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Abstract

We show that the group of conformal homeomorphisms of the boundary of a rank one symmetric space
(except the hyperbolic plane) of noncompact type acts as a maximal convergence group. Moreover, we
show that any family of uniformly quasiconformal homeomorphisms has the convergence property. Our
theorems generalize results of Gehring and Martin in the real hyperbolic case for Mobius groups. As a
consequence, this shows that the maximal convergence subgroups of the group of self homeomorphisms
of the d-sphere are not unique up to conjugacy. Finally, we discuss some implications of maximality.

2000 Mathematics subject classification: primary 3OF4O; secondary 3OG65, 37F30.

1. Introduction

The convergence property (Definition 2.1) is an essential property that all families
of Mobius transformations possess [2]. Many of the basic theorems in the theory of
Kleinian groups can be proven within this topological context. Quasiconformal and
convergence families have been studied in various contexts, see, for example, [2] and
[11]. In [2], Gehring and Martin showed that, for d > 2, the Mobius group acting
on the ^-sphere is maximal in the sense that it is a convergence group and that no
group of homeomorphisms of the boundary sphere having the convergence property
can properly contain it. Since the isometry groups of rank one symmetric spaces of
noncompact type are natural generalizations of the Mobius groups, it is of interest to
see if these groups possess the same convergence and maximality property. We show
the following.

THEOREM 3.4. Let H be a rank one symmetric space of noncompact type, which is
not the real hyperbolic plane. Then the group of conformal homeomorphisms ofdU is
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a convergence group. In fact, any family & of K-quasiconformal homeomorphisms
of 3 HI has the convergence property.

For real hyperbolic space of dimension greater than two, the above theorem was
proven by Gehring and Martin in [2]. Our proof of the general case (for all rank one
symmetric spaces of noncompact type) applied to real hyperbolic space is significantly
different than theirs. See Tukia [11] for related results.

THEOREM 3.5. Let 0-0c denote complex hyperbolic space of complex dimension
greater than one. Then the group of conformal homeomorphism of its boundary,
Conf(3IHlc), is a maximal convergence group. That is,

(1) Conf(3Hc) is a convergence group, and
(2) IfG 2 Conf (3 Uc)isa convergence group acting on 3 Hc, then G = Conf (3 Hc).

Putting Theorem 3.5 together with the results of Gehring, Martin [2] and Pansu
[10], as a corollary we have the following.

COROLLARY 3.6. Let H be a rankone symmetric space of noncompact type different
from the real hyperbolic plane. Then the group of conformal homeomorphisms,
Conf (3 H), is a maximal convergence group.

This shows that the maximal convergence subgroups of the group of self home-
omorphisms of the d-sphere, Homeo{Sd), are not unique up to conjugacy. In fact,
for infinitely many values of d, the topological group Homeo(5i/) contains maximal
convergence subgroups of different dimensions. For example, the ten dimensional
Isom(IH^) and the eight dimensional Isom(IHl^) act on the 3-sphere as maximal con-
vergence groups.

In Section 4, we mention some elementary consequences of Corollary 3.6 to con-
vergence groups and quasi-isometry groups acting on D-D U 3 Ml.

The reason for excluding the hyperbolic plane from the above discussion is that
unlike the higher dimensional situation, the hyperbolic plane has trivial conformal
structure on the boundary. For instance, all smooth diffeomorphisms of the circle
are conformal. In this case, the affine structure of the boundary and quasisymmetric
mappings may be utilized.

Finally, in the literature some authors use the term convergence group to mean a
discrete convergence group. Such a restriction is not imposed in this paper.

