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Abstract We call a semigroup S weakly right noetherian if every right ideal of S is finitely generated;
equivalently, S satisfies the ascending chain condition on right ideals. We provide an equivalent formu-
lation of the property of being weakly right noetherian in terms of principal right ideals, and we also
characterize weakly right noetherian monoids in terms of their acts. We investigate the behaviour of
the property of being weakly right noetherian under quotients, subsemigroups and various semigroup-
theoretic constructions. In particular, we find necessary and sufficient conditions for the direct product
of two semigroups to be weakly right noetherian. We characterize weakly right noetherian regular semi-
groups in terms of their idempotents. We also find necessary and sufficient conditions for a strong
semilattice of completely simple semigroups to be weakly right noetherian. Finally, we prove that a
commutative semigroup S with finitely many archimedean components is weakly (right) noetherian if
and only if S/H is finitely generated.
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1. Introduction

A finiteness condition for a class of universal algebras is a property that is satisfied by at
least all finite members of that class. Some of the most important finiteness conditions
are ascending chain conditions. The study of ascending chain conditions on ideals of
rings, initiated by Noether in the early part of the last century, has been instrumental
in the development of the structure theory of rings. A ring is right (respectively left)
Noetherian if it satisfies the ascending chain condition on right (respectively left) ideals,
and Noetherian if it is both right Noetherian and left Noetherian. Noetherian rings play a
key role in many major ring-theoretic results, such as Hilbert’s basis theorem and Krull’s
intersection theorem.
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Semigroups whose right ideals are finitely generated 849

We call a semigroup S weakly right noetherian if every right ideal of S is finitely
generated.* Similarly, a semigroup is weakly left noetherian if every left ideal is finitely
generated. We call a semigroup weakly noetherian if it is both weakly right noetherian and
weakly left noetherian. It is clear that each of these properties is a finiteness condition. In
this paper, we will focus on weakly right noetherian semigroups. Such semigroups have
received a significant amount of attention; see for instance [1, 6, 14, 26].

Related to the property of being weakly right noetherian is the stronger condition that
every right congruence is finitely generated; we call semigroups satisfying this condition
right noetherian. Such semigroups were studied systematically in [21] and had previously
been considered in [12, 17, 18]. Another related notion is that of the universal right con-
gruence being finitely generated, which was first considered in [5]. The stronger condition
that every right congruence of finite index is finitely generated (where index means the
number of classes) was introduced and studied in [20].

This paper is structured as follows. In § 2, we provide the necessary preliminary mate-
rial. In § 3, we present some equivalent formulations of the property of being weakly
right noetherian. In § 4 and 5, we explore how a semigroup and its substructures and
quotients relate to one another with regard to the property of being weakly right noethe-
rian. We then investigate how this property behaves under various semigroup-theoretic
constructions in § 6. Specifically, we consider direct products, free products, semilattices
of semigroups, Rees matrix semigroups, Brandt extensions and Bruck–Reilly extensions.
Section 7 is concerned with regular semigroups. We first consider regular semigroups in
general, and then focus on the important subclasses of inverse semigroups and completely
regular semigroups. Finally, in § 8, we consider commutative semigroups. The main result
of that section is a necessary and sufficient condition for a commutative semigroup with
finitely many archimedean components to be weakly noetherian.

2. Preliminaries

In this section, we establish some basic definitions and notation. We begin by providing
some set-theoretic definitions.

A relation ≤ on a set P is said to be preorder if it is both reflexive and transitive. If
a preorder is also symmetric, then it is an equivalence relation. On the other hand, if a
preorder is antisymmetric then it is a partial order.

A poset is a set P together with a partial order ≤. Given any set X, a collection P of
subsets of X forms a poset under the partial order of inclusion. In particular, the set of
all right ideals of a semigroup is a poset (under ⊆).

Let (P, ≤P ) and (Q, ≤Q) be two posets. A map θ : P → Q is said to be order-preserving
if x ≤P y implies xθ ≤Q yθ for all x, y ∈ P. A map θ : P → Q is an isomorphism if both
θ and θ−1 are order-preserving (i.e. x ≤P y if and only if xθ ≤Q yθ for all x, y ∈ P ) and
θ is a bijection. We say that P and Q are isomorphic if there exists an isomorphism
between them. Note that to show that a map θ : P → Q is an isomorphism, it suffices to
prove that θ is surjective and that x ≤P y if and only if xθ ≤Q yθ for all x, y ∈ P .

* Weakly right noetherian semigroups are also known in the literature as right noetherian. However, we
use the term ‘right noetherian’ to denote semigroups whose right congruences are all finitely generated.
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Two elements a and b of a poset P are said to be comparable if either a ≤ b or b ≤ a;
otherwise, a and b are incomparable. A subset of P in which any two elements are compa-
rable is called a chain. An antichain of P is a subset consisting of pairwise incomparable
elements.

We now turn our attention to semigroups. We refer the reader to [13] for a more com-
prehensive introduction to semigroup theory. Throughout the remainder of the section,
S will denote a semigroup.

We denote by S1 the monoid obtained from S by adjoining an identity if necessary (if
S is already a monoid, then S1 = S). Similarly, we denote by S0 the semigroup with zero
obtained from S by adjoining a zero if necessary.

Let M be a monoid with identity 1. An element a ∈M is said to be right invertible
if there exists b ∈M such that ab = 1. Left invertible elements are defined dually. An
element of M is called a unit if it is both right invertible and left invertible. The units of
M form a group, called the group of units of M, which we denote by U(M).

We denote the set of idempotents of S by E(S). If S = E(S), it is called a band. A
semilattice is a commutative band. The multiplication in a semilattice E induces the
following partial order:

e ≥ f ⇐⇒ ef = f.

In this way, we may view E as a meet-semilattice in the order-theoretic sense. Conversely,
any order-theoretic meet-semilattice may be viewed as a commutative band with meet
taken as the binary operation.

If a, b ∈ S are such that a = aba and b = bab, then b is called an inverse of a. The
semigroup S is said to be regular if every element of S has an inverse. If, additionally,
the inverse of each element of S is unique, then S is an inverse semigroup. It is well
known that a semigroup is inverse if and only if it is regular and its idempotents form a
semilattice [13, Theorem 5.1.1].

A subset I ⊆ S is said to be a right ideal of S if IS ⊆ I. Left ideals are defined dually,
and an ideal of S is a subset that it is both a right ideal and a left ideal.

Given a subset X ⊆ S, the right ideal generated by X is the set XS1. A right ideal I
of S is said to be finitely generated if it can be generated by a finite set.

Note that a right ideal of S can be generated by a set as a right ideal or as a semigroup.
For proper right ideals, we will always use the term ‘generate’ in the former sense. When
we say that S is generated by a set X, we mean ‘generated as a semigroup’, unless stated
otherwise, and we write S = 〈X〉. We note that a right ideal can be finitely generated as
a right ideal but not as a semigroup; e.g. any non-finitely group G is certainly finitely
generated as a right ideal.

A right congruence on S is an equivalence relation ρ on S such that (a, b) ∈ ρ implies
(ac, bc) ∈ ρ for all a, b, c ∈ S; left congruences are defined analogously. A congruence is
a relation that is both a right congruence and left congruence. For a congruence ρ on S,
we denote the congruence class of an element a ∈ S by [a]ρ.

Recall that a semigroup is right noetherian if every right congruence is finitely gener-
ated. (A right congruence ρ on S is finitely generated if there exists a finite set X ⊆ ρ such
that ρ is the smallest right congruence on S containing X.) Right noetherian semigroups
are weakly right noetherian [21, Lemma 2.7], but the converse certainly does not hold.
Indeed, unlike the situation for rings, the lattice of right congruences on a semigroup
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is not, in general, isomorphic to the lattice of right ideals. For example, groups have
no proper right ideals, but the lattice of right congruences on a group is isomorphic to
its lattice of subgroups. Consequently, groups are trivially weakly right noetherian, but
a group is right noetherian if and only if all its subgroups are finitely generated [21,
Proposition 2.14].

The most essential tools for understanding the structure of a semigroup are its Green’s
relations L, R, H, D and J . They are defined as follows.

Two elements a, b ∈ S are L-related if they generate the same principal left ideal,
i.e. S1a = S1b. Similarly, two elements a, b ∈ S are R-related if they generate the same
principal right ideal. Green’s relation H is defined as H = L ∩R. Two elements a, b ∈ S
are D-related if there exists c ∈ S such that aL c and cR b. Finally, if two elements
a, b ∈ S generate the same principal ideal (i.e. S1aS1 = S1bS1), then they are said to be
J -related.

It is obvious from the definitions that L, R, H and J are equivalence relations on S,
and it turns out that D is also an equivalence relation. Moreover, Green’s relation L is a
right congruence on S and R is a left congruence on S.

Green’s relation R defines a preorder ≤R on S, given by

a ≤R b ⇐⇒ aS1 ⊆ bS1.

The preorder R induces a partial order on the set of R-classes of S: Ra ≤ Rb if and only
if a ≤R b. It is easy to see that the poset of R-classes of S is isomorphic to the poset
of principal right ideals of S, via the isomorphism Ra �→ aS1. Similarly, one can define
preorders ≤L and ≤J , leading to partial orders on the sets of L-classes and J -classes,
respectively.

Note that when we need to distinguish between Green’s relations on different semi-
groups, we will write them with the semigroup as a subscipt; i.e. KS stands for K, where
K is any of Green’s relations on S.

It is easy to see that the following inclusions between Green’s relations hold:

H ⊆ L, H ⊆ R, L ⊆ D, R ⊆ D, D ⊆ J .
It can be easily shown that every right (respectively left) ideal is a union of R-classes
(respectively L-classes), and every ideal is a union of J -classes. A semigroup with no
proper (right) ideals is called (right) simple. A simple semigroup has a single J -class; if
it is right simple, then it has a single R-class. If S has a zero 0, S2 = {0}, and {0} is the
only proper ideal of S, then it is called 0-simple.

Given an ideal I of S, the Rees quotient of S by I, denoted by S/I, is the set (S\I) ∪ {0}
with multiplication given by

a · b =

{
ab if a, b, ab ∈ S\I,
0 otherwise.

Let J be a J -class of S. The principal factor of J is defined as follows. If J is the
unique minimal ideal of S, called the kernel of S, its principal factor is itself. Otherwise,
the principal factor of J is the Rees quotient of the subsemigroup S1xS1, where x is any
element of J, by the ideal (S1xS1)\J.
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The principal factors of S are the principal factors of its J -classes. The kernel of S, if
it exists, is simple; all other principal factors are either 0-simple or null (every product
of two elements equals zero).

A principal series of a semigroup S is a finite chain of ideals

K(S) = I1 ⊂ I2 ⊂ · · · ⊂ In = S,

where K(S) is the kernel of S, and Ik is maximal in Ik+1 for each i ∈ {1, . . . , n− 1}.
The kernel K(S) and the Rees quotients Ik+1/Ik are the principal factors of S.

It is folklore that a semigroup has a principal series of length n if and only if it has
exactly n J -classes.

Closely related to the notion of one-sided ideals is that of semigroup acts. We provide
some basic definitions about acts; one should consult [16] for more information.

A (right) S-act is a non-empty set A together with a map

A× S → A, (a, s) �→ as

such that a(st) = (as)t for all a ∈ A and s, t ∈ S. (If S is a monoid, we also require that
a1 = a for all a ∈ A.) For instance, S itself is an S-act via right multiplication.

A subset B of an S-act A is a subact of A if bs ∈ B for all b ∈ B and s ∈ S. Note that
the right ideals of S are precisely the subacts of the S-act S.

Given an S-act A and a subact B of A, the Rees quotient of A by B, denoted by A/B,
is the set (A\B) ∪ {0} with action given by

a · s =

{
as if as ∈ A\B
0 otherwise,

and 0 · s = 0, for all a ∈ A\B and s ∈ S. It can be easily verified that A/B is an S-act
via the above action.

