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Abstract
Erdős [7] proved that the Continuum Hypothesis (CH) is equivalent to the existence of an uncountable family F
of (real or complex) analytic functions, such that

{
𝑓 (𝑥) : 𝑓 ∈ F

}
is countable for every x. We strengthen Erdős’

result by proving that CH is equivalent to the existence of what we call sparse analytic systems of functions. We
use such systems to construct, assuming CH, an equivalence relation ∼ on R such that any ‘analytic-anonymous’
attempt to predict the map 𝑥 ↦→ [𝑥]∼ must fail almost everywhere. This provides a consistently negative answer to
a question of Bajpai-Velleman [2].

1. Introduction

In the early 1960s, John Wetzel posed the following problem.

Wetzel’s Problem: If F is a family of analytic functions (on some common domain) such that
{ 𝑓 (𝑥) : 𝑓 ∈ F } is countable for every x, must F be a countable family?

A few years later, Erdős proved that an affirmative answer to Wetzel’s Problem is equivalent to
the negation of Cantor’s Continuum Hypothesis (CH). Combined with Paul Cohen’s proof of the
independence of CH, this showed that Wetzel’s Problem is independent of the standard axioms of
mathematics (ZFC). Upon learning of Erdős’ theorem, Wetzel remarked to his dissertation advisor
(Halsey Royden) that ‘. . . once again a natural analysis question has grown horns!’ This quote, and other
interesting history surrounding Wetzel’s Problem, appears in Garcia-Shoemaker [10]. Erdős’ proof even
made it into Aigner-Ziegler’s ‘Proofs from the Book’ ([1]). It will be more convenient for us to state
and refer to Erdős’ equivalence in the negated form.

Theorem 1 (Erdős [7]). The following are equivalent:

(1) CH;
(2) There exists an uncountable family F of analytic functions on some fixed open domain D of either
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2 B. Cody et al.

R or C, such that for every 𝑥 ∈ 𝐷,
{
𝑓 (𝑥) : 𝑓 ∈ F

}

is countable.
Motivated by connections to work of Hardin-Taylor ([11], [12]) and Bajpai-Velleman [2] described

below, we strengthen Theorem 1 as follows. If 𝑃 ∈ R2, we denote the first coordinate of P by 𝑥𝑃 and
the second coordinate by 𝑦𝑃 . Define a sparse (real) analytic system to mean a collection

{
𝑓𝑃 : 𝑃 ∈ R2}

such that:
(1) for all 𝑃 ∈ R2, 𝑓𝑃 is an increasing, analytic bijection from R→ R that passes through the point P;

and
(2) For all 𝑧 ∈ R, the sets

{
𝑓𝑃 (𝑧) : 𝑃 ∈ R2 and 𝑧 ≠ 𝑥𝑃

}

and
{
𝑓 −1
𝑃 (𝑧) : 𝑃 ∈ R2 and 𝑧 ≠ 𝑦𝑃

}

are both countable.
We prove the following strengthening of Erdős’ Theorem 1.
Theorem 2. The following are equivalent:
(1) CH
(2) There exists a sparse real analytic system.

We use Theorem 2 to answer a question of Bajpai and Velleman, assuming CH. Given a nonempty
set S, let R𝑺 denote the collection of total functions from R to S, and let R⌣𝑺 denote the collection of all
S-valued functions f such that dom( 𝑓 ) = (−∞, 𝑡 𝑓 ) for some 𝑡 𝑓 ∈ R. An 𝑺-predictor will refer to any
function P with domain and codomain as follows:

P : R⌣𝑆 → 𝑆. (1)

An S-predictor P will be called good if for all 𝐹 ∈ R𝑆, the set
{
𝑡 ∈ R : 𝐹 (𝑡) = P

(
𝐹 � (−∞, 𝑡)