2. Basics

Cartan's classification of semisimple Lie groups implies that there are three families
of rank one symmetric spaces of noncompact type and an exceptional one: real
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hyperbolic space Hl£, complex hyperbolic spaces H)^, quaternionic hyperbolic space
Hlft, and the Cayley plane Hj£ (see [7]). Throughout this paper HI stands for a rank
one symmetric space of noncompact type except the hyperbolic plane (or equivalently
complex hyperbolic space of complex dimension one). The boundary of HI, denoted
by 3 HI, is a smooth sphere, which is naturally endowed with a conformal structure.
Isom(IHl) denotes the isometry group of HI and Conf(3Hl) stands for the group of
conformal homeomorphisms of the ideal boundary. Isometries of HI induce conformal
homeomorphisms on 3HI. That is, the image of the natural map 4> : Isom(HI) -*•
Homeo(3Hl) defined by / H* f\m is precisely Conf(3HI). In fact, <j> : Isom(HI) ->
Conf(3Hl) is an isomorphism. The stabilizer of a point x e U is a maximal compact
subgroup of Isom(Hl), which we denote by Jff. The Iwasawa decomposition says
Isom(Hl) = JtfsrfJY\ where stf is a one-parameter group of translations along the
geodesic connecting x to oo, and Jf is a nilpotent group (see [8, Section 29]). Each
such JY has a fixed point oo e 3HI, and acts simply transitively on 3H — {oo}.
Thus, the ideal boundary, 3HI, can be identified with the one point compactification
of JY', where ^V has a naturally defined (Euclidean metric in the real case) Carnot-
Caratheodory metric, denoted dc, on it. With respect to this metric, the elements of
jY act as isometries, and the elements of srf as dilations. Thus associated to each
g e #/ is a positive real number (its dilation factor) k(g) satisfying, dc(g(x), g(y)) —
^(g)dc(x, y), for all x, y e JY'. Finally, the group of conformal homeomorphisms
of 3H acts almost triply transitively on points. That is, given three distinct points
x, y, z 6 3HI, and a positive real number r, there exists an element of Conf(3HJ) that
takes x to the identity element e e JY , y to oo, and z to the Carnot-Caratheodory
sphere of radius r centered at e e JY or any other fixed sphere. This fact, follows
from the above description of the actions of Jif and / o n I . For a discussion on
some of the basics of the complex case, see [1] and [6].

Throughout this paper all sequences are assumed to be infinite. As a matter of
convention, a subsequence is often denoted with the same notation as the original
sequence. We use p(-, •) to denote the spherical distance on Sd.

DEFINITION 2.1. Let Y be a compact topological space. A family <? c Homeo(y)
is said to have the convergence property if each infinite sequence {/„} of & contains
a subsequence, which:

(Cl) converges uniformly to an element of Homeo(y), or
(C2) has the attractor-repeller property, that is, there exists a point a e Y, the

attractor, and a point r e Y, the repeller, so that the {/„} converge to the constant
function a, uniformly outside of any open neighborhood of r. Note that a may equal r.

REMARK 2.2. If the sequence {/„} uniformly converges to / , then {/„"'} uniformly
converges to / " ' . Similarly, if {/„} has attractor a and repeller r, then {/„"'} has
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attractor r and repeller a.

Discreteness for a convergence group is equivalent to any infinite sequence having
a subsequence for which axiom (C2) holds.

DEFINITION 2.3. Let (X, d) be a metric measure space. For a map / : X -» X,
x <= X, and r > 0 define

Lf(x, r) = max{d(f(x), /(>)) | d(x, y) = r), Hf(x, r) = ^

If{x, r) = mm{d{f{x), /OO) | d(x, y) = r}, Hf(x) = limsup /*,(*, r).
r->0

A homeomorphism / is called quasiconformal, if ///(*) is uniformly bounded. In
the presence of a measure, we say / is K-quasiconformal, if it is quasiconformal and
for almost every x e X, Hf(x) < K. The map / is said to be K'-quasisymmetric
if Hf(x, r) < K' for all x e X and all r > 0. A family is called uniformly K-
quasiconformal or uniformly K'-quasisymmetric if there are constants K or K' for
which all maps in the family are K-quasiconformal or /T-quasisymmetric, respec-
tively.

The above definition of a quasiconformal map is usually referred to as the metric
definition. It follows from [4, Theorem 10.19], that a homeomorphism / : jV -*• Jf
is AT'-quasisymmetric if and only if there exists a homeomorphism r\ : [0, oo) —>
[0, oo) such that d(x, a) < td{x, b) implies d(f(x), f(a)) < r](t)d(f(x), f(b)) for
every a,b,x e X and for every t e [0, oo). The homeomorphism r) and K' depend
only on each other and data associated to the space.