A subset U of an S-act A is a generating set for A if A = US1, and A is said to be
finitely generated if it has a finite generating set.

We call an S-act A noetherian if every subact of A is finitely generated; equivalently,
A satisfies the ascending chain condition on its subacts. In particular, the S-act S being
noetherian is equivalent to S being a weakly right noetherian semigroup.

3. Equivalent formulations and elementary facts

We begin this section by presenting equivalent characterizations of weakly right noethe-
rian semigroups in terms of the ascending chain condition and maximal condition on right
ideals. The proof of this result is essentially the same as that of the analogue for rings
and is omitted.

Proposition 3.1. The following are equivalent for a semigroup S:

(1) S is weakly right noetherian;

(2) S satisfies the ascending chain condition on right ideals; that is, every ascending
chain I1 ⊆ I2 ⊆ · · · of right ideals of S eventually terminates;

(3) every non-empty set of right ideals of S has a maximal element.
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We now provide characterizations of weakly right noetherian semigroups in terms of
their principal right ideals and also in terms of their R-class structure.

Theorem 3.2. The following are equivalent for a semigroup S :

(1) S is weakly right noetherian;

(2) S satisfies the ascending chain condition on principal right ideals and contains no
infinite antichain of principal right ideals (under ⊆).

(3) the poset of R-classes of S contains no infinite strictly ascending chain or infinite
antichain.

Proof. (1) ⇒ (2). By Proposition 3.1, S certainly satisfies the ascending chain condi-
tion on principal right ideals. The fact that S contains no infinite antichain of principal
right ideal was proven in [12, Lemma 1.6], but we provide a proof for completeness.

Suppose for a contradiction that there exists an infinite antichain {aiS
1 : i ∈ N} of

principal right ideals of S. For each n ∈ N, let In = {a1, . . . , an}S1. Suppose that Im = In
for some m ≤ n. Then an ∈ aiS

1 for some i ≤ m. It must be the case that i = m = n,
for otherwise the incomparability of aiS

1 and anS
1 would be contradicted. But then we

have an infinite strictly ascending chain

I1 � I2 � · · ·

of right ideals of S, contradicting Proposition 3.1.
(2) ⇒ (1). Suppose that S is not weakly right noetherian yet the poset of principal

right ideals of S does satisfy the ascending chain condition. We need to construct an
infinite antichain of principal right ideals of S.

By Proposition 3.1, there exists an infinite strictly ascending chain

I1 � I2 � · · ·

of right ideals of S. Choose elements a1 ∈ I1 and ak ∈ Ik\Ik−1 for k ≥ 2. Then certainly
akS

1 is not contained in any ajS
1, j < k, since ajS

1 ⊆ Ij and ak ∈ Ik\Ij .
Consider the infinite set {aiS

1 : i ∈ N} of principal right ideals of S. This set contains a
maximal element, say ak1S

1; that is, ak1S
1 is not contained in any ajS

1, j = k1. Indeed,
if this were not the case, then there would exist an infinite strictly ascending chain of
principal right ideals of S, contradicting the assumption.

Now consider the infinite set {aiS
1 : i ≥ k1 + 1}. Again, this set contains a maximal

element, say ak2S
1. Thus ak2S

1 is not contained in ajS
1 for any j > k1, j = k2. In fact,

ak2S
1 is not contained in ajS

1 for any j ∈ N\{k2}, since, as observed above, ak2S
1 is not

contained in any ajS
1, j < k.

Continuing this process ad infinitum, we obtain an infinite antichain {aki
S1 : i ∈ N} of

principal right ideals of S, as required.
(2) ⇔ (3). This follows from the fact, established in § 2, that the poset of R-classes of

S is isomorphic to the poset of principal right ideals of S. �
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Corollary 3.3. Any semigroup with finitely many R-classes is weakly right noetherian.
In particular, all finite semigroups and all right simple semigroups (which include groups)
are weakly right noetherian.

Remark 3.4. The condition that every (two-sided) ideal of a semigroup S is finitely
generated has been considered in [1, 15]. By an argument essentially the same as the proof
of Theorem 3.2, this condition is equivalent to S satisfying the ascending chain condition
on principal ideals and containing no infinite antichain of principal ideals, and also to
S containing no infinite strictly ascending chain or infinite antichain of J -classes. Any
weakly right noetherian semigroup satisfies this condition (since every ideal is a one-sided
ideal), but the converse does not hold. Indeed, any simple semigroup trivially satisfies
the condition that every ideal is finitely generated, but there exist simple semigroups
that are not right noetherian; e.g. any completely simple semigroup with infinitely many
R-classes (see Corollary 6.21).

The following result shows that there exist semigroups that satisfy the ascending chain
condition on principal right ideals but are not weakly right noetherian.

Proposition 3.5. Let X be a non-empty set. Then the free semigroup FX on X satisfies
the ascending chain condition on principal right ideals. However, FX is weakly right
noetherian if and only if |X| = 1.

Proof. Consider two elements u, v ∈ FX . Clearly, uF 1
X � vF 1

X if and only if v is a
proper prefix of u, in which case |u| > |v|. It follows that there cannot exist an infinite
strictly ascending chain of principal right ideals of FX .

If |X| = 1, then clearly FX
∼= N contains no incomparable elements, so it is weakly

right noetherian by Theorem 3.2.
Suppose |X| ≥ 2, and choose distinct elements x, y ∈ X. For i = j, the element xiy is

not a prefix of xjy, so FX contains an infinite antichain {(xiy)F 1
X : i ∈ N} of principal

right ideals. Hence, FX is not weakly right noetherian by Theorem 3.2. �

Remark 3.6. We can readily deduce from Proposition 3.5 that the property of being
weakly right noetherian is not closed under subsemigroups. Indeed, the free semigroup
FX is a subsemigroup of the free group on X, which is certainly weakly right noetherian.

Monoid acts play the analogous role in the theory of monoids to that of modules in
the theory of rings. It is well known that a ring R is right Noetherian if and only if
every finitely generated right R-module is Noetherian (i.e. it satisfies the ascending chain
condition on its submodules) [8, Corollary 1.4]. We now present the analogue of this result
for monoid acts.

Proposition 3.7. The following are equivalent for a monoid M :

(1) M is weakly right noetherian;

(2) every finitely generated right M -act is noetherian.
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Proof. (1) ⇒ (2). Let A be a right M -act with a finite generating set X, and let B be
a subact of A. For each x ∈ X, we define a set

Ix = {m ∈M : xm ∈ B}.
Let X ′ be the set of elements in X such that Ix = ∅. Since B is a subact of A, we have
that Ix is a right ideal of S for each x ∈ X ′. Since M is weakly right noetherian, for
each x ∈ X ′ there exists a finite set Ux ⊆ Ix such that Ix = UxM. We claim that B is
generated by the set

U =
⋃

x∈X′
xUx.

Indeed, let b ∈ B. Since b ∈ A, we have that b = xm for some x ∈ X and m ∈M. Now
m ∈ Ix, so m = un for some u ∈ Ux and n ∈M, and hence b = (xu)n ∈ UM.

(2) ⇒ (1). This follows from the fact that the right ideals of M are subacts of the cyclic
right M -act M. �

For commutative semigroups, clearly the properties of being weakly right noetherian
and being weakly left noetherian coincide. It is a well-known result, due to Rédei [24],
that every congruence on a finitely generated commutative semigroup is finitely generated;
that is:

Theorem 3.8 (Rédei [24]). Every finitely generated commutative semigroup is noetherian
(and hence weakly noetherian).

In the remainder of this section, we state some useful facts about weakly right
noetherian semigroups. The following lemma is well known and will be used repeatedly
throughout the remainder of the paper, usually without explicit mention.

Lemma 3.9. Let S be a semigroup and let X be a subset of S. If the right ideal XS1 of
S is finitely generated, then there exists a finite subset Y ⊆ X such that XS1 = Y S1.

Let S be a semigroup. An element s ∈ S is said to be decomposable if s ∈ S2. An
element is indecomposable if it is not decomposable.

Lemma 3.10. Let S be a weakly right noetherian semigroup. Then S has only finitely
many indecomposable elements.

Proof. Since S is weakly right noetherian, S is finitely generated as a right ideal; that
is, there exists a finite set X ⊆ S such that S = XS1. Therefore, we have that S\X ⊆ S2,
so S has at most |X| indecomposable elements. �

We now show that a semigroup composed of a finite union of weakly right noetherian
subsemigroups is also weakly right noetherian.

Lemma 3.11. Let S be a semigroup, and suppose that S is a union of subsemigroups
S1, . . . , Sn. If each Si is weakly right noetherian, then S is also weakly right noetherian.

Proof. Let I be a right ideal of S. For j ∈ {1, . . . , n}, let Ij be the restriction of I to
Sj . Then Ij is a right ideal of Sj . Since Sj is weakly right noetherian, Ij is generated by
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some finite set Xj . We claim that I is generated by the finite set X =
⋃n

i=1Xi. Indeed,
if a ∈ I, then a ∈ Ij = XjS

1
j for some j ∈ {1, . . . , n}. �

4. Quotients and ideals

In this section, we consider the relationship between a semigroup and its quotients and
ideals with regard to the property of being weakly right noetherian. We first show that
this property is closed under quotients (or, equivalently, homomorphic images).

Lemma 4.1. Let S be a semigroup and let ρ be a congruence on S. If S is weakly right
noetherian, then so is S/ρ.

Proof. Let I be a right ideal of S/ρ, and define a set

J = {a ∈ S : [a]ρ ∈ I}.

It is clear that J is a right ideal of S. Since S is weakly right noetherian, J is generated by
a finite set X. We claim that ρ is generated by the finite set Y = {[x]ρ : x ∈ X}. Indeed,
let u ∈ I. Select a ∈ S such that [a]ρ = u. Then a = xs for some x ∈ X and s ∈ S1. If
s = 1, then u = [x]ρ ∈ Y. Otherwise, we have u = [x]ρ[s]ρ ∈ Y (S/ρ), as required. �

Remark 4.2. The converse of Lemma 4.1 does not hold. Indeed, the free semigroup FX

with |X| ≥ 2 is not weakly right noetherian by Proposition 3.5, but there certainly exist
quotients of FX that are weakly right noetherian.

If ρ is a congruence contained in R, then the converse of Lemma 4.1 holds. In fact, we
have:

Lemma 4.3. Let S be a semigroup and let ρ ⊆ R be a congruence on S. Then the poset
of R-classes of S is isomorphic to the poset of R-classes of S/ρ. In particular, S is weakly
right noetherian if and only if S/ρ is weakly right noetherian.

Proof. Let P be the poset of principal right ideals of S, and let Q be the poset of
principal right ideals of S/ρ. Since the poset of principal right ideals of a semigroup is
isomorphic to the poset of R-classes, it suffices to prove that P and Q are isomorphic.
It then follows from Theorem 3.2 that S is weakly right noetherian if and only if S/ρ is
weakly right noetherian.

Define a map θ : P → Q, aS1 �→ [a]ρ(S/ρ)1. Clearly, θ is surjective, so we just need
to show that aS1 ⊆ bS1 if and only if [a]ρ(S/ρ)1 ≤ [b]ρ(S/ρ)1. It is clear that the for-
ward direction holds. Conversely, if [a]ρ(S/ρ)1 ⊆ [b]ρ(S/ρ)1 then [a]ρ = [b]ρu for some
u ∈ (S/ρ)1. If u = 1, then (a, b) ∈ ρ ⊆ R, so aS1 = bS1. If u ∈ S/ρ, then u = [s]ρ for
some s ∈ S. Then (a, bs) ∈ ρ ⊆ R, so aS1 = (bs)S1 ⊆ bS1, as required. �

The following question naturally arises from Lemma 4.3.

