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Abstract

Twelve climate models and observations are used to attribute the global mean surface temperature (GMST) changes
from 1900 to 2014 to external climate forcings. The external forcings are decomposed into the effects of the well-
mixed greenhouse gas concentration variation, the effects of anthropogenic aerosol concentration changes, and the
effects of natural forcings. First, a convolutional neural network (CNN) is trained to estimate the simulated historical
GMST from single-forcing experiments using outputs from the multi-model ensemble. We then use this CNN to solve
the attribution problem using an original variational inversion approach. The variational inversion is first validated
using historical climate simulations as pseudo-observations. Then we perform an inversion from observations. This
provides a distribution of the GMST resulting from the three forcings. For 2014, inversions estimate that the
greenhouse gases changes are responsible for a GMST anomaly within [0.8°C,1.9°C], while anthropogenic aerosols
and natural forcings anomalies are within [—0.7°C,—0.1°C] and [—0.1°C,0.3°C], respectively. The method designed
here can be adapted and extended to attribute the changes of other variables or to focus on the regional scale.

Impact Statement

To devise efficient adaptation policies, it is key to understand the causes of past climate changes. Here, we present
a method based on neural networks to estimate the past global mean surface temperature (GMST) anomalies
caused by the changes in the greenhouse gas concentration, the variation of anthropogenic aerosols, and the
variation driven by naturally occurring phenomena. This method is based on the training of a convolutional
neural network using the estimations from 12 state-of-the-art climate models. Then we infer the most likely
causes for the observed GMST changes from 1900 to 2014. The methodology presented could be applied in
future studies to other variables or at the regional scale.

1. Introduction

Detection and attribution of climate change are key to understanding past climate change and devising
adaptation policies. Detection aims to prove the existence of climate change exceeding its internal
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variability. Internal variability refers to climate variations resulting from processes intrinsic to the climate
system. For instance, the global mean surface temperature (GMST) varies by a few tenths of degrees
during the phases of the El Nifio Southern Oscillation. Similarly, the Atlantic multidecadal variability can
also influence the global climate. Boundary conditions of the climate system, known as forcings, can also
cause climate change. The dominant forcings in the historical period (i.e., from 1850 to present day) are
the increase in the greenhouse gases atmospheric concentration, the variations of the atmospheric aerosol
concentration, the variations of solar insolation, the changes in land use, and stratospheric ozone
concentrations. Anthropologically driven and naturally occurring forcings are generally considered
separately. Attribution then aims to explain and quantify the impacts of the different forcings in the
detected change, using both observations and climate models (Stott et al., 2010).

Hasselmann (1993) defined a method to estimate the fingerprints of forced climate change based on
the analysis of observation and the climate models. In the reference methods, such fingerprints are used
to characterize the climate. The observations are linearly regressed onto the simulated responses of the
external forcings using these fingerprints (Ribes etal., 2013). It is often assumed that the impacts of the
forcings are additive. Detection and attribution studies often consider reduced dimensional data, using
global spatial and temporal means. By doing so, they estimate a pseudo-invertible covariance matrix
used for the linear regression (Zhang et al., 2007). These methods have shown that global warming
cannot be explained only by internal variability, and it was extremely likely that human activities had
caused at least more than half of the observed increase in GMST from 1951 to 2010 (Gulev et al.,
2021).

State-of-the-art attribution methods have several limitations such as the additivity assumption of the
influence of forcings, and attribute anomalies to more than two forcings are often difficult (Gillett et al.,
2021). We aim at exploring an alternative framework based on non-linear predictors to account for more
complex interactions between the forcings. We then consider neural network regressors that have shown
their ability to exploit spatial and temporal data structures, find patterns, and fuse heterogeneous sources
of information efficiently in different domains of earth system sciences (Reichstein et al., 2019). We use
convolutional neural networks (CNNs) and a variational inversion method, to perform climate change
attribution. This accounts for the non-additivity in the forcings and is used to quantify the uncertainties in
the attributed changes. Section 2 presents the data and the methodology. Section 3 is devoted to the results
and Section 4 to the conclusions.