A /C-quasisymmetric map is always ^'-quasiconformal, for K' = K. Conversely,
for a large class of metric spaces, including the boundaries of rank one symmetric
spaces of noncompact type, a AT-quasiconformal map is AT'-quasisymmetric, where K'
depends only on K and the data associated to the ideal boundary. See [5, Lemma 4.6
and Lemma 4.8] for details. This implies that on these metric spaces a uniformly
#-quasiconformal family is also uniformly K'-quasisymmetric.

3. Maximality of conformal groups

The following lemma allows us to make several simplifications, through normal-
ization, in our arguments involving the convergence property.

LEMMA 3.1. Suppose [gn : dM - • dU} and {hn : dU -+ 30-0} uniformly converge
to the self homeomorphisms g : 9D-Q —*• 3W and h : 3IH1 -*• 90-0, respectively. Then
the sequence {/„} satisfies axiom (Cl) or (C2) if and only if{gnfnhn} satisfies (Cl) or
(C2), respectively.
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PROOF. The (Cl) axiom equivalence follows from the general properties of topo-
logical groups. For the (C2) equivalence, it is enough to show the property first for
postcomposition by gn and then for precomposition by hn. To this end, suppose {/„}
locally uniformly converges to a on 3H — {r}. Recall that the spherical metric on 3H
is denoted p(-, •)• Let C be a compact set in 3D-D — [r] and let e > 0. Choose S > 0
such that g maps the p-ball of radius S centered at a into the p-ball of radius e/2
aroundg(a). Chooser sufficiently large so that p(gn(x), g (x)) < e/2, for all* € 90-D,
and that fn{C) lands in the p-ball of radius S centered at a. Clearly gnfn(C) is in
the p-ball of radius e about g(a) for large enough n. Thus {#„/„} locally uniformly
converges to g(a) in 3M — {r}. The converse follows from group properties. We have
proven the lemma for postcomposition.

To prove the lemma for precomposition, write fnhn as (fr~l f ~ l ) ~ x and use Re-
mark 2.2. •

LEMMA 3.2. Let {/„ : 9M —*• 3H} be a sequence of K-quasiconformal mappings.
There exist gn : dU - • dW in Conf(3IH), where gn(/n(oo)) = oo and gnfn is K-
quasiconformal. Moreover, a subsequence <?/{/„} satisfies (Cl) or (C2) if and only if
a subsequence of[gnfn] satisfies (Cl) or (C2), respectively.

PROOF. Since Jf is compact and acts transitively on 3 H, we can find gn e Jif so
that gnfn(oo) = oo, and gn uniformly converges t o g e X . Hence the first part of the
lemma follows because the elements of J ^ are conformal. The last statement follows
from Lemma 3.1. •

We omit the proof of the following lemma, since it closely follows that of the real
case given in [2].

LEMMA 3.3. Let & C Homeo(3IH) be a family ofself homeomorphisms. Further-
more, assume that & is closed under post and precomposition by Conf (3 H). If 3? has
the convergence property then & is a uniformly quasiconformal family with respect
to the conformal structure on 30-0.

Using the above lemmas, we have the following result.

THEOREM 3.4. Let H be a rank one symmetric space ofnoncompact type which is
not the real hyperbolic plane. Then the group of conformal homeomorphisms ofd H is
a convergence group. In fact, any family & of' K -quasiconformal homeomorphisms
ofdU has the convergence property.

PROOF. TO show that the conformal group is a convergence group, set 3 HI =
<JV U {OO} and consider an infinite sequence in Conf(3H). Using Lemma 3.2, it is
enough to show that a sequence {#„}, which fixes oo has an infinite subsequence that
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satisfies (Cl) or (C2). As remarked in the basics section, an element of Conf(3IH),
which fixes oo acts as a similarity with respect to the (Euclidean in the real case)
Carnot-Caratheodory metric, dc, on Jf. Next, by possibly passing to a subsequence
and inverses, we may assume that the {gn} are distance nondecreasing on jV. We
continue to call the subsequence {#„}. According to the Iwasawa decomposition,
gn e J%' stf'^V; more precisely, gn = RnAnTn, where Rn e Jff fixes oo, An is a
dilation with expansion factor Xn > 1, and Tn e J/. Since Jf is compact, again by
passing to a subsequence, we may assume [Rn] uniformly converges to R e Jf and
hence by Lemma 3.1, it is enough to consider the sequence gn — AnTn.