Open Problem 4.4. Given a semigroup S and congruence ρ on S, what is the
relationship between the poset of R-classes of S and the poset of R-classes of S/ρ?
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Remark 4.5. It is natural to wonder whether certain results about weakly right noethe-
rian semigroups, such as Theorem 3.2 and Lemma 4.1, can be derived from more general
results about posets. In particular, inspired by Theorem 3.2, one could investigate the
finiteness condition that a poset contains no infinite ascending chain or infinite antichain.
For instance, is this condition closed under homomorphic images?

The next result states that if a right ideal I of a semigroup S is weakly right noetherian
and the Rees quotient of the S-act S by I (where I is regarded as a subact of S) is
noetherian, then S is weakly right noetherian.

Proposition 4.6. Let S be a semigroup and let I be a right ideal of S. If I is weakly
right noetherian and S/I is noetherian (as an S-act), then S is weakly right noetherian.

Proof. Let J be a right ideal of S. Suppose first that I ∩ J = ∅. Then J ⊆ S\I and J
may be viewed as a subact of S/I. Since S/I is noetherian, there exists a finite set U ⊆ I
such that J = US1. Thus J is finitely generated as a right ideal of S.

Now suppose that I ∩ J = ∅. Then I ∩ J is a right ideal of I. Since I is weakly right
noetherian, I ∩ J is generated by some finite set X. Considering J as an S-act, the Rees
quotient A = J/(I ∩ J) is a subact of S/I. Since S/I is noetherian, there exists a finite
set Y ⊆ A such that A = Y S1. Let Y ′ = Y \{0}. We claim that J = (X ∪ Y ′)S1.

Indeed, let a ∈ J. If a ∈ I, then a ∈ X(I ∩ J)1. If a ∈ J\I, then a ∈ A, so a = ys for
some y ∈ Y and s ∈ S1. Since a ∈ S\I, we must have y ∈ Y ′. In either case, we have
a ∈ (X ∪ Y ′)S1, as required. �

Corollary 4.7. Let S be a semigroup and let I be an ideal of S. If both I and the Rees
quotient S/I are weakly right noetherian, then S is weakly right noetherian.

Proof. We shall prove that S/I, viewed as the Rees quotient of the S-act S by the
subact I, is a noetherian S-act. It then follows from Proposition 4.6 that S is weakly
right noetherian.

So, let A be a subact of S/I. We need to prove that A is finitely generated. Fix an
element z ∈ I. We claim that A is a right ideal of S/I (considered as a semigroup).
Indeed, let a ∈ A and u ∈ S/I. If a, u ∈ S\I, then au ∈ A since A is a subact of S/I.
Otherwise, we have a = 0 or u = 0, in which case au = 0 ∈ A. (Since A is a subact of
S/I, we have 0 = a · z ∈ A.) Since S is weakly right noetherian, there exists a finite set
X ⊆ A such that A = X(S/I)1. We claim that A = XS1. Indeed, if a ∈ A, then a = xu
for some x ∈ X and u ∈ (S/I)1. If a ∈ S1\I, then u ∈ S1\I. Otherwise, a = 0 = xz. This
completes the proof. �

Recall that in a semigroup S with a principal series K(S) = I1 ⊆ · · · ⊆ In = S, the
kernel K(S) and the Rees quotients Ik+1/Ik are the principal factors of S. Therefore,
if all the principal factors are weakly right noetherian, then by successively applying
Corollary 4.7, we deduce that S is weakly right noetherian.

Corollary 4.8. Let S be a semigroup with a principal series. If all the principal factors
of S are weakly right noetherian, then S is weakly right noetherian.
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Although ideals of weakly right noetherian semigroup are not in general weakly right
noetherian (see, for instance, Example 8.3), they do satisfy the ascending chain condition
on principal right ideals. In fact, we prove a stronger statement:

Proposition 4.9. Let S be a semigroup and let I be an ideal of S. If S satisfies the
ascending chain condition on principal right ideals, then so does I.

Proof. Consider an infinite ascending chain

a1I
1 ⊆ a2I

1 ⊆ · · ·

of principal right ideals of I. Then for each i, j ∈ N with i < j, there exists ui,j ∈ I1 such
that ai = ajui,j . Clearly, we have an infinite ascending chain

a1S
1 ⊆ a2S

1 ⊆ · · ·

of principal right ideals of S. By assumption, there exists n ∈ N such that amS
1 = anS

1

for all m ≥ n. Let m > n. If un,m = 1, then an = am. Now suppose that un,m ∈ I. There
exists sm ∈ S1 such that am = ansm, and hence

am = ansm = amun,msm = an(smun,msm).

We have that smun,msm ∈ I since I is an ideal, so am ∈ anI. Since anI
1 ⊆ amI

1, we
conclude that anI

1 = amI
1. Since m was chosen arbitrarily, we have shown that the

above ascending chain of principal right ideals of I terminates at anI
1. �

5. Subsemigroups

As mentioned previously, subsemigroups of weakly right noetherian semigroups need not
be weakly right noetherian themselves. In this section, we explore various situations in
which the property of being weakly right noetherian passes from a semigroup S to a
subsemigroup T, and vice versa.

Lemma 5.1. Let S be a semigroup, and let T be a subsemigroup of S such that S\T is
contained in a finite union of R-classes. If T is weakly right noetherian, then S is weakly
right noetherian.

Proof. Let I be a right ideal of S. Then I ∩ T is a right ideal of T. Since T is weakly
right noetherian, there exists a finite set X ⊆ I ∩ T such that I ∩ T = XT 1.

Let R1, . . . , Rn be the R-classes that intersect with S\T. For each i ∈ {1, . . . n}, fix
ri ∈ Ri. It is easy to see that if I intersects an R-class R, then R ⊆ I. We claim that I
is generated by the finite set

Y = X ∪ {ri : Ri ⊆ I, 1 ≤ i ≤ n}.

Indeed, let a ∈ I. If a ∈ T, then a ∈ I ∩ T = XT 1. If a ∈ S\T, then a = ris for some
i ∈ {1, . . . n} and s ∈ S1. Hence, in either case, we have that a ∈ Y S1. �
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Remark 5.2. The converse of Lemma 5.1 does not hold. Indeed, in Remark 6.10, an
example is provided of a weakly right noetherian semigroup S with a subsemigroup T
such that S\T is a group and T is not weakly right noetherian.

In [27], Wallace introduced the idea of Greens’ relations taken relative to a subsemi-
group. Let S be a semigroup and let T be a subsemigroup of S. The T -relative Green’s
relation RT on S is given by

aRT b ⇐⇒ aT 1 = bT 1.

The relation LT is defined dually, and HT = RT ∩ LT . The relations DT and J T are
defined in a similar way. All of these relations are equivalence relations on S, and they
respect T in the sense that each class lies entirely in T or entirely in S\T. The subsemi-
group T is said to have finite Green index in S if there are only finitely many HT -classes
in S\T. The notion of Green index for subsemigroups was introduced in [10].

Proposition 5.3. Let S be a semigroup, and let T be a subsemigroup of S such that
S\T is a finite union of RT -classes. Then S is weakly right noetherian if and only if T
is weakly right noetherian.

Proof. (⇒) Let I be a right ideal of T . Let I ′ = IS1; that is, the right ideal of S
generated by I. Since S is weakly right noetherian, we have that I ′ is generated by some
finite subset X ⊆ I by Lemma 3.9. Let R1, . . . , Rn be the RT -classes in S\T, and for
each i ∈ {1, . . . n} fix ri ∈ Ri. We claim that I is generated by the finite set

Y = X ∪ {xri ∈ I : x ∈ X, 1 ≤ i ≤ n}.
Indeed, let a ∈ I. Then a ∈ I ′, so a = xs for some x ∈ X and s ∈ S1. If s ∈ T 1, then
a ∈ Y T 1. If s ∈ S\T, then s ∈ Ri for some i ∈ {1, . . . , n}, so there exist t, u ∈ T 1 such
that s = rit and ri = su. Then xri = (xs)u = au ∈ I, and hence a = xs = (xri)t ∈ Y T 1,
as required.

(⇐) Each RS-class is a union of RT -classes by [10, Proposition 9], so S\T is contained
in a finite union of RS-classes, and hence S is weakly right noetherian by Lemma 5.1. �

Corollary 5.4. Let S be a semigroup and let T be subsemigroup of S with finite Green
index. Then S is weakly right noetherian if and only if T is weakly right noetherian.

Corollary 5.5. Let S be a semigroup, and let T be a subsemigroup of S such that S\T
is finite. Then S is weakly right noetherian if and only if T is weakly right noetherian.

In particular, S is weakly right noetherian if and only if S1 is weakly right noetherian
if and only if S0 is weakly right noetherian.

Let S be a semigroup and T a subsemigroup of S. It is easy to see that Green’s
R-preorder on T is contained in the restriction of Green’s R-preorder on S to T ; that is,

≤RT
⊆≤RS

∩ (T × T ).

We say that T preserves R (in S), or is R-preserving, if

≤RT
=≤RS

∩ (T × T ).
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It can be easily shown that if T preserves R, then RT is the restriction of RS to T.
The next result states that the property of being weakly right noetherian is inherited by
R-preserving subsemigroups.

Proposition 5.6. Let S be a semigroup and let T be an R-preserving subsemigroup of
S. If S is weakly right noetherian, then so is T.

Proof. Let I be a right ideal of T, and let I ′ = IS1. Since S is weakly right noetherian,
I ′ = XS1 for some finite subset X ⊆ I. If a ∈ I, then a ∈ xS1 for some x ∈ X, so a ≤RS

x.
By assumption, we have a ≤RT

x, so a ∈ xT 1. Thus I = XT 1 is finitely generated. �

For a regular subsemigroup T of a semigroup S, Green’s relation RT is the restriction
of RS to T (likewise, LT and HT are the restrictions to T of LS and HS , respectively)
[13, Proposition 2.4.2]. In fact, T preserves R. Indeed, if a, b ∈ T and a ≤RS

b, then there
exists s ∈ S1 such that a = bs. Letting b′ be any inverse of b, we have that a = bb′bs =
b(b′a) ∈ bT, so a ≤RT

b, as required. Thus, by Proposition 5.6, we have:

Corollary 5.7. Let S be a semigroup with a regular subsemigroup T. If S is weakly right
noetherian, then so is T.

We say that a semigroup S has local right identities if a ∈ aS for every a ∈ S. It is easy
to show that the class of semigroups with local right identities includes all regular semi-
groups, right simple semigroups and monoids. The notion of having local right identities
will be crucial in § 6.1.

Corollary 5.8. Let S be a semigroup, and let I be a right ideal of S with local right
identities. If S is weakly right noetherian, then so is I.

Proof. We prove that I preserves R in S. We just need to show that ≤RS
∩ (I ×

I) ⊆≤RI . So, let (a, b) ∈ I × I and a ≤RS
b. Then a ∈ bS1. Since I is a right ideal with

local right identities, we have

a ∈ bS1 ⊆ (bI)S1 = b(IS1) ⊆ bI,

so a ≤RI
b, as required. �

A subsemigroup T of a semigroup S is called right unitary (in S) if it satisfies the
following condition: for all a ∈ T and b ∈ S, if ab ∈ T then b ∈ T.

Clearly, a right unitary subsemigroup is R-preserving, so we deduce the following
corollary, first proven in [14], from Proposition 5.6.

Corollary 5.9 (Jespers and Okniński [14, Lemma 1.1(1)]). Let S be a semigroup and let
T be a right unitary subsemigroup of S. If S is weakly right noetherian, then so is T.

If the complement of a subsemigroup is a left ideal, then the subsemigroup is right
unitary, so we have:

Corollary 5.10. Let S be a semigroup with a subsemigroup T such that S\T is a left
ideal of S. If S is weakly right noetherian, then so is T.
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Corollary 5.11. Let S be a semigroup with a subsemigroup T such that S\T is a weakly
right noetherian ideal of S. Then S is weakly right noetherian if and only if T is weakly
right noetherian.