2. Data and Methods
2.1. Data

We use monthly air temperature from 1850 to 2014, from climate model simulations and observations. We
use the outputs of the CMIP6 (Coupled Model Intercomparison Project 6; Eyring etal., 2016) simulations
performed with 12 ocean—atmosphere general circulation models (see Table 1 for details). We denote
HIST as the historical simulations, using as varying boundary conditions all the external forcings. These
forcings include the estimations of greenhouse gases, aerosols, ozone concentration, and the estimated
past variation of solar activity and land use. Each climate model provides several simulation instances
called members generated through a macro-perturbation of the initial conditions. We also use single-
forcing simulations from the DAMIP (Gillett et al., 2016) panel of CMIP6. These simulations used as
varying boundary conditions only one of the external forcings, all the other external forcings being fixed
at their value from 1850. We use the single-forcing simulations hist-aer denoted AER, hist-nat denoted
NAT, and hist-GHG denoted GHG. They respectively use as varying forcing the anthropogenic aerosols,
natural forcing (i.e., volcanic aerosol and solar variations), and greenhouse gases concentration. The
effects of stratospheric ozone and land use were not investigated.

We also use observations (denoted OBS) of the 2 m air temperature over the continent from
HadCRUT4 (Morice et al., 2012) blended with sea surface temperature from HadISST4 (Rayner et al.,
2003). To make HIST and OBS comparable, we correct OBS ofits blending effects using a 1.06 multiplier
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Table 1. Model and simulation used in this study.

Model GHG AER NAT HIST
CESM2 3 3 2 11
IPSL-CM6A-LR 10 10 10 32
ACCESS-ESMI-5 3 3 3 30
BCC-CSM2-MR 3 3 3 3
CanESMS5 50 50 30 65
CNRM-CM6-1 9 10 10 10
FGOALS-g3 3 3 3 6
HadGEM3 4 4 4 5
MIROC6 3 3 3 50
MRI-ESM2.0 5 5 5 7
NorESM2-LM 3 3 3 3
GISS-E2-1-G 10 12 20 19

Note. The numbers in the columns GHG, AER, and NAT provide the number of members used.

coefficient (Richardson et al., 2018). The missing values have been filled by kriging (Cowtan and Way,
2014).

All monthly data are converted into an annual mean and averaged spatially from 90°S to 90°N. We then
estimate the temperature anomalies in the 1900-2014 period (115 years). In each simulation (HIST, GHG,
NAT, AER) we compute the mean temperature during the 1850-1900 period and remove it from the
temperature. For the GISS-E2-1-G, we compute the temperature anomalies separately for the simulations
using two different physics, with different schemes to calculate the aerosols indirect impact (Kelley et al.,
2020). The same procedure is applied to OBS. Then, the time series of 115 years are normalized: for each
model, we compute the maximum value of the ensemble mean of HIST and divide all the members of all
simulation by this maximum. We also divide OBS by its maximum value.

2.2. Methodology

First, we determine the relationship linking the GMST of HIST to that of GHG, AER, and NAT. We train a
CNN using the time series of AER, GHG, and NAT as input, with a size of (3,115), and HIST as the target,
with a size of (1,115). The resulting CNN estimates the GMST anomaly in the historical period from
GHG, AER, and NAT GMST time series.

The CNN consists of 3 one-dimensional convolutional layers. The kernel size for all layers is 11, the
input is zero-padded by 5 pixels, and the length of the layers is 10 in the CNN. Hyperbolic tangent is used
as an activation function in the hidden layers to add non-linearities. The training phase is made of three
steps using the mean square error (MSE): (a) we randomly select a climate model, (b) we randomly select
an instance of each simulation (GHG, AER, NAT, and HIST), and (c) we train the network using the
corresponding (GHG, AER, NAT) and HIST time series as input and target with a batch size of 100. We
iterate this process 5 x 10° times in total separated into 100 epochs of 5 x 10* iterations. The procedure
ensures that each model is used equally when training the CNN. The architecture and hyperparameters
are chosen using a k-fold cross-validation technique. We considered the 12 models separately, leaving out
the data of one climate model. We then train a CNN using the remaining 11 models and use the data
from the excluded model as the validation set. The process is iterated by removing each model alternately
and the mean validation error is estimated. The selected architecture provides the lowest mean validation
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error after varying the number of layers, the kernels sizes, and the lengths of the layers. The CNN is finally
trained using the 12 models together.