If {Tn} has a convergent subsequence then using Lemma 3.1, it is enough to consider
the sequence of dilations {An}. However, such a sequence clearly has the convergence
property.

Otherwise, if {Tn} does not have a convergent subsequence, then [Tn] locally
uniformly converges to oo in 3P - {oo}. Since kn > 1, the sequence [AnTn] shares
the same convergence property.

In order to show that any uniformly quasiconformal family & has the convergence
property we proceed as follows. Set 3 HI = J/ U {oo} and consider an infinite
sequence {/„} c &• Using Lemma 3.2 , it is enough to show that a sequence {/„} of
AT-quasiconformal homeomorphisms of 3H which fix oo have an infinite subsequence
which satisfies (Cl) or (C2). Post compose each /„ by an element Tn e JY which
takes fn{e) to e. Next, fix p e 3HI - [e, oo} and choose an element A , e ^ taking
Tnfn(p) to the sphere of radius one centered at the origin.

Set gn — AnTn and consider the sequence {#„/„}. The gnfn fix e and oo as well as
taking p to the unit sphere centered at the origin. Now by [5, Theorem 4.8], {gnfn}
being ^-quasiconformal implies {#„/„} is ^'-quasisymmetric on ^Y, where K' only
depends on K. Therefore, by [4, Theorem 10.26], {#„/„} has a subsequence (we
continue to use the same notation for the subsequence), which converges locally uni-
formly on jV to a map, say h. By [4, Exercise 10.29], h is either a ^'-quasisymmetric
embedding or is constant on ^V. Since gnfn(p) is in the sphere of radius one, h is not
constant. We need to show that h : Jf —*• J/ is surjective.

To this end, consider J/' = 3W — {e}. Again {#„/„} being K-quasiconformal
implies {gnfn} is tf'-quasisymmetric on J/". The above argument implies {#„/„}
locally uniformly converges to an embedding h' of J/'. Clearly h — /i'on 3 0-0 — {e, oo}
and therefore h is surjective. Thus, the sequence {#„/„} uniformly converges to the
self homeomorphism h of 3H.

Writing /„ as g ~' (gn fn) and appealing to Lemma 3.1, we see that {/„} satisfies (C1)
or (C2) if and only if {g~}} does. However, the elements of {g~1} are in Conf(3D-0)
which we have shown to have the convergence property. •

THEOREM 3.5. Let Hc denote complex hyperbolic space of complex dimension
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greater than one. Then the group of conformal homeomorphism of its boundary,
Conf (3 Me), is a maximal convergence group. That is,

(1) Conf(3IHIc) is a convergence group, and
(2) IfG 2 Conf(3IHlc) is a convergence group acting on 9HC, then G = Conf(3Hc).

PROOF. The first item was proven in Theorem 3.4. For the maximality, suppose
/ e G is not conformal. Then by [9, Lemma 18.5], / is not globally 1-quasiconformal
using the metric definition. That is, the dilatation Hf (x) > 1 on a set of positive
measure.

The map / is almost everywhere Pansu differentiable (see [9, Theoreme 5]). Hence
there is a point of differentiability, which we may assume to be e e 9 IHl = JV U oo
satisfying Hf (e) > 1. Using [6, Proposition 7] we have,

(3.1) *f+200 < Kn+lJf(e).

Here A.i (e) is the length of the large axis in the image of the unit sphere in the contact
subspace at e under the ordinary derivative of / . Also, Jf (e) is the determinant of the
Pansu derivative at e.