Proof. The direct implication follows from Corollary 5.10. For the converse, let I =
S\T . Since T is weakly right noetherian, so is S/I ∼= T ∪ {0} by Corollary 5.5. It now
follows from Corollary 4.7 that S is weakly right noetherian. �

The final part of this section concerns semigroups with a kernel.

Proposition 5.12. Let S be a semigroup with a minimal right ideal. If S is weakly
right noetherian, then the kernel K = K(S) is a finite union of pairwise incomparable
RK-classes and is hence weakly right noetherian.

Proof. The kernel K is the union of all the minimal right ideals of S [3, Theorem 2.1].
Due to their minimality, these minimal right ideals are single RS-classes and are pairwise
incomparable. By Theorem 3.2, there are only finitely many of them. By [3, Theorem
2.4], each of these minimal right ideals is a single RK-class (so K is R-preserving). It
now follows from Corollary 3.3 that K is weakly right noetherian. �

Let S be a semigroup with a zero 0. The right socle of S, denoted by Σr(S), is the union
of {0} and all the 0-minimal right ideals of S. It turns out that Σr(S) is an ideal of S, as
noted in [4, Section 6.3]. A similar argument to the one in the proof of Proposition 5.12
yields:

Proposition 5.13. Let S be a semigroup with zero. If S is weakly right noetherian, then
the right socle Σr(S) consists of {0} and a finite union of incomparable R-classes, and
hence Σr(S) is weakly right noetherian.

Open Problem 5.14. Let S be a weakly right noetherian semigroup with a kernel K. Is
K also weakly right noetherian? If K = {0} and S has a 0-minimal ideal M, is M weakly
right noetherian?

6. Constructions

In this section, we investigate the behaviour of the property of being weakly right noethe-
rian under the following semigroup-theoretic constructions: direct products, free products,
semilattices of semigroups, Rees matrix semigroups, Brandt extensions and Bruck–Reilly
extensions.

6.1. Direct products

The problem of whether the property of being weakly right noetherian is preserved
under direct products was previously considered in [6], where it was shown that the direct
product of two weakly right noetherian commutative monoids is weakly right noetherian
[6, Theorem 3.8].

The purpose of this subsection is to provide necessary and sufficient conditions for the
direct product of two semigroups to be weakly right notherian.
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Recall that a semigroup S has local right identities if a ∈ aS for every a ∈ S.

Theorem 6.1. Let S and T be two semigroups with S infinite.

(1) Suppose T is infinite. Then S × T is weakly right noetherian if and only if both S
and T are weakly right noetherian and have local right identities.

(2) Suppose T is finite. Then S × T is weakly right noetherian if and only if S is weakly
right noetherian and T has local right identities.

In order to prove Theorem 6.1, we first present a couple of preliminary results.

Lemma 6.2. Let S and T be two semigroups with S infinite. If S × T is weakly right
noetherian, then T has local right identities.

Proof. Let t ∈ T, and let I be the right ideal of S × T generated by the set {(s, t) :
s ∈ S}. Since S × T is weakly right noetherian, there exists a finite set X ⊆ S such that
I is generated by the set {(x, t) : x ∈ X}.

Choose s ∈ S\X. Then (s, t) = (x, t)w for some x ∈ X and w ∈ (S × T )1. Since s = x,
we conclude that w ∈ S × T, so w = (u, v) for some u ∈ S and v ∈ T. It follows that
t = tv ∈ tT. Since t was chosen arbitrarily, T has local right identities. �

Proposition 6.3. Let S and T be two semigroups with local right identities. If both S
and T are weakly right noetherian, then S × T is weakly right noetherian.

Proof. Let I be a right ideal of S × T. For each a ∈ S, define a set

IT
a = {t ∈ T : (a, t) ∈ I}.

We claim that IT
a is a right ideal of T. Indeed, let t ∈ IT

a and u ∈ T. Since S has local
right identities, there exists s ∈ S such that as = a. Since I is a right ideal of S × T, we
have that (a, tu) = (a, t)(s, u) ∈ I, so tu ∈ IT

a .
Similarly, for each b ∈ T we define a right ideal

IS
b = {s ∈ S : (s, b) ∈ I}

of S. We now make the following claim.

(1) There exists a finite set X ⊆ S with the following property: for each a ∈ S, there
exists x ∈ X such that a ∈ xS and IT

a = IT
x .

(2) There exists a finite set Y ⊆ T with the following property: for each b ∈ T, there
exists y ∈ Y such that b ∈ yT and IS

b = IS
y . �

Proof of claim. Clearly, it is enough to prove (1). We shall just write Ia for IT
a .

Suppose there are infinitely many right ideals of the form Ia. Note that for any a, s ∈ S,
we have Ia ⊆ Ias. Write S = J1. Since S is weakly right noetherian, there exists a finite
set X1 ⊆ J1 such that J1 = X1S

1. In fact, we have J1 = X1S, since S having local right
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identities implies that X1 ⊆ X1S. By our assumption, there exists x1 ∈ X1 such that
there are infinitely many a ∈ x1S with Ia = Ix1 . Consider the set

J2 = {a ∈ x1S : Ia = Ix1}.

If a ∈ J2 and s ∈ S, then Ix1 � Ia ⊆ Ias, so as ∈ J2, and hence J2 is a right ideal of S.
Since S is weakly right noetherian, there exists a finite set X2 ⊆ J2 such that J2 = X2S,
and there exists x2 ∈ X2 such that there are infinitely many a ∈ x2S with Ia = Ix2 .
Continuing in this way, we obtain an infinite ascending chain

Ix1 ⊂ Ix2 ⊂ · · ·

of right ideals of T, but this contradicts the fact that T is weakly right noetherian. Hence,
there exists a finite set U ⊆ S such that Ia ∈ {Iu : u ∈ U} for every a ∈ S. For each u ∈ U,
let Ku be the right ideal of S generated by the set

Hu = {a ∈ S : Ia = Iu}.

Since S is weakly right noetherian, there exists finite set Xu ⊆ Hu such that Hu = XuS.
Now set X =

⋃
u∈U Xu. It is clear that X satisfies the condition in the statement of the

claim.
Returning to the proof of Proposition 6.3, we claim that I is generated by the finite

set Z = I ∩ (X × Y ). Indeed, let (a, b) ∈ I. Then a ∈ IS
b and b ∈ IT

a . By the above claim,
there exist x ∈ X and s ∈ S such that a = xs and IT

a = IT
x , and there exist y ∈ Y and

t ∈ T such that b = yt and IS
b = IS

y . We have that

a ∈ IS
b = IS

y =⇒ (a, y) ∈ I =⇒ y ∈ IT
a = IT

x =⇒ (x, y) ∈ I.

We conclude that

(a, b) = (x, y)(s, t) ∈ Z(S × T ),

as required. �

We are now ready to prove Theorem 6.1.

Proof of Theorem 6.1. Is S × T is weakly right noetherian, then both S and T,
being homomorphic images of S × T, are weakly right noetherian by Lemma 4.1, and
T has local right identities by Lemma 6.2. If T is infinite, then S also has local right
identities by Lemma 6.2.

For the case that T is infinite, the converse follows immediately from Proposition 6.3.
Now assume that T is finite, and suppose that S is weakly right noetherian and T has
local right identities. We have that S1 is weakly right noetherian by Corollary 5.5, and
clearly S1 has local right identities. Therefore, by Proposition 6.3, we have that S1 × T
is weakly right noetherian. Since (S1 × T )\(S × T ) is finite, it follows from Corollary 5.5
that S × T is weakly right noetherian. �
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6.2. Free products

We shall define the free product of two semigroups (respectively monoids) in terms of
semigroup (respectively monoid) presentations. For more information about semigroup
and monoid presentations, we refer the reader to [3, Section 9.1].

Given two semigroups S and T defined by presentations 〈X |Q〉 and 〈Y |R〉, respec-
tively, the semigroup free product of S and T, denoted by S ∗ T, is the semigroup
defined by the presentation 〈X, Y |Q, R〉. If S and T are monoids, then the monoid
free product of S and T, denoted by S ∗1 T, is the monoid defined by the presentation
〈X, Y |Q, R, 1S = 1T 〉, where 1S is a fixed word over X representing the identity of S
and 1T is a fixed word over Y representing the identity of T. In the case that S and T
are groups, the monoid free product S ∗1 T coincides with the group free product of S
and T ; this fact is noted in [13, Section 8.2, p. 266].

In the following, we provide necessary and sufficient conditions for the semigroup
(respectively monoid) free product of two semigroups (respectively monoids) to be weakly
right noetherian.

Theorem 6.4. Let S and T be two semigroups. Then S ∗ T is weakly right noetherian if
and only if both S and T are trivial.

Proof. We denote S ∗ T by U.
(⇒). Suppose that T is non-trivial, and choose a ∈ S and distinct elements b, c ∈ T.

For i ∈ N, let ui = (ab)iaca. Let I be the right ideal of U generated by the set X = {ui :
i ∈ N}. For any i ∈ N, the element ui cannot we written as ujv for any j = i and v ∈ U,
so X is a minimal generating set for I and hence I is not finitely generated. Therefore,
U is not weakly right noetherian.

(⇐). The semigroup U is defined by the presentation

〈e, f | e2 = e, f2 = f〉.
Then U is the disjoint union of the following subsemigroups:

〈ef〉 ∼= N, 〈fe〉 ∼= N, {(ef)ie : i ≥ 0} ∼= N0, {(fe)if : i ≥ 0} ∼= N0.

Since N and N0 are weakly right noetherian, it follows from Lemma 3.11 that U is weakly
right noetherian. �

Before stating our next result, we first make some definitions.
Let M and N be two disjoint monoids. A reduced sequence over M and N is a sequence

(u1, . . . , un) such that: ui ∈ (M ∪N)\{1M , 1N} for each i ∈ {1, . . . , n}; (ui, ui+1) ∈
M ×N or (ui, ui+1) ∈ N ×M for each i ∈ {1, . . . , n− 1}.

Every non-identity element of M ∗1 N can be uniquely written as u1 · · ·un for some
reduced sequence (u1, . . . , un) over M and N [4, Section 9.4]; the elements ui, 1 ≤ i ≤ n,
are called the free factors of u1 · · ·un.

Theorem 6.5. Let M and N be two monoids. Then M ∗1 N is weakly right noetherian
if and only if one of the following holds:

(1) M is weakly right noetherian and N is trivial, or vice versa;
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(2) both M and N contain precisely two elements;

(3) both M and N are groups.

Proof. We denote M ∗1 N by U. If N is trivial, then M is isomorphic to U, so we may
assume that both M and N are non-trivial.

(⇒). Suppose for a contradiction that |N | ≥ 3 and at least one of M and N is not a
group. A monoid in which every element is right invertible is a group. Therefore, we can
choose a ∈M\{1} and distinct elements b, c ∈ N\{1} such that at least one of a, b, c
is not right invertible. Let ui = (ab)iacab for i ∈ N, and let I be the right ideal of U
generated by {ui : i ∈ N}. Suppose that I is finitely generated. Then it can be generated
by a finite set

X = {ui : 1 ≤ i ≤ k}.

Then uk+1 = uiv for some i ∈ {1, . . . , k} and v ∈ U. Since at least one of a, b, c is not
right invertible, the first 2i+ 2 free factors of uiv are a, b, . . . , a, b, a, c. But the free
factor in position 2i+ 2 of uk+1 is b, so we have a contradiction. Hence, I is not finitely
generated and U is not weakly right noetherian.

(⇐). If M and N are both groups, then U is also a group and hence weakly right
noetherian.

Now suppose that both M and N contain precisely two elements and that N is not a
group. Then N is isomorphic to the two-element semilattice {1, 0}, and M is isomorphic
to either {1, 0} or Z2.