2.2.1. Variational inversion

The detection attribution problem aims at estimating the input time series (GHG, AER, and NAT)
corresponding to the OBS time series. Therefore, we use a variational approach and the trained CNNs
estimating the contribution of each forcing in the multi-model dataset. In geophysics, the variational
inversion (Dioufet al., 2011; Brajard et al., 2012) considers a physical phenomenon and an associated
model M. The variational inversion seeks to infer the physical parameters that led to the observations,
according to the geophysical model. It often implies the use of the adjoint model of M which estimates
changes in the input in response to a disturbance of the output values calculated by M. The basic idea is
to determine the minimum of a cost function J that measures the disagreements between the observa-
tions and the model estimations. Due to the complexity of the model, the desired minimum is classically
obtained by using gradient methods, to estimate the control parameters. In our case, we use the CNN as a
model M so this process is straightforward and the inversion is obtained using the classical back-
propagation algorithm. In our case, the parameters we are looking for are the input of the CNN with
OBS at output. The inversion is an “ill-posed” problem that has multiple solutions and needs the
estimation of the parameter distribution; moreover, the method is sensitive to the initialization. To
overcome these (Bauer et al., 2020) problems, we repeat the process using different starting points. We
use as a cost function the MSE and add a penalization term. This penalization is needed to keep a
physically coherent solution. The cost function is

J(X) = MSE(OBS, CNN (X)) + B x MSE(X, Xst) )

where B s a scaling factor, set to 0.01, Xs¢ the initial value of the inputs, and X input to be determined. This
minimization is iterated until MSE(OBS, CNN (X)) is less than 0.05°C/°C. To choose the initial value Xst,
we used multiple physically consistent values. For each of the 12 climate models, we randomly select
100 triplets of members of GHG, AER, and NAT for Xst and generate 1,200 variational inversions.

3. Results
3.1. Neural network performance

We evaluate the ability of the proposed approach to estimate the GMST from the HIST simulations using
the k-fold cross-validation. For each climate model, we use a CNN trained with the data excluding that
model using the 11 other climate models. Table 2 presents the training (validation) root mean square error
(RMSE) in the first column (second column) when the CNN has seen the outputs (or not seen the outputs)
from the climate model. All the RMSE is provided here for the normalized time series so that the unit is °C
per °C. We obtain a mean training RMSE of 0.15°C/°C and a validation RMSE of 0.17 °C/°C across the
climate models. The training RMSE is only slightly lower than the validation RMSE so that the CNN
avoids overfitting. The RMSE varies among the models, with values from 0.09°C/°C (0.1°C/°C) in
CanESMS to 0.20°C/°C (0.24°C/°C) in NorESM1-LM for the training (validation) RMSE. The reason
for these differences remains to be fully investigated, but we suggest that the output of the CNN reflects
the similarities among models, and a low performance reflects a singularity of the GMST simulated by one
model. We verify that the validation performance of a simple baseline linear network consisting of only a
linear layer has a larger mean validation error of 0.21 °C/°C so that non-linearities do improve the
performance.

3.2. Variational inversion

To validate the variational inversion, we used the members of HIST as pseudo-observations and the k-fold
framework. For each HIST members for each climate models, we produce the variational inversions with
100 randomly chosen starting points using the CNN trained from data excluding that climate model. Then,
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Table 2. (First column) Training RMSE (°C/°C) computed on the outputs of the climate model when that model is seen by the CNN;
(Second column) Validation RMSE (°C/°C) computed on the outputs of the climate model when the model is not seen by the CNN.