)}

has full measure in R. So P is good if for any total 𝐹 : R→ 𝑆, P ‘almost always’ correctly predicts 𝐹 (𝑡)
based only on 𝐹 � (−∞, 𝑡).1 Hardin-Taylor [11] proved that for any set S, there exists a good S-predictor,
and in [12], they raised the question of whether these good predictors could also be arranged to be
‘Γ-anonymous’ with respect to certain classes Γ ⊆ Homeo+(R);2 an S-predictor P is Γ-anonymous if
for every 𝜑 ∈ Γ and every 𝑓 ∈

R
⌣𝑆,

P
(
𝑓
)
= P

(
𝑓 ◦ 𝜑

)
,

where 𝑓 ◦ 𝜑 is the member of R⌣𝑆 whose domain is understood to be
(
− ∞, 𝜑−1 (𝑡 𝑓 )

)
. Bajpai and

Velleman [2] gave a positive and a negative result:

1Note that F is allowed to be highly discontinuous; otherwise, the problem trivializes since one could simply predict 𝐹 (𝑡) by
considering lim𝑥↗𝑡 𝐹 (𝑥) , which only depends on 𝐹 � (−∞, 𝑡) .

2Homeo+ (R) denotes the set of increasing homeomorphisms from R to R.
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◦ For every set S, there exists a good S-predictor that is anonymous with respect to the class of affine
functions on the reals. This strengthened a previous theorem of Hardin-Taylor [12], who had gotten
the same result for the smaller class of affine functions of slope 1 (i.e, shifts).

◦ There is an equivalence relation ∼ on R such that, letting 𝑆 := R/∼, there is no good S-predictor that
is anonymous with respect to the class of increasing 𝐶∞ bijections on R.

They asked about classes intermediate between the affine functions and the 𝐶∞ functions.

Question 3 (Bajpai-Velleman [2], page 788). Does there exist (for every set S) a good S-predictor that
is anonymous with respect to the analytic members of Homeo+(R)?

We use Theorem 2, together with an argument from Bajpai-Velleman [2], to prove:

Theorem 4. Assuming CH, the answer to Question 3 is negative.

Section 2 provides an interpolation theorem that will be used in the proof of Theorem 2, Section 3
proves Theorem 2, Section 4 proves Theorem 4, and Section 5 has concluding remarks and open
questions.

2. An interpolation theorem

A key part of the proof of Theorem 2 is the (ZFC) Theorem 5 below. One of the referees pointed out
that Theorem 5 follows from known results; in particular, it follows from the much more powerful
Theorem 3.2 of Burke [4] or, with modifications in the proofs, either Theorem 2 of Barth-Schneider
[3] or Corollary 1.9 of Burke [5]. Since deriving Theorem 5 from those more powerful theorems is not
trivial, we choose to present our original direct proof of Theorem 5.

Recall that Cantor proved that any two countable dense subsets of R are order-isomorphic and that
this order-isomorphism easily extends uniquely to a homeomorphism of R. Franklin [9] considered the
question of how nice this homeomorphism could be arranged to be, and showed that if D and E are
countable dense subsets of R, then there is an order-isomorphism of D with E that extends to a real
analytic function. A series of papers improved this result, culminating in Barth-Schneider [3], who
proved that there is an order-isomorphism of D with E that extends to an entire function 𝑓 : C → C,
answering (one interpretation of) Question 24 of Erdős [8].3 Subsequent work of Burke, mentioned
above, further strengthened those results. The variant we will need for the proof of Theorem 2 follows.

Theorem 5. Suppose D is a partition of R into dense subsets of R; for each 𝑧 ∈ R, let 𝐷𝑧 denote the
unique 𝐷 ∈ D such that 𝑧 ∈ 𝐷.

Then for any 𝑃 = (𝑥𝑃 , 𝑦𝑃) ∈ R2 and any countable set W of reals, there is an entire function
𝑓 : C→ C such that:

(1) 𝑓 � R is real-valued (hence analytic, since 𝑓 : C→ C is entire);
(2) 𝑓 � R is a bijection with strictly positive derivative;
(3) 𝑓 (𝑥𝑃) = 𝑦𝑃; and
(4) for each 𝑤 ∈ 𝑊 ,

(a) if 𝑤 ≠ 𝑥𝑃 , then 𝑓 (𝑤) ∈ 𝐷𝑤 ;
(b) if 𝑤 ≠ 𝑦𝑃 , then 𝑓 −1(𝑤) ∈ 𝐷𝑤 .