If M ∼= {1, 0}, then U is isomorphic to V 1 where V is the free product of two triv-
ial semigroups. It follows from Theorem 6.4 and Corollary 5.5 that U is weakly right
noetherian.

If M ∼= Z2, then U is defined by the monoid presentation

〈a, b | a2 = 1, b2 = b〉.

Let u1 = ab, u2 = ba and u3 = bab, and let Ui = {un
i : n ≥ 0} for i = 1, 2, 3. Also, let

U4 = {un
1 (aba) : n ≥ 0}. Then each Ui is isomorphic to the free monogenic monoid N0,

and U =
⋃4

i=1 Ui. Since N0 is weakly right noetherian, it follows from Lemma 3.11 that
U is weakly right noetherian. �

6.3. Semilattices of semigroups

Let Y be a semilattice and let (Sα)α∈Y be a family of disjoint semigroups, indexed by
Y. If S =

⋃
α∈Y Sα is a semigroup such that SαSβ ⊆ Sαβ for all α, β ∈ Y, then S is called

a semilattice of semigroups, and we denote it by S = S(Y, Sα).
Now let S =

⋃
α∈Y Sα, and suppose that for each α, β ∈ Y with α ≥ β there exists a

homomorphism φα,β : Sα → Sβ . Furthermore, assume that:

• for each α ∈ Y, the homomorphism φα,α is the identity map on Sα;

• for each α, β, γ ∈ Y with α ≥ β ≥ γ, we have φα,βφβ,γ = φα,γ .
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For a ∈ Sα and b ∈ Sβ , we define

ab = (aφα,αβ)(bφβ,αβ).

With this multiplication, S is a semilattice of semigroups. In this case, we call S a strong
semilattice of semigroups and denote it by S = S(Y, Sα, φα,β).

In the remainder of this section, we investigate under what conditions a (strong)
semilattice of semigroups is weakly right noetherian.

The following characterization of weakly right noetherian semilattices follows immedi-
ately from Theorem 3.2.

Proposition 6.6 (Gould et al. [9, Proposition 3.1]). Let Y be a (meet-)semilattice. Then
Y is weakly noetherian if and only if it contains no infinite strictly ascending chain or
infinite antichain of elements.

Since the semilattice Y is a homomorphic image of S = S(Y, Sα), by Lemma 4.1 we
have:

Lemma 6.7. Let S = S(Y, Sα) be a semilattice of semigroups. If S is weakly right
noetherian, then Y is weakly noetherian.

For a semilattice of semigroups S(Y, Sα) to be weakly right noetherian, it is not
required that all the Sα be weakly right noetherian. In order to show this, we consider
the following construction, which will be used again later in the paper.

Construction 6.8. Let S and T be two semigroups with homomorphisms θ, φ :
S → T. Let NT = {xt : t ∈ T} ∪ {0} be a null semigroup disjoint from S. We define a
multiplication on S ∪NT , extending those on S and NT , as follows:

s · xt = x(sθ)t, xt · s = xt(sφ).

With this multiplication, S ∪NT is a semigroup. We denote it by U(S, T ; θ, φ). We
simplify this expression in the case that S = T by only writing S once, and similarly if
θ = φ.

We may view U(S, T ; θ, φ) as a semilattice of semigroups, where the structure semi-
lattice is {α, 0} and the corresponding subsemigroups are S and NT , respectively. Every
non-zero element of a null semigroup is indecomposable, so infinite null semigroups are
not weakly right noetherian by Lemma 3.10. Therefore, the following result yields the
desired counterexample.

Proposition 6.9. Let S and T be two semigroups with homomorphisms θ, φ : S → T
where φ is surjective, and let U = U(S, T ; θ, φ). Then U is weakly right noetherian if and
only if S is weakly right noetherian.

Proof. If U is weakly right noetherian, then since U\S = NT is an ideal of U, we have
that S is weakly right noetherian by Corollary 5.10.

Conversely, suppose S is weakly right noetherian, and let I be a right ideal of U. Now
I ∩ S is either empty or a right ideal of S; in the latter case it is generated by a finite
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set Y since S is weakly right noetherian. We have that T is weakly right noetherian by
Lemma 4.1. In particular, T = AT 1 for some finite set A ⊆ T. For each a ∈ A, define a
set

Ia = {s ∈ S : xas ∈ I}.
Let A′ be the set of elements in A such that Ia = ∅. For each a ∈ A′, we have that Ia is a
right ideal of S, so it is generated by some finite set Ua since S is weakly right noetherian.
We claim that I is generated by the finite set

Z = Y ∪
( ⋃

a∈A′
xaU

1
a

)
.

Let u ∈ I. If u ∈ S, then u ∈ I ∩ S = Y S1. Clearly, 0 ∈ ZU, so we just need to consider
the case that u = xt for some t ∈ T. Then t = av for some a ∈ A and v ∈ T 1. If v = 1,
then u = xa ∈ Z. Otherwise, let s ∈ S be such that sθ = v, so s ∈ Ia = UaS

1. It follows
that u = xas ∈ (xaUa)S1, as required. �

Remark 6.10. In general, principal factors of weakly right noetherian semigroups need
not be weakly right noetherian. Indeed, let G be an infinite group. Then U = U(G, id) is
weakly right noetherian. It has three H = J -classes: G, J = {xg : g ∈ G} and {0}. The
principal factor of J is isomorphic to NG, which is not weakly right noetherian.

In the case that a semigroup Sβ , β ∈ Y, has local right identities, it is a necessary
condition for S = S(Y, Sα) to be weakly right noetherian that Sβ be weakly right
noetherian.

Lemma 6.11. Let S = S(Y, Sα) be a semilattice of semigroups, let β ∈ Y, and suppose
that Sβ has local right identities. If S is weakly right noetherian, then so is Sβ .

Proof. Let Y ′ = {α ∈ Y : α � β}, and let I =
⋃

α∈Y ′ Sα. Now, I is an ideal and T =
S\I is a subsemigroup of S, so T is weakly right noetherian by Corollary 5.10. Since Sβ is
an ideal of T with local right identities, it is weakly right noetherian by Corollary 5.8. �

The following corollary follows from Lemmas 6.11 and 3.11.

Corollary 6.12. Let S = S(Y, Sα) be a semilattice of semigroups where Y is finite and
each Sα has local right identities. Then S is weakly right noetherian if and only if each
Sα is weakly right noetherian.

We now consider the situation for strong semilattices of semigroups.

Proposition 6.13. Let S = S(Y, Sα, φα,β) be a strong semilattice of semigroups. If S
is weakly right noetherian, then Y is weakly noetherian and each Sα is weakly right
noetherian.

Proof. The semilattice Y is weakly noetherian by Lemma 6.7. Now let α ∈ Y.We prove
that Sα preserves R in S, and hence Sα is weakly right noetherian by Proposition 5.6.
We write R = RS and Rα = RSα

. We just need to show that ≤R ∩ (Sα × Sα) ⊆≤Rα
.

So, let a, b ∈ Sα and a ≤R b. Then a = bs for some s ∈ S1. If s = 1 then a = b, so assume
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that s ∈ S. Then s ∈ Sβ for some β ∈ Y. Since a = bs ∈ SαSβ ⊆ Sαβ , we conclude that
αβ = α. It follows that

a = (bφα,α)(sφβ,α) = b(sφβ,α) ∈ bSα,

so a ≤Rα
b, as required. �

Proposition 6.13 and Lemma 3.11 together yield:

Corollary 6.14. Let S = S(Y, Sα, φα,β) be a strong semilattice of semigroups where Y is
finite. Then S is weakly right noetherian if and only if each Sα is weakly right noetherian.

Example 7.17 below shows that the converse of Proposition 6.13 does not hold, even
in the case that each Sα is finite.

Open Problem 6.15. Find necessary and sufficient conditions for a strong semilattice
of semigroups to be weakly right noetherian.

6.4. Rees matrix semigroups and Brandt extensions

Let S be a semigroup, let I and J be two non-empty index sets, and let P = (pji) be
a J × I matrix with entries from S. The set I × S × J becomes a semigroup under the
multiplication given by

(i, s, j)(k, t, l) = (i, spjkt, l),

and is called the Rees matrix semigroup over S with respect to P . We denote this
semigroup by M(S; I, J ;P ).

We now modify the Rees matrix construction as follows. Let the matrix P have entries
from S0. The set (I × S × J) ∪ {0} with multiplication given by

(i, s, j)(k, t, l) =

{
(i, spjkt, l) if pjk ∈ S\{0}
0 if pjk = 0,

and 0(i, s, j) = (i, s, j)0 = 02 = 0, is a semigroup. It is called the Rees matrix semigroup
with zero over S with respect to P , and is denoted by M0(G; I, J ;P ).

A semigroup is said to be completely simple if it is simple and contains minimal left
and right ideals. A semigroup with zero is said to be completely 0-simple if it is 0-
simple and contains 0-minimal left and right ideals. Rees [25] proved that a semigroup
is completely 0-simple if and only if it is isomorphic to a Rees matrix semigroup with
zero M0(G; I, J ;P ) over a group G such that every row and column of P contains at
least one element in G. Consequently, a semigroup is completely simple if and only if it
is isomorphic to a Rees matrix semigroup M(G; I, J ;P ) over a group G.

We shall consider conditions under which a Rees matrix semigroup with zero
T = M0(S; I, J ;P ) is weakly right noetherian. We begin by considering what affect T
being weakly right noetherian has on S and the index sets I and J.

Lemma 6.16. Let T = M0(S; I, J ;P ) be weakly right noetherian.

(1) The semigroup S is weakly right noetherian and I is finite.
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(2) Let U be the ideal of S0 generated by the entries of P. If the set S\U is non-empty,
then both S\U and J are finite.

Proof. (1) Let A be a right ideal of S. Then B = (I ×A× J) ∪ {0} is a right ideal
of T. Since T is weakly right noetherian, there exists a finite set U ⊆ B such that
B = UB1. We may assume that U = I0 ×X × J0 for some finite sets I0 ⊆ I, X ⊆
A, J0 ⊆ J. We claim that I = I0 and A = XS1. Indeed, let i ∈ I, a ∈ A, and pick
any j ∈ J. Then (i, a, j) = (i0, x, j0)t for some (i0, x, j0) ∈ U and t ∈ T 1. It follows
that i = i0 ∈ I0 and a ∈ xS1 ⊆ XS1, as required.

(2) Notice that the set I × (S\U) × J consists of indecomposable elements of T ; it is
hence finite by Lemma 3.10. In particular, both S\U and J are finite. �

The converse of Lemma 6.16(1) does not hold in general. In order to show this, we first
present the following lemma.

Lemma 6.17. Let T = M0(S; I, J ;P ), let J ′ be a subset of J, let P ′ = (pji)j∈J′, i∈I ,
and let T ′ = M0(S; I, J ′;P ′). If T is weakly right noetherian, then so is T ′.

Proof. It is easy to see that T ′ is a right unitary subsemigroup of T, so it is weakly
right noetherian by Corollary 5.9. �

Example 6.18. Let T = M0(S; I, J ;P ) with S infinite, and suppose there exists j ∈ J
such that pji = 0 for all i ∈ I. Then T ′ = M0(S; I, {j};P ′), where P ′ = (pji)i∈I , is not
weakly right noetherian by Lemma 6.16(2) (in fact, T ′ is an infinite null semigroup). It
follows from Lemma 6.17 that T is not weakly right noetherian.

Remark 6.19. Let T = M(S; I, J ;P ) be a Rees matrix semigroup over an infinite semi-
group S with a zero 0 adjoined, where 0 /∈ S. If there exists j ∈ J such that pji = 0 for all
i ∈ I, then T ′ = M0(S; I, J ;P ) is not weakly right noetherian by Example 6.18. Since
T ′ is isomorphic to the Rees quotient of T by the ideal I × {0} × J, we deduce from
Lemma 4.1 that T is not weakly right noetherian.

The converse of Lemma 6.16(1) holds in the case that every row of the matrix contains
a unit.

Proposition 6.20. Let S = M0(M ; I, J ;P ) be a Rees matrix semigroup over a monoid
M, and suppose that for every j ∈ J there exists i ∈ I such that pji ∈ U(M). Then S is
weakly right noetherian if and only if M is weakly right noetherian and I is finite.

Proof. The direct implication follows from Lemma 6.16.
For the converse, let A be a right ideal of S. Note that if (i, u, j) ∈ A, then

(i, u, l) ∈ A for all l ∈ J. Indeed, there exists k ∈ I such that pjk ∈ U(M), so (i, u, l) =
(i, u, j)(k, p−1

jk , l) ∈ A. Now fix j0 ∈ J, and choose i0 ∈ I such that pj0i0 ∈ U(M). Let I ′
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be the set of elements of I that appear in A. For each i ∈ I ′, define a set

Ai = {u ∈M : (i, u, j0) ∈ A}.

We claim that Ai is a right ideal of S. Indeed, if u ∈ Ai and m ∈M, then

(i, um, j0) = (i, u, j0)(i0, p−1
j0i0

m, j0) ∈ Ai.

Since M is weakly right noetherian, there exist finite sets Xi ⊆ Ai, i ∈ I ′, such that
Ai = XiM. We claim that A is generated by the finite set

Y = {(i, x, j0) : i ∈ I ′, x ∈ Xi}.

Indeed, if (i, u, j) ∈ A then (i, u, j0) ∈ A, so u = xm for some x ∈ Xi andm ∈M. Hence,
we have (i, u, j) = (i, x, j0)(i0, p−1

j0i0
m, j) ∈ YM, as required. �

Corollary 6.21. Let S be a completely (0-)simple semigroup. Then S is weakly right
noetherian if and only if it has finitely many R-classes.

Proof. The semigroup S0 is completely 0-simple. It follows from Proposition 6.20
and Corollary 5.5 that S is weakly right noetherian if and only if it has finitely many
R-classes. �

We now consider Brandt extensions. Let S be a semigroup and let I be a non-empty
set. The set (I × S × I) ∪ {0} becomes a semigroup under the multiplication given by

(i, s, j)(k, t, l) =

{
(i, st, l) if j = k

0 otherwise,

and 0x = x0 = 0 for all x ∈ (I × S × I) ∪ {0}. It is called the Brandt extension of S by
I, and we denote it by B(S, I).

Notice that if S is a monoid, then B(S, I) is isomorphic to M0(S; I, I;P ) where P
is the I × I identity matrix. Brandt extensions of groups are precisely the completely
0-simple inverse semigroups [23, Theorem V.5.1].

Proposition 6.22. Let S be a semigroup and let I be a non-empty set. Then the Brandt
extension B(S, I) is weakly right noetherian if and only if S is weakly right noetherian
and I is finite.

Proof. Let T = B(S, I). We just need to prove that if T is weakly right noetherian,
then I is finite. Indeed, if I is finite, then B(S1, I)\T is finite. It then follows from
Corollary 5.5 and Proposition 6.20 that T is weakly right noetherian if and only if S is
weakly right noetherian.

So, suppose that T is weakly right noetherian. Then there exists a finite set U ⊆ T
such that T = UT 1. Let I0 be the elements of I appearing in U. Let i ∈ I, and pick
any s ∈ S. Then (i, s, i) = (i1, x, i2)t for some (i1, x, i2) ∈ U and t ∈ T 1. It follows that
i = i1 = i2 ∈ I0, and hence I = I0 is finite. �
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6.5. Bruck–Reilly extensions

Let M be a monoid with identity 1M and let θ : M →M be an endomorphism. We
define a binary operation on the set N0 ×M × N0 by

(j, a, k)(p, b, q) = (j − k + t, (aθt−k)(bθt−p), q − p+ t),

where t = max(k, p) and θ0 denotes the identity map on M. With this operation the
set N0 ×M × N0 is a monoid with identity (0, 1M , 0). It is denoted by BR(M, θ) and
is called the Bruck–Reilly extension of M determined by θ.

The bicyclic monoid is the set N0 × N0 with multiplication given by

(j, k)(p, q) = (j − k + t, q − p+ t),

where t = max(k, p). Clearly, the bicyclic monoid is a homomorphic image of BR(M, θ).
We note that the bicyclic monoid is a simple inverse monoid and is defined by the pre-
sentation 〈b, c|bc = 1〉. It is well known that every one-sided ideal of the bicyclic monoid
is principal, so we certainly have:

Lemma 6.23. The bicyclic monoid is weakly noetherian.

We shall provide necessary and sufficient conditions for a Bruck–Reilly extension to be
weakly right noetherian. In order to do so, we first make the following definition.

Let M be a monoid and let θ : M →M be an endomorphism. We call a sequence
(Ij)j∈N0 of right ideals of M a θ-sequence if Ijθ ⊆ Ij+1 for every j ≥ 0.

Theorem 6.24. Let M be a monoid and let θ : M →M be an endomorphism. Then
BR(M, θ) is weakly right noetherian if and only if the following conditions hold:

(1) M is weakly right noetherian;

(2) for any θ-sequence (Ij)j∈N0 of right ideals of M, there exists some n ∈ N0 with a
finite set Y ⊆ In such that In+r = (Y θr)M for all r ≥ 0.

Proof. We denote BR(M, θ) by N. Note that for any right ideal I of N, we have
(j, a, k) ∈ I if and only if (j, a, 0) ∈ I.

(⇒) The monoid M is isomorphic to the submonoid M0 = {0} ×M × {0} of N. It
can easily be shown M0 is right unitary in N, so M ∼= M0 is weakly right noetherian by
Corollary 5.9.

Now let (Ij)j∈N0 be a θ-sequence of right ideals of M. We define a set

I =
⋃

j∈N0

{(j, a, k) : a ∈ Ij , l ∈ N0}.

We claim that I is a right ideal of N. Indeed, let (j, a, k) ∈ I and (p, m, q) ∈ N. Then
A ∈ Ij . Let u denote the element

(j, a, k)(p,m, q) = (j − k + t, (aθt−k)(mθt−p), q − p+ t),

where t = max(k, p). If t = k, then u = (j, a(mθk−p), q − p+ k) ∈ I since Ij is a right
ideal of M. If t = p, then u = (j − k + p, (aθp−k)m, q) ∈ I, since (aθp−k) ∈ Ij−k+p and
Ij−k+p is a right ideal of M.
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Since N is weakly right noetherian, there exists a finite set X ⊆ I such that I = XN.
By the note given at the beginning of the proof, we may assume that the third coordinate
of each element of X is 0. Set n = max{j : (j, a, 0) ∈ X}, and let

Y = {aθn−j : (j, a, 0) ∈ X} ⊆ In.

Let r ≥ 0 and let b ∈ In+r. Then (n+ r, b, 0) ∈ I, so there exist (j, a, 0) ∈ X and
(p, m, q) ∈ N such that (n+ r, b, 0) = (j, a, 0)(p, m, q). It follows that n+ r = j + p,
b = (aθp)m and q = 0. Hence, we have that

b = (aθn+r−j)m =
(
(aθn−j)θr

)
m ∈ (Y θr)M,

so In+r = (Y θr)M, as required.
(⇐) Let I be a right ideal of N. For each j ∈ N0 define a set

Ij = {a ∈M : (j, a, 0) ∈ I}.

Clearly, Ij is either empty or a right ideal of N. Let n0 be minimal such that In0 is
non-empty. For any j ≥ n0, we have

a ∈ Ij =⇒ (j, a, 0) ∈ I =⇒ (j + 1, aθ, 0) = (j, a, 0)(1, 1M , 0) ∈ I =⇒ aθ ∈ Ij+1,

so Ijθ ⊆ Ij+1. Thus (Ij)j≥n0 is a θ-sequence of right ideals of M. By assumption, there
exists n ≥ n0 with a finite set Y ⊆ In such that In+r = (Y θr)M for all r ≥ 0. Since M
is weakly right noetherian, for each j ∈ {n0, . . . , n− 1} there exists a finite set Xj ⊆ Ij
such that Ij = XjM. Writing Y = Xn, we claim that I is generated by the finite set

X =
n⋃

j=n0

{(j, x, 0) : x ∈ Xj}.

Let (j, a, k) ∈ I. Then a ∈ Ij and j ≥ n0. If j < n, then a = xm for some x ∈ Xj and
m ∈M, so we have

(j, a, k) = (j, x, 0)(0,m, k) ∈ XM.

If j ≥ n, then a = (xθj−n)m for some x ∈ Xn and m ∈M, and hence

(j, a, k) = (n, x, 0)(j − n,m, k) ∈ XM,

as required. �

Corollary 6.25. Let M be a monoid and let θ : M → U(M) be a homomorphism. Then
BR(M, θ) is weakly right noetherian if and only if M is weakly right noetherian.

Proof. The forward direction follows immediately from Theorem 6.24. For the con-
verse, let (Ij)j∈N0 be a θ-sequence of right ideals of M. For any j ∈ N0, we have
Ijθ ∈ U(M) and Ijθ ⊆ Ij+1, so Ij+1 ∩ U(M) = ∅. Since Ij+1 is a right ideal of M, it
follows that Ij+1 = M. Thus M = I1 = I2 = · · · , and I1+r = ({1M}θr)M for all r ≥ 0.
Hence, BR(M, θ) is weakly right noetherian by Theorem 6.24. �
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We deduce from Theorem 6.24 that the Bruck–Reilly extension of a weakly right
noetherian monoid (indeed, even a finite monoid) need not be weakly right noetherian.

Lemma 6.26. Let M be a monoid. Suppose there exists a right ideal I of M, an ele-
ment a ∈M\I, and a monoid homomorphism θ : M →M such that (I ∪ {a})θ ⊆ I. Then
BR(M, θ) is not weakly right noetherian.

Proof. Let J be the right ideal aM ∪ I, and consider the infinite θ-sequence J, J, . . . .
Since Jθ ⊆ I � J, this sequence does not satisfy the condition in (2) of Theorem 6.24, so
BR(M, θ) is not weakly right noetherian. �

Remark 6.27. The condition of Lemma 6.26 is satisfied by the bicyclic monoid: let
a = (1, 0), let I = (2, 0)B, and let θ : B → B be given by (i, j)θ = (2i, 2j).

This condition is also satisfied by any monoid M such that M\U(M) is an ideal
containing an idempotent e and an element a /∈ eM (e.g. the 2-element null semigroup
with an identity adjoined). Indeed, let I = eM and let θ : M →M be the endomorphism
given by U(M)θ = {1} and

(
M\U(M)

)
θ = {e}. Then (I ∪ {a})θ = {e} ⊆ I.

7. Regular semigroups

In this section, we study weakly right noetherian regular semigroups. We begin with a
necessary and sufficient condition for a regular semigroup to be weakly right noetherian.
We then focus our attention on certain classes of regular semigroups, including inverse
semigroups, completely regular semigroups and regular semigroups with a principal series.

Theorem 7.1. The following are equivalent for a regular semigroup S:

(1) S is weakly right noetherian;

(2) for every subset U ⊆ E(S), there exists a finite set X ⊆ U with the following
property: for each u ∈ U there exists x ∈ X such that u = xu.

Proof. (1) ⇒ (2). Let U be a subset of E(S), and let I be the right ideal US1 of S.
Since S is weakly right noetherian, there exists a finite subset X ⊆ U such that I = XS1.
For each u ∈ U, we have that u = xs for some x ∈ X and s ∈ S1, and hence u = x2s = xu.

(2) ⇐ (1). Let I be a right ideal of S. By assumption, there exists a finite set X ⊆
I ∩ E(S) satisfying the property in (2). We claim that I = XS. Indeed, let a ∈ I. Let
b be an inverse of a, so a = aba. Then ab ∈ I ∩ E(S), so there exists x ∈ X such that
ab = x(ab). Thus a = aba = xa ∈ XS, as required. �

Let S be a regular semigroup, and let T = 〈E(S)〉 be the subsemigroup of S generated
by its set of idempotents. Then T is regular by [7, Corollary 2]. Since E(S) = E(T ), we
immediate deduce from Theorem 7.1:

Corollary 7.2. A regular semigroup S is weakly right noetherian if and only if its
subsemigroup T = 〈E(S)〉 is weakly right noetherian.

Corollary 7.3. An inverse semigroup S is weakly right noetherian if and only if its
semilattice of idempotents E(S) is weakly noetherian.
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Corollary 7.4. An inverse semigroup is weakly right noetherian if and only if it is weakly
noetherian.

Remark 7.5. Corollary 7.4 does not hold for regular semigoups in general. Indeed, any
infinite right zero semigroup is weakly right noetherian but not weakly left noetherian.

Let X be an infinite set, and let X−1 = {x−1 : x ∈ X} be a set disjoint from X.
The polycyclic monoid over X, denoted by PX , is the monoid with zero defined by the
presentation

〈X,X−1 |xx−1 = 1, xy−1 = 0 (x, y ∈ X,x = y)〉.
This presentation yields the normal form {u−1v : u, v ∈ X∗} ∪ {0} for PX [19, Section 1].
The monoid PX is an inverse monoid with a single non-zero D-class (see [22, Section 1.3]
or [2, p. 478]). In the case that |X| = 1, PX is the bicyclic monoid with zero adjoined. It
turns out that this is the only case where PX is weakly noetherian.

Proposition 7.6. The polycyclic monoid PX is weakly noetherian if and only if |X| = 1.

Proof. If |X| = 1, then PX is weakly noetherian by Lemma 6.23 and Corollaries 5.5
and 7.4.

Suppose |X| ≥ 2. Choose distinct elements x, y ∈ X. We claim that the infinite set
{y−ix−1xyi : i ∈ N} ⊆ E(PX) is an antichain. Indeed, since xy−1 = yx−1 = 0, we deduce
that for any i = j,

(y−ix−1xyi)(y−jx−1xyj) = y−ix−1(xyi−jx−1)xyj = 0.

It now follows from Proposition 6.6 that E(PX) is not weakly noetherian, and hence PX

is not weakly noetherian by Corollary 7.3. �

We now show that the principal factors of a regular semigroup inherit the property of
being weakly right noetherian.

Lemma 7.7. Let S be a regular semigroup. If S is weakly right noetherian, then so are
all its principal factors.

Proof. Let J be a J -class of S, fix x ∈ J, and let T = S1xS1. Now, T is a union of
J -classes of S, of which J is the unique maximal one. Since any pair of elements of S that
are inverses of each other must belong to the same J -class, it follows that T is regular,
and hence T is weakly right noetherian by Corollary 5.7. Then the principal factor of J
is weakly right noetherian by Lemma 4.1, since it is a Rees quotient of T. �

Lemma 7.7 and Corollary 4.8 together yield:

Corollary 7.8. Let S be a regular semigroup with a principal series. Then S is weakly
right noetherian if and only if all its principal factors are weakly right noetherian.

A semigroup S is said to be completely semisimple if all its principal factors are
completely 0-simple or completely simple.
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Corollary 7.9. Let S be a completely semisimple semigroup with a principal series. Then
S is weakly right noetherian if and only if it has finitely many R-classes.

Proof. If S is weakly right noetherian, then every principal factor of S has finitely
many R-classes by Lemma 7.8 and Corollary 6.21. It follows that every J -class is a finite
union of R-classes. Since S has finitely many J -classes, we conclude that it has finitely
many R-classes.

The converse follows from Corollary 3.3. �

Remark 7.10. Corollary 7.9 does not hold is we remove the condition that S has a
principal series. Indeed, there exist infinite weakly noetherian semilattices (in which J =
R is the identity relation).

Also, Corollary 7.9 does not hold for general regular semigroups with a principal series.
For example, the bicyclic monoid has a single J-class and is weakly right noetherian, but
it has infinitely many R-classes.

A semigroup is said to be completely regular if it is a union of groups. Completely
regular semigroups have the following characterization.

Theorem 7.11 (Howie [13, Theorem 4.1.3]). Every completely regular semigroup is a
semilattice of completely simple semigroups.

From Lemmas 6.7 and 6.11, and Corollary 6.21, we deduce:

Proposition 7.12. Let S be a completely regular semigroup, and let S = S(Y, Sα) be
its decomposition into a semilattice of completely simple semigroups. If S is weakly right
noetherian, then Y is weakly noetherian and each Sα has finitely many R-classes.

We shall see that the converse of Proposition 7.12 does not hold.
In the remainder of this section, we focus our attention on strong semilattices of com-

pletely simple semigroups. For more information about the structure of such semigroups,
see [23, Section IV.4].

A Clifford semigroup is an inverse completely regular semigroup. It follows from
Theorem 7.11 that Clifford semigroups are precisely the semilattices of groups. In
fact, Clifford semigroups are strong semilattices of groups [11, Theorem III.2.12]. If
S = S(Y, Gα) is a semilattice of groups, it is clear that Y is isomorphic to E(S), so
Corollary 7.3 yields:

Corollary 7.13. Let S be a Clifford semigroup with decomposition S = S(Y, Gα) into
a semilattice of groups. Then S is weakly right noetherian if and only if Y is weakly
noetherian.

In what follows we shall provide necessary and sufficient conditions for a general strong
semilattice of completely simple semigroups to be weakly right noetherian. We use the
following folklore result, which we prove for completeness.

Lemma 7.14. Let S = S(Y, Sα, φα,β) be a strong semilattice of completely simple semi-
groups. Then each of Green’s relations is a congruence on S. Furthermore, we have
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S/J = S/D = Y ; S/R is a strong semilattice of left zero semigroups; S/L is a strong
semilattice of right zero semigroups; and S/H is a strong semilattice of rectangular bands.

Proof. It is clear that D = J and S/J = Y. We prove that R is a congruence. A dual
argument proves that L is a congruence, and hence H = R∩ L is congruence.

For each α ∈ Y, let Sα = M(Gα; Iα, Jα;Pα). Recall that R is a left congruence on S,
so we just need to show that it is a right congruence. For α ∈ Y, we write Rα = RSα

.
Since Sα is regular, we have that Rα = R∩ (Sα × Sα) [13, Proposition 2.4.2]. Note that
Rα is a congruence on Sα.

Let (a, b) ∈ R and c ∈ S. Since Y is R-trivial, we must have that (a, b) ∈ Rα for some
α ∈ Y. Now, the element c belongs to some Sβ , β ∈ Y. Certainly (aφα,αβ , bφα,αβ) ∈ Rαβ .
Since Rαβ is a congruence, we have

(ac, bc) = ((aφα,αβ)(cφβ,αβ), (bφα,αβ)(cφβ,αβ)) ∈ Rαβ ⊆ R,
as required.

It can be easily shown that S/R ∼= S(Y, Iα, ψα,β), where the Iα are considered as left
zero semigroups and each ψα,β : Iα → Iβ is defined as follows: iαψα,β = kβ if for some
(and hence all) jα ∈ Jα, we have

(iα, p−1
jαiα

, jα)φα,β = (kβ , p
−1
lβkβ

, lβ)

for some lβ ∈ Jβ . Dually, we have that S/L is a strong semilattice of right zero semigroups.
Finally, we have S/H ∼= S(Y, Bα, θα,β), where each Bα = Iα × Jα is a rectangular band
and each θα,β : Bα → Bβ is defined as follows: (iα, jα)θα,β = (kβ , lβ) if

(iα, p−1
jαiα

, jα)φα,β = (kβ , p
−1
lβkβ

, lβ).

This completes the proof. �

Theorem 7.15. Let S be a strong semilattice of completely simple semigroups, and let
S/R = S(Y, Sα, φα,β) be the decomposition of S/R into a strong semilattice of left zero
semigroups. Then S is weakly right noetherian if and only if the following conditions
hold:

(1) Y is weakly noetherian;

(2) each Sα is finite;

(3) there exists a finite subsemilattice Y0 of Y with the following property: for each
β ∈ Y, there exists α ∈ Y0 such that α ≥ β and φα,β is surjective.

Proof. Green’s relation R is a congruence on S by Lemma 7.14. Hence, by Lemma 4.3,
S is weakly right noetherian if and only if S/R is weakly right noetherian. Therefore, it
suffices to consider the case that S = S/R.

(⇒) (1) and (2) follow immediately from Proposition 7.12. For (3), we have that
S = XS for some finite subset X ⊆ S. Let Y0 be the semigroup generated by {α ∈ Y :
X ∩ Sα = ∅}. Since X is finite and Y is locally finite (that is, every finitely generated
subsemigroup is finite), we conclude that Y0 is finite.
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Now consider β ∈ Y, and let Sβ = {b1, . . . , bn}. For each i ∈ {1, . . . , n}, there exists
xi ∈ X such that bi ∈ xiS, which implies that bi = xibi. Let xi ∈ Sαi

. Since Sβ is a left
zero semigroup, we have bi = (xiφαi,β)bi = xiφαi,β . Now set α = α1 · · ·αn. Then α ∈ Y0,
and since αi ≥ β for all i ∈ {1, . . . , n}, we deduce that α ≥ β. For each i ∈ {1, . . . , n},
we have bi = (xiφαi,α)φα,β , so φα,β is surjective.

(⇐) Let I be a right ideal of S. For each α ∈ Y0 and a ∈ Sα, define a set

Ua = {β ∈ Y : β ≤ α, aφα,β ∈ I},

and let Ia be the right ideal UaY of Y. Since Y is weakly noetherian, there exists a finite
set Xa ⊆ Ua such that Ia = XaY. We claim that I is generated by the finite set

X = {aφα,β : a ∈ Sα, α ∈ Y0, β ∈ Xa}.

Indeed, let c ∈ I ∩ Sγ . There exists α ∈ Y0 such that α ≥ γ and φα,γ is surjective. In
particular, there exists a ∈ Sα such that aφα,γ = c. Then γ ∈ Ia, so γ = βγ for some
β ∈ Xa. It follows that

c = c2 = (aφα,γ)c =
(
(aφα,β)φβ,γ

)
(cφγ,γ) = (aφα,β)c ∈ XS,

completing the proof of this direction and of the theorem. �

Corollary 7.16. Let S = S(Y, Sα, φα,β) be a strong semilattice of completely simple
semigroups. If S is weakly right noetherian, then the set {|Sα/R| : α ∈ Y } is bounded.

Proof. As in the proof of Lemma 7.14, we have that S/R is a strong semilattice of
semigroups S(Y, Tα, ψα,β), where Tα = Sα/R. By Lemma 7.12, each Tα is finite. Let Y0

be as stated in Theorem 7.15. We claim that {|Tα| : α ∈ Y } is bounded above by

N = max{|Tα| ∈ N : α ∈ Y0}.

Indeed, for each β ∈ Y there exists α ∈ Y0 such that α ≥ β and ψα,β : Tα → Tβ is
surjective; thus |Tβ | ≤ |Tα| ≤ N. �

Given Theorem 7.15, we can show that the converse of Proposition 7.12 does not hold,
even in the case that S is a band.

Example 7.17. Let Si = {xi, yi} (i ∈ N) be disjoint copies of the 2-element left zero
semigroup. Let φi,i be the identity map on Si, and for i < j let φi,j : Si → Sj be the
homomorphism given by xiφi,j = yiφi,j = xj . Then we have a strong semilattice of semi-
groups S = S(Y, Si, φi,j), where Y is the infinite descending chain (N, ≥). Clearly, S
does not satisfy condition (3) of Theorem 7.15, so it is not weakly right noetherian.