Postcomposing by an element of Conf(3Hlc), we may assume that f{e) = e
and Jf{e) is one. Moreover, since the stabilizer of e in Conf(3Hc) acts transitively
on directions in the contact subspace at e, we may assume that X\ (e) is an eigenvalue
of / with eigenvector in the contact subspace. By the chain rule all iterates of / have
e as a point of Pansu differentiability. Thus by inequality (3.1), iterating / gives rise
to quasiconformal maps with arbitrarily large dilatation in G, which is a contradiction.
Therefore, G = Conf(9IHIc). •

For real hyperbolic space of dimension greater than two, the fact that the Mobius
group is a maximal convergence group acting on 3 IHl was proven in Gehring-Martin
[2]. In the case of Quaternionic or Cayley Hyperbolic space, all quasiconformal
self homeomorphisms of 3IHIJJ1 (« > 2), and SU^ are 1-quasiconformal, and hence
conformal. This follows from [10, (11.2) and (11.5)]. Putting these results together
with Theorem 3.5 we have the following.

COROLLARY 3.6. Let Hbea rank one symmetric space of noncompact type different
from the real hyperbolic plane. Then the group of conformal homeomorphisms,
Conf(3IHl), is a maximal convergence group.

4. Some consequences of maximality

We remind the reader that IHl denotes a rank one symmetric space of noncompact
type except for the hyperbolic plane. The following fact is an immediate application
of Corollary 3.6.
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COROLLARY 4.1. The group of conformal homeomorphisms, Conf(31Hl), is a max-
imal uniformly quasiconformal group.

Let QC(3 H) denote the group of quasiconformal homeomorphisms of the boundary.
A full quasi-isometry of HI is a quasi-isometry / : (HI -*• H whose domain and image
is H; two such are equivalent if the Hausdorff distance between their graphs in HI x H
is finite. Let QI(H) denote the group of equivalence classes of full quasi-isometries
of H. Note that Isom(H) naturally embeds in QI(H). A family & c QI(H) is said to
be a uniformly quasi-isometric family if there exists a uniform bound on the Lipschitz
constant for all elements of &. It is well known that a quasi-isometry class [/]
induces a quasiconformal homeomorphism, /UH, on the boundary. Moreover, the
quasiconformality constant is dependent solely on the Lipschitz constant of the quasi-
isometry (see [10]). In fact, the map [/] i-* f\dH is a group isomorphism between
QI(H) and QC(9H), which identifies Isom(Hl) with Conf(3IH). Moreover, M4

H\ for
n > 2, and HJ? are Ql-rigid; that is, Isom(IHl^) = QI(H^) and Isom(H^) =
QI(Hj-6

a). In these rigid cases, maximality of Isom(H) as a uniform quasi-isometry
group is a triviality. A more interesting phenomenon is that of the maximality of
Isom(IHI) in the remaining cases of U%, for n > 3, and W^1, for n > 2. This fact,
which has been observed in Gromov and Pansu [3] may be thought of as a simple
consequence of Corollary 4.1.

COROLLARY 4.2. The group of isometries, Isom(IHI), is a maximal uniformly quasi-
isometric group.

Another elementary consequence of Corollary 3.6 is the following,

COROLLARY 4.3. Let G be a convergence group acting on H U 3D-0. Suppose
that each element of G is topologically conjugate to an element of Isom(H). / /
Isom(IHl) < G, then G = Isom(H). The conjugating homeomorphism need not be the
same for all elements ofG.

PROOF. Consider the map <p : G -»• Homeo(9IHI), given by / i->- f\m. Note
that Image(0) is a convergence group acting on 3H and contains Conf(3!Hl). Since
Conf(3W) is a maximal convergence group (Corollary 3.6) we have Image(</>) =
Conf(3H).

Now take / 6 Ker(<£). By our assumption, there exists a homeomorphism h :
H U aim ->• U U 3H, such that r ' o / o f t e Isom(HI). Note that 0 ( / r ' o / o h) =
h~l\mo f\m oh\BH = h~l\m oId|aH oh\dH = I d | 8 H . Since <p restricted to Isom(IHl)
is a monomorphism, it must be that h~l o / o h = IdH and hence / — Idn; that
is, <f> : G -*• Homeo(3IHl) is a monomorphism. Since Image(</>) = </>(Isom(iH])) =
Conf(3H), we may conclude G = Isom(IH). D
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