Model Train CNN Validation CNN GHG Inversion AER inversion NAT inversion
CESM2 0.11 0.12 0.13 0.16 0.09
IPSL-CM6A-LR 0.13 0.14 0.23 0.22 0.08
ACCESS-ESM1-5 0.13 0.13 0.14 0.16 0.07
BCC-CSM2-MR 0.17 0.18 0.26 0.19 0.08
CanESM5 0.09 0.1 0.11 0.07 0.05
CNRM-CM6-1 0.18 0.19 0.11 0.11 0.07
FGOALS-g3 0.09 0.11 0.31 0.36 0.12
HadGEM3 0.14 0.19 0.34 0.26 0.06
MIROC6 0.19 0.2 0.14 0.13 0.11
MRI-ESM2.0 0.2 0.21 0.13 0.1 0.09
NorESM2-LM 0.19 0.24 0.15 0.24 0.12
GISS-E2-1-G 0.19 0.2 0.12 0.13 0.1

Note. (Last three columns) Mean RMSE (° C) between the mean inversion of the effects of greenhouse gases (anthropogenic aerosols and natural forcings)
and the GMST from the ensemble mean of GHG (AER and NAT).

the inversions are denormalized. As an illustration, one HIST instance was chosen randomly and is shown
in Figure 1, black line. The mean inversion with the forcing of greenhouse gases, anthropogenic aerosols,
and natural forcings (Figure 1, red, blue, and green lines) is then compared to the ensemble mean GMST of
GHG, AER, and NAT (Figure 1, purple, dark blue and beige lines in Figure 1). The color shades in
Figure 1 quantify the spread among the inversions found from the different starting points, with one
standard deviation. The spread of the simulations GHG, AER, and NAT illustrates one standard deviation
across the available ensemble members. The greenhouse gases influence is variable among models, as the
inversion results simulate in 2014 a GMST varying from 1°C to 2°C. This reflects the different sensitivity
of climate models. The result of the anthropogenic aerosols inversion also scale with the climate
sensitivity, with a large cooling for sensitive models. Nevertheless, FGOALs-g3, IPSL-CM6A-LR, or
BCC-CSM2-MR simulate weak anomalies for anthropogenic aerosols compared to AER but large
anomalies for greenhouse gases. Conversely, HddGEM3 or NorESM2-LM simulates rather large anom-
alies for anthropogenic aerosols and for HadGEM3 rather weak anomalies for greenhouse gases. The
inversions provide realistic values for the natural forcings that agree with the outputs from NAT, with time
series with small anomalies, except for the cooling in 1963, 1982, and 1991, following the major eruptions
of Agung, El Chichon, and Pinatubo. For all models, the inversions have a large spread, much larger than
the spread of the simulations GHG, AER, or NAT. It reflects the diversity of starting points used in the
inversions. In 7 out of 12 models, we found a good agreement between the inversions and the simulated
anomalies forcings as the spread of inversions agrees with the mean simulated anomalies. However, for
FGOALs-g3, BCC-CSM2-MR, HadGEM3, NorESM2-LM, IPSL-CM6A-LR, the inversion is biased.
The mean RMSEs between the mean inversions results of each HIST instance and the ensemble mean
of the corresponding single-forcing simulation are presented in Table 2. RMSEs for BCC-CSM2-MR,
IPSL-CM6A-LR, HadGEM3, and FGOALS-g3 RMSEs are large for the influence of greenhouse gases
with, respectively, 0.26, 0.23, 0.34, and 0.31 °C. Similarly, the influence of anthropogenic aerosols is not
well retrieved for FGOALS-g3 (RMSE of 0.36 °C), HadGEM3 (0.26 °C) and NorESM2-LM (0.24°C),
and IPSL-CM6A-LR (0.22°C). This confirms the analysis of Figure 1, where these models all simulate
contrasted GMST in the results of anthropogenic aerosols and greenhouse gases inversion results.
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Figure 1. GMST for an HIST member (black) randomly chosen as pseudo-observation, the mean results
of variational inversions from the same member for the (red) greenhouse gases, (blue) anthropogenic
aerosols and (green) natural forcings effects and ensemble mean of the (purple) GHG, (dark blue) AER
and (beige) NAT. The color shades show one standard deviation across the inversion or across the
ensemble members.
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Figure 2. Left: (black) Observation in °C and variational inversion for (red) greenhouse gases, (blue)
anthropogenic aerosols, and (green) natural forcings. Shades show the standard deviation across the
1,200 varational inversion. (Right): Histogram from the inversion for (red) greenhouse gases, (blue)
anthropogenic aerosols, and (green) natural forcings for the year 1993 and 2014.
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The validation RMSEs reflect the distance of the climate models from the multi-model average. This
distance results from the different climate sensitivity in each model, as well as the implementation of
anthropogenic aerosol forcing, which varies between models (Pincus et al., 2016).

To attribute the observed changes, we apply the variational inversion to the observed GMST. The
starting points provide 1,200 results of the effects of the greenhouse gases (Figure 2, red line),
anthropogenic aerosol (Figure 2, blue line), and natural forcing (Figure 2, green line). The spread is
evaluated using the standard deviation across the inversions (shades in Figure 2, left panel). The
greenhouse gases and anthropogenic aerosols influence is smaller compared to many of the models
illustrated in Figure 1, with variations consistent with that simulated in GHG and AER. The effect of
natural forcings remains small compared to the results of Figure 1, with only a small decrease in the
GMST in 1992 and 1993 following the Pinatubo eruption. The right panel Figure 2 illustrates the
distribution of the results from the inversions in 1993 and 2014. We study in particular the year 1993
following the 1991 Pinatubo eruption and 2014 as it is the last year of the time series. The distribution
shows a large spread for the effects of forcings associated with the diversity of the starting points used.
When using the 95 percent intervals from the distribution of the inversion, the results show a range of
[0.8°C,1.9°C] for greenhouse gases, [—0.7°C,-0.1°C] for anthropogenic aerosols, and [—0.1°C,0.3°C] for
natural forcings in 2014. In 1993, the effect of natural forcing is with a 95 percent intervals of
[—0.5°C,0.1°C] consistent with well-known effects of volcanic aerosols following the Pinatubo eruption
(Gulev et al., 2021). We can compare these results (Figure 2, right) to the results found in Gillett et al.
(2021) using the same data but with the regularized optimal fingerprinting method. They found anomalies
of [1.2°C,1.9°C] for greenhouse gases, [—0.7°C,-0.1°C] for anthropogenic aerosols, and [0.01°C,0.06°C]
for natural forcings in the 2010-2019 decade. This suggests that the variational inversion provides
coherent results values but with larger confidence intervals.

4. Conclusion

In this article, we proposed an original solution to the attribution problem that does not rely on the classical
forcing additivity assumption. The estimation relies on a non-linear forcing combination model that is learned
from climate models simulations using GMST as an example. Spatial information of data will be included in
future works. We chose however to not use it in this study to compare our results to previous studies, using
mostly the GMST. The results found are coherent with a previous study using the same dataset and a classic
fingerprinting method (Gillett et al., 202 1) but with a larger uncertainty due in part to the different starting
points of the inversion. For 4 of the 12 climate models, the validation score is lower. Other choices of
architectures could be tested to combine more realistically the effects of forcings like recurrent neural
networks more adapted to time series. Alternative variational inversion frameworks like other cost functions
or starting points could also be tested. This new method could be applied in case a large non-additivity is
expected in other variables (precipitation for example) or at the regional scale (Lehner and Coats, 2021).

Abbreviations

AER hist-aer simulations

CMIP6  Coupled Model Intercomparison Project 6
CNN convolutionnal neural network

GHG hist-GHG simulations
GMST  global mean surface temperature
GSAT  global surface air temperature

HIST historical simulations
MSE mean square error
NAT hist-nat simulations
OBS observations

RMSE  root mean square error
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