Let us give a brief outline of the following proof of Theorem 5, which is inspired by the proof of
Nienhuys-Thiemann [14]. We will inductively define a sequence of functions 〈 𝑓𝑛 : 𝑛 ∈ N〉 whose limit
will be the desired function f. Each function 𝑓𝑛 will satisfy a version of Theorem 5(4) for finitely many
points in W. When we define the next function 𝑓𝑛+1, we will want it to be equal to 𝑓𝑛 on these finitely
many points in W that have already been taken care of, and we will want 𝑓𝑛+1 to satisfy Theorem 5(4a)
or Theorem 5(4b), depending on whether n is even or odd, for an additional point in W. We will write
𝐴𝑛 to denote the set of finitely many points of W that have already been taken care of at stage n with

3See also Maurer [13], Nienhuys-Thiemann [14] and Sato-Rankin [15] for related results. Burke [5] provides a nice historical
overview of this literature on this topic.
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regard to Theorem 5(4a), and we will write 𝐵𝑛 to denote the set of finitely many points of W that have
been taken care of in regard to Theorem 5(4b).

Suppose D is a partition of R into dense sets, W is a countable set of real numbers, and 𝑃 = (𝑥𝑃 , 𝑦𝑃)
is a point in R2. Fix a 1-1 enumeration {𝑤𝑛 : 𝑛 ∈ N} of W, and for each n, let 𝐷𝑛 be the unique member
of D containing 𝑤𝑛. Since D is a partition, we have

∀𝑘, 𝑛 ∈ N
(
𝑤𝑘 ∈ 𝐷𝑛 ⇐⇒ 𝐷𝑘 = 𝐷𝑛 ⇐⇒ 𝑤𝑛 ∈ 𝐷𝑘

)
. (*)

Suppose 𝑝 : R→ R is a continuous positive function such that

∀𝑛 ∈ N lim
𝑡→∞

𝑝(𝑡)

𝑡𝑛
= ∞. (2)

We will inductively define sequences 〈 𝑓𝑛 : 𝑛 ∈ N〉, 〈𝐴𝑛 : 𝑛 ∈ N〉 and 〈𝐵𝑛 : 𝑛 ∈ N〉 such that 𝐴0 = ∅

and 𝐵0 = ∅ and for all 𝑛 ∈ N, we have
(I)n 𝑓𝑛 : C→ C is entire and 𝑓𝑛 � R is real-valued;

(II)n 𝑓𝑛 (𝑥𝑃) = 𝑦𝑃;
(III)n ∀𝑥 ∈ R 𝑓 ′𝑛 (𝑥) ≥

1
2 + 1

2𝑛 , and thus 𝑓𝑛 � R is a bijection;
(IV)n if 𝑛 > 0, then ∀𝑧 ∈ C | 𝑓𝑛 (𝑧) − 𝑓𝑛−1(𝑧) | <

1
2𝑛 𝑝(|𝑧 |);

(V)n if 𝑛 = 2𝑘 + 1 is odd, then 𝐴𝑛 = 𝐴𝑛−1 ∪ {𝑤𝑘 }, 𝐵𝑛 = 𝐵𝑛−1 and we have 𝑤𝑘 ≠ 𝑥𝑃 =⇒ 𝑓𝑛 (𝑤𝑘 ) ∈

𝐷𝑘 ;
(VI)n if 𝑛 = 2𝑘+2 is even, then 𝐴𝑛 = 𝐴𝑛−1, 𝐵𝑛 = 𝐵𝑛−1∪{𝑤𝑘 } and we have 𝑤𝑘 ≠ 𝑦𝑃 =⇒ 𝑓 −1

𝑛 (𝑤𝑘 ) ∈

𝐷𝑘 ; