the amount of information that is pre-
sumably available in the data source. The new
kernel-based approach developed by the same research
group (De Bie et al., 2007) already incorporates
several weighting schemes in the program. Second, the
number of necessary programs and databases has been
kept as small as possible. With the use of ENDEAV-
OUR, the HapMap website, Haploview and some
basic data management software (e.g., Microsoft
Access or Excel, depending on the magnitude of the
data), it should be possible to perform the basic analy-
ses presented in this article. Additional databases or
online resources can be accessed for further informa-
tion, but are not absolutely required. Third, the spread
of the selected polymorphisms over the linkage region
and the use of family data make it possible to use both
linkage and association analyses for follow-up analy-
ses. Additionally, a combined linkage and association
approach can be applied to identify the specific poly-
morphisms responsible for the linkage signal.

Yet, our fine mapping approach also has some lim-
itations. First, as was already pointed out, most
candidate gene selection/prioritization tools select
genes based on their similarity to genes known to
influence the trait of interest (training genes; Adie et
al., 2005; 2006; Aerts et al., 2006; De Bie et al., 2007;
Perez-Iratxeta et al., 2005; Perez-Iratxeta et al., 2007;
Rossi et al., 2006). The selection of an appropriate set
of training genes is, however, highly dependent on the
knowledge of the field being studied, and on the
amount of useful information in publicly available
databases. If no candidate genes for a specific trait
have been identified, results from related phenotypes
can be used, or the physiology or biology of the
studied system can be examined.

Second, as an intermediate step, we selected a
subset of markers with a high probability of assay
success based on the data provided by Illumina (des-
ignability rank = 1). Tagging was then performed on
the polymorphisms for which genotypes were avail-
able in the HapMap for the CEPH subjects, reducing
the number of SNPs to approximately 35% of the
original number of SNPs identified by Illumina. An
alternative approach would have been to select
tagSNPs first, and then assess if these could be geno-
typed with the Illumina platform. Even better would
be to take both the patterns of LD and the likely geno-
typing success into account in the same analysis. At
present, several of the tagSNP selection programs,
such as the recent version of Haploview (Barrett et al.,
2004), Multipop-tagselect (Howie et al., 2006),
Tagger (de Bakker et al., 2005), TAGster (Xu et al.
2007), mPopTag (Xu et al. 2007) and SNPselector
(Xu et al., 2005b), provide the option to include
design scores and use the information during the SNP
prioritization process.

To evaluate the influence of selecting the
tagSNPs on the polymorphisms with designability
rank 1, rather than on all the SNPs, we calculated
the percentage of the alleles that were captured by
our list of tagSNPs. For example, for the 12q22-23
region, the selected SNPs capture 48% of the alleles
of the other SNPs at r2 > .8, for the designability
rank 1 SNPs as well as for all the SNPs. We would,
however, like to point out that the coverage per
gene will vary extensively, as the original design of
the study intended an alternative coverage depen-
dent on the initial ranking of the gene. For example,
in the gene that ranked fifth on the global ranking,
8 tagSNPs were selected, which capture 62% of all
alleles with r2 > .8. In contrast, in the gene that
ranked 30th, only one tagSNP was selected.
Therefore only 13% of the alleles were captured at
r2 > .8.

Moreover, we believe that the availability of
genotyped and polymorphic SNPs in the HapMap is
a more limiting factor for inclusion in the final
tagSNP set than is the design score. For example,
for the 22q22-23 region, 7380 SNPs were identified
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by Illumina in our candidate genes. Of these SNPs,
only 3047 (41%) had genotypes available in the #20
release of the HapMap, and of these 1099 were
monomorphic. Thus, only 1948 (26.4%) of the origi-
nally identified SNPs were included in the tagging
process. Of these SNPs, 350 had a designability rank
of 0 or 0.5. So an additional 5% of SNPs were lost
when we decided to include only the SNPs with a
designability rank of 1.

This use of the CEPH family genotype data from
the HapMap project also results in a third shortcom-
ing in our method. Since these represent only an
approximation of the European population, minor
allele frequencies (MAF) can differ when compared
to other populations. The use of the stringent cut off
of MAF > .05 during the tagging process may result
in the exclusion of SNPs that have higher frequencies
in our population. Vice versa, SNPs that have a MAF
>.05 for the CEPH population may have a lower
MAF in our population. This, again, may result in
genotyping of SNPs that have low/no informativity in
the sample that will be genotyped. Fourth, by using
this MAF cut off in combination with a LD-based
tagging method, only more common variants are
captured. Additionally, the LD structure within the
entire human genome is highly variable. Depending
on the extent of the LD, a different number of
tagSNPs will thus have to be selected to cover the
same physical region. Finally, most of the SNPs were
selected based on their ability to serve as a proxy for
the surrounding SNPs, and not based on their possi-
ble functionality. As suggested by Bhatti et al. (2006),
an approach combining both LD-based and function-
ality-based selection of polymorphisms for further
analyses could be more suitable.

However, we were aware of most of these poten-
tial disadvantages from the start of our study, and
regard this SNP selection only as an intermediate
stage to identify genes associated with muscular
strength. Additional genotyping within such associ-
ated genes will undoubtedly be necessary to identify
the causal SNPs within these genes.

We sought to design an approach for both gene
and SNP prioritization that keeps the balance
between an in depth and comprehensive search, and
practically applicable in silico methods for routine
analysis. We acknowledge that other methods exist,
and appreciate that individual researchers may
choose other tools, or make adaptations to the pre-
sented methods. Our major objective here has been
to address a number of important issues encoun-
tered during the selection of candidate genes and
SNPs for genotyping, which we believe may also be
useful for other researchers in their quest to identify
the genes underlying a certain trait or disease.
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Supplementary Table 1

List of Available SNP Tagging or Functional SNP Selection Software

Name Web url Reference

TTaaggSSNNPP  sseelleeccttiioonn

FESTA http://www.sph.umich.edu/csg/qin/FESTA/ Qin et al., 2006
Genecap on request Eyheramendy et al., 2007
Genedigger http://www.genedigger.de/ Hampe et al., 2003
Genotype2LDblock http://cgi.uc.edu/cgi-bin/kzhang/genotype2LDBlock.cgi N/A
Hapblock http://www-hto.usc.edu/msms/HapBlock/ Zhang et al., 2004
Haploblockfinder http://cgi.uc.edu/cgi-bin/kzhang/haploBlockFinder.cgi Zhang et al., 2002b; Zhang & 

Jin, 2003
Haploview http://www.broad.mit.edu/mpg/haploview/ Barrett et al., 2004
Hapscope http://lpg.nci.nih.gov/lpg_small/protocols/HapScope/ Zhang et al., 2002a
HCLUST http://wpicr.wpic.pitt.edu/WPICCompGen/hclust.htm Rinaldo et al., 2005
htSNP and htSNP2 http://www-gene.cimr.cam.ac.uk/clayton/software/stata/ Johnson et al., 2001
htSNP Finder http://htsnp.stanford.edu/ Phuong et al., 2006
HTSNPER http://www.chgb.org.cn/htSNPer/htSNPer.html Ding et al., 2005
Ldmap http://cedar.genetics.soton.ac.uk/public_html/helpld.html Maniatis et al., 2002
Ldselect http://droog.gs.washington.edu/ldSelect.html Carlson et al., 2004
MLR-tagging http://alla.cs.gsu.edu/~software/tagging/tagging.html He & Zelikovsky, 2006
MultiPop-TagSelect http://droog.gs.washington.edu/multiPopTagSelect.html Howie et al., 2006
REAPER http://bioinfo.ebc.ee/download/ Magi et al., 2006
SNPbrowser http://marketing.appliedbiosystems.com/mk/get/SNP_LANDING De La Vega et al., 2006
SNPspD http://gump.qimr.edu.au/general/daleN/SNPSpD/ Nyholt, 2004
SNPtagger http://www.well.ox.ac.uk/~xiayi/haplotype/ Ke & Cardon, 2003
STAMPA 

(implemented in GEVALT) http://acgt.cs.tau.ac.il/gevalt/ Davidovich et al., 2007; 
Halperin et al., 2005

Tagger http://www.broad.mit.edu/mpg/tagger/ de Bakker et al., 2005
tagIT http://www.genome.duke.edu/resources/computational/software/ Weale et al., 2003
Tag’n’Tell http://snp.cgb.ki.se/tagntell/ N/A
TagSNP http://www-rcf.usc.edu/~stram/tagSNPs.html Stram et al., 2003
TagSNP http://www-rcf.usc.edu/~lilei/tagsnp.html Nicolas et al., 2006
TagSNPfinder http://www.stat.osu.edu/~statgen/SOFTWARE/tagSNPfinder/ Liu et al., 2006; Liu & Lin, 2005
TAGster http://www.niehs.nih.gov/research/resources/software/tagster/index.cfm Xu et al. 2007
mPopTag http://www.niehs.nih.gov/research/resources/software/mpoptag/index.cfm Xu et al., 2007
QuickSNP http://bioinformoodics.jhmi.edu/quickSNP.pl Grover et al., 2007
CLUSTAG http://hkumath.hku.hk/web/link/CLUSTAG/CLUSTAG.html Ao et al., 2005

FFuunnccttiioonnaalliittyy--bbaasseedd  SSNNPP  sseelleeccttiioonn

SNPselector http://snpselector.duhs.duke.edu/hqsnp36.html Xu et al., 2005a
TAMAL http://neoref.ils.unc.edu/tamal/ Hemminger et al., 2006
PupaSuite http://pupasuite.bioinfo.cipf.es/ Conde et al., 2006
SNPper http://snpper.chip.org/ Riva & Kohane, 2001; 2002; 

2004
SNPHunter http://www.hsph.harvard.edu/ppg/software.htm Wang et al., 2005
FastSNP http://fastsnp.ibms.sinica.edu.tw/pages/input_CandidateGeneSearch.jsp Yuan et al., 2006
BinCONs http://zoo.nhgri.nih.gov/binCons/index.cgi McCauley et al., 2007
WCLUSTAG http://bioinfo.hku.hk/wclustag/ Sham et al., 2007 

Note: Supplementary Table 2 was adapted from Bhatti et al. (2006) and Halldörsson et al. (2004). Additional programs were added based on a PubMed search using the search
terms: ‘SNP selection’, ’SNP tagging’, ’tagSNPs’ and on related articles from other references. Additionally the Alphabetic List of Genetic Analysis Software
(http://linkage.rockefeller.edu/soft/) was consulted.
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Supplementary Table 3

Top 10 Candidate Genes for Each Submodel and the Global Ranking From Endeavour Prioritization for 12q12-14

Name or gene description Contraction Myostatin Structural Muscle Regulation Global 
pathway elements development of muscle ranking

contraction

Congenital myopathy 22 44 22 11 22 11

Carbohydrate metabolism 11 55 33 33 33 22

Structural component of muscle 77 ** 11 44 44 33

Structural component of muscle 10 22 44 1144 11 44

Structural component of muscle 11 ** 55 1100 45 55

Contributes to the development and
growth of multiple mammalian tissues
including skeletal muscle 55 56 66 20 55 66

DEAD (Asp-Glu-Ala-Asp) box polypeptide 19 48 77 17 77 77

Mediates gene silencing 33 60 1100 77 11 88

Anion channel 88 88 61 45 99 99

Transcription factor 36 66 30 15 49 1100

Proliferation inhibitor 13 74 19 88 34 11
Involved in muscle maturation 37 44 11 22 77 17
Signaling protein 32 16 38 83 1100 18
ATP-ase activity 26 129 88 16 88 19
Homologue involved in mouse posterior
limb patterning/ cell cycle control 44 33 43 86 23 20
Cytoplasmic mRNA decay 62 96 99 23 24 23
Protein kinase 25 252 24 13 66 40
Integrin family 43 159 15 55 98 41
Homeobox protein 67 99 58 103 94 42
Calcium Channel 44 66 158 22 95 45
Involved in muscle dystrophies 33 251 48 32 15 46
Transcription factor activity 77 41 113 66 114 48
Homeobox protein 165 11 89 124 179 86
Homeobox protein 116 77 114 186 151 88
Involved in the growth and
differentiation of neural cells 143 148 193 99 86 90
Suppressor of apoptosis 66 250 201 89 79 98
Sodium channel 99 181 83 207 251 133
Transcription factor activity 359 1100 274 326 279 261

AAddddiittiioonnaall  ccoommmmoonn  sseennssee  ggeenneess

VDR: Associated with variability
in muscle strength 194 92 226 274 170 188
IGFBP6: Regulation of cell growth,
IGF1 pathway 250 110 336 132 149 190
CYP27B1: Defects in CYP27B1 are a cause
of vitamin D-dependent rickets type,
characterized by muscle weakness 218 165 293 261 240 244
ACVR1B: Transforming growth factor
beta receptor activity, myostatin signalling 52 170 69 255 116 108
ACVRL1: Activin pathway 85 39 37 265 134 560
YAF2: Muscle specific YY1 cofactor 209 220 202 253 395 269

Note: *not scored because included in training set.
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Supplementary Table 3

Top 10 Candidate Genes for Each Submodel and the Global Ranking from Endeavour Prioritization for 12q22-23

Name or gene description Contraction Myostatin Structural Muscle Regulation Global 
pathway elements development of muscle ranking

contraction

Structural component of muscle, 
striated muscle contraction ** 22 22 11 22 11

Structural component of muscle ** 55 11 33 11 22

Calcium pump 11 11 33 13 33 33

Regulator of somatic growth and
cellular proliferation 55 66 66 22 66 44

Heat shock protein 66 99 55 77 44 55

Potassium channel 33 15 44 99 55 66

Limb pattern development during
embryogenesis, transcription factor activity 99 33 1100 66 99 77

Role in cellular proliferation 14 1100 77 11 1100 88

Open reading frame 15 77 17 88 15 99

Glycolysis/ gluconeogenesis 88 17 16 10 16 1100

Starch and sucrose metabolism 27 13 88 26 77 11
Ribosomal protein 23 35 11 44 12 12
Actin polymerisation 44 44 18 17 25 15
Developmental regulation, limb pattern 77 22 19 49 17 16
Protein kinase 47 36 99 16 11 17
Structural protein 28 84 12 55 88 20
Ca ion binding 2 100 22 19 21 22
May directly link growth factor receptors
and other signalling proteins 1100 68 47 27 61 32
Neurogenesis/ transcription factor
activity/ cell differentiation 59 44 103 30 98 51
Transcription regulation 86 88 132 123 131 107

AAddddiittiioonnaall  ccoommmmoonn  sseennssee  ggeenneess

PPP1CC: Regulation of glycogen metabolism,
muscle contractility and protein synthesis. ****

PPP1R12A: Contraction of smooth muscle ****

CSRP2: Regulation of cell differentiation,
muscle development ****

Note: **not scored because included in training set
****no ENDEAVOUR ranking because these genes are located slightly outside the 1-LOD support interval.
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