We end this section with an example demonstrating that Corollary 7.16 does not hold
for completely regular semigroups in general.
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Example 7.18. Let Si = {xi,1, . . . , xi,i} for each i ∈ N, and let S =
⋃

i∈N
Si. For i, j ∈

N, k ∈ {1, . . . , i} and l ∈ {1, . . . , j}, define

xi,kxj,l =

{
xj,l if i < j,

xi,k if i ≥ j.

It can be shown that this multiplication is associative by an exhaustive case analysis. It
is easy to see that S is a semilattice of semigroups S(Y, Si), where Y = (N, ≥) and each
Si is a left zero semigroup.

We now prove that S is weakly right noetherian. Let I be a right ideal of S, and let i be
minimal such that I ∩ Si = ∅. We claim that I = (I ∩ Si)S. Indeed, if xj,l ∈ I, then j ≥ i.
If i = j, then xj,l ∈ I ∩ Si. Otherwise, we have xj,l = xi,1xj,l ∈ (I ∩ Si)S, as required.

8. Commutative semigroups

In this section, we consider weakly noetherian commutative semigroups. We begin by
presenting the basic structure theory of commutative semigroups in terms of archimedean
semigroups.

An archimedean semigroup is a commutative semigroup S with the following property:
for each a, b ∈ S, there exist n ∈ N and s ∈ S such that an = bs. For instance, the free
monogenic semigroup is archimedean.

Theorem 8.1 (Grillet [11, Theorem IV.2.2]). Every commutative semigroup is a
semilattice of archimedean semigroups.

We now characterize archimedean semigroups with an idempotent. We need the
following definition.

A semigroup S with zero 0 is said to be nilpotent if for every s ∈ S there exists n ∈ N
such that sn = 0.

Lemma 8.2 (Grillet [11, Proposition IV.2.3]). A semigroup S is archimedean with idem-
potent if and only if S is either an abelian group or an ideal extension of an abelian group
by a commutative nilpotent semigroup.

In general, archimedean semigroups can have a rather complex structure. We refer the
reader to [11, Chapter IV] for more information.

In order for a commutative semigroup to be weakly noetherian, it is not necessary that
all its archimedean components be weakly noetherian, as demonstrated by the following
example.

Example 8.3. Let FC2 denote the free commutative semigroup on two generators a and
b. We have that FC2 is weakly noetherian by Theorem 3.8. It is easy to see that FC2 has
three archimedean components: A = 〈a〉, B = 〈b〉 and C = {aibj : i, j ≥ 1}. The infinite
set {abi, aib : i ≥ 1} consists of all the indecomposable elements of C, so C is not weakly
noetherian by Lemma 3.10.

The next example shows that a commutative semigroup may not be weakly noetherian
even if its structure semilattice and archimedean components are all weakly noetherian.
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Example 8.4. Let Si = 〈ai〉 (i ∈ N) be disjoint copies of the free monogenic semi-
group N, which is weakly noetherian by Theorem 3.8. For i < j, let φi,j : Si → Sj be
the isomorphism given by ai �→ aj . Let S be the strong semilattice of archimedean semi-
groups S(Y, Si, φi,j), where Y = (N, ≥). Then S contains an infinite set {ai : i ∈ N} of
indecomposable elements, and is hence not weakly noetherian by Lemma 3.10.

We now state the main result of this section.

Theorem 8.5. Let S be a commutative semigroup with finitely many archimedean
components. Then S is weakly noetherian if and only if S/H is finitely generated.

Remark 8.6. Note that if S is a commutative semigroup such that S/H is finitely
generated, then S has finitely many archimedean components. Indeed, let S = S(Y, Sα)
be a decomposition of S into a semilattice of archimedean semigroups. It can be easily
shown that if two elements of S are H-related, then they belong to the same archimedean
component. Thus S/H = S(Y, Tα) for some semigroups Tα. Hence, Y is a homomorphic
image of S/H. Since S/H is finitely generated, we conclude that Y is finite.

It follows that Theorem 8.5 does not hold if the condition that S has finitely many
archimedean components is dropped, since there certainly exist weakly noetherian com-
mutative semigroups with infinitely many archimedean components; e.g. infinite weakly
noetherian semilattices.

In order to prove Theorem 8.5, we first state and prove a few lemmas.

Lemma 8.7. Let T be a commutative nilpotent semigroup. If T is finitely generated as
a right ideal, then it is finite.

Proof. Since T is finitely generated as a right ideal, there exists a finite set X ⊆ T
such that T = XT 1. Let U = 〈X〉. For each x ∈ X, let

m(x) = min{n ∈ N : xn = 0},

and let N =
∏

x∈X m(x). It can be easily shown that |U | ≤ N. We claim that T = U.
Suppose for a contradiction that T = U, and let a ∈ T\U. We have that a = x1t1 for
some x1 ∈ X and t1 ∈ T 1. Since a /∈ U, we have that t1 ∈ T\U. By a similar argument,
there exist x2 ∈ X and t2 ∈ T\U such that t1 = x2t2. Continuing in this way, for each
n ∈ N there exist x1, . . . , xn ∈ X and tn ∈ T\U such that a = (x1 · · ·xn)tn. However, we
have that x1 · · ·xN = 0 and hence a = 0, which is a contradiction. �

Lemma 8.8. Let S be an archimedean semigroup with idempotent. Then S is weakly
noetherian if and only if S is either a group or an ideal extension of a group by a finite
nilpotent semigroup.

Proof. Every group is weakly noetherian, so assume that S is not a group. By
Lemma 8.2, there exists a group G that is an ideal of S such that T = S/G is a nilpotent
semigroup. If S is weakly noetherian, it follows from Lemmas 4.1 and 8.7 that T is finite.
Conversely, if T is finite, then S is weakly noetherian by Corollary 5.5. �
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Lemma 8.9. Let S be an archimedean semigroup without idempotent. Then S is weakly
noetherian if and only if it is finitely generated.

Proof. The reverse implication follows from Theorem 3.8, so we just need to prove
the direct implication.

Let a be a fixed element of S. The Tamura order on S (with respect to a) is defined
by

x ≤a y ⇐⇒ x = any for some n ≥ 0.

By [11, Section IV.4], there exists a set M of maximal elements of S (under ≤a), where
a ∈M, such that every element of S can be written in the form pn = anp with n ≥ 0 and
p ∈M, and the set I = S\M is an ideal. The Rees quotient S/I is nilpotent, since S is
an archimedean semigroup, and hence it is finite by Lemmas 4.1 and 8.7. Therefore, the
set M is finite and S = 〈M〉 is finitely generated. �

Lemma 8.10. Let S be a weakly noetherian commutative semigroup with no non-trivial
subgroups, and let S = S(Y, Sα) be a decomposition of S into a semilattice of archimedean
semigroups. Let β ∈ Y and let T be the subsemigroup

⋃
α≥β Sα of S. Then there exists a

finite set X ⊆ Sβ such that Sβ = 〈X〉(T\Sβ)1.

Proof. Since the complement of T is an ideal of S, we have that T is weakly noetherian
by Corollary 5.10. Note that Sβ is an ideal of T.

Suppose first that Sβ has an idempotent. Then Sβ is a nilpotent semigroup with zero
0. Since T is weaky noetherian, we have that Sβ = XT 1 for some finite set X ⊆ Sβ\{0}.
Then Sβ = (XS1

β)(T\Sβ)1. By the same argument as the one in Lemma 8.7, we have that
XS1

β is the finite semigroup 〈X〉.
Now suppose that Sβ has no idempotent. Let M be the set of maximal elements of Sβ

under the Tamura order with respect to an element a ∈ Sβ , and let I = Sβ\M. Then I
is an ideal of T. We have that T/I is weakly noetherian by Lemma 4.1, and Sβ/I is a
nilpotent semigroup with zero 0. By the same argument as above, there exists a finite
set X ⊆M = Sβ\{0} such that Sβ/I = 〈X〉(T\Sβ)1. We may assume without loss of
generality that a ∈ X. Since every element of Sβ can be written as anp for some n ≥ 0
and p ∈M, it follows that Sβ = 〈X〉(T\Sβ)1. �

Remark 8.11. Given Lemma 8.10, one might be tempted to think that in a weakly
noetherian commutative semigroup with no non-trivial subgroups, every archimedean
semigroup is contained in a finitely generated subsemigroup. However, this is not the case.
Indeed, letting Y = (N, ≥) and recalling Construction 6.8, we have that U = U(Y, id) is
weakly noetherian by Proposition 6.9. Clearly, U is commutative. It can be easily shown
that U is locally finite, so its infinite archimedean component NY is not contained in a
finitely generated subsemigroup.

We are now in a position to prove the main result of this section.

Proof of Theorem 8.5. (⇒) Let S = S(Y, Sα), where Y is finite, be the decomposi-
tion of S into a semilattice of archimedean semigroups. Let T denote the quotient S/H.
Then T is a semilattice of archimedean semigroups S(Y, Tα) where each Tα is H-trivial.
We have that T is weakly noetherian by Lemma 4.1.
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We prove that T is finitely generated by induction on |Y |. Suppose that |Y | = 1, so that
T is an archimedean semigroup. If T has an idempotent, then it follows from Lemma 8.8
that T is finite. If T has no idempotent, then T ∼= S is finitely generated by Lemma 8.9.

Now suppose that |Y | > 1. Let 0 be the minimal element of Y. By Lemma 8.10, there
exists a finite set X0 ⊆ T0 such that T0 = 〈X0〉(T\T0)1. Let α1, . . . , αk be the elements
of Y that only 0 is strictly less than. For each i ∈ {1, . . . , k}, define

Ti =
⋃

α≥αi

Tα.

We have that Ti is a subsemigroup of T whose complement is an ideal, so it is weakly
noetherian by Corollary 5.10. By the inductive hypothesis, Ti is generated by some finite
set Xi. It follows that T =

⋃k
i=0 Ti is generated by the finite set

⋃k
i=0Xi, as required.

(⇐) If S/H is finitely generated, then it is weakly noetherian by Theorem 3.8, and
hence S is weakly noetherian by Lemma 4.3. �

From the proof of Theorem 8.5, we deduce a couple of corollaries. The first con-
cerns complete semigroups; that is, commutative semigroups in which every archimedean
component contains an idempotent.

Corollary 8.12. Let S be a complete semigroup with finitely many idempotents. Then
S is weakly noetherian if and only if S/H is finite.

Proof. We have that S/H = S(Y, Tα), where Y is finite and each Tα is a nilpotent
semigroup. The direct implication is proved by a similar induction argument to the one
in the proof of Theorem 8.5. Notice that 〈X0〉 is finite, and also T\T0 is finite since it is
a finite union of semigroups that are finite by the inductive hypothesis. It follows that
T0 = 〈X0〉(T\T0)1 is finite, and hence T = T0 ∪ (T\T0) is finite. �

On the other extreme we have:

Corollary 8.13. Let S be an idempotent-free commutative semigroup with finitely
many archimedean components. Then S is weakly noetherian if and only if it is finitely
generated.

Proof. This proof is essentially the same as that of Theorem 8.5, except we prove by
induction that S is finitely generated, rather than S/H. �

We conclude this section by exhibiting an example of an idempotent-free commutative
semigroup that is weakly noetherian but not finitely generated.

Example 8.14. For each i ∈ N, let Si = 〈ai〉 be a copy of the free monogenic semigroup
N, and let S be the disjoint union of the semigroups Si. Define a multiplication on S,
extending those on each Si, as follows: for each i, j, m, n ∈ N with i < j, let

am
i a

n
j = an

j = an
j a

m
i .

It is easy to see that, with this multiplication, S is an idempotent-free commutative
semigroup. Moreover, we have that S = S(Y, Si) where Y = (N, ≥). Since Y is infinite,
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S is not finitely generated. It can be easily shown that every ideal of S has the form

am
i S

1 = {an
i : n ≥ m} ∪

(⋃
j>i

Sj

)

for some i, m ∈ N. In particular, every ideal of S is principal, so S is weakly noetherian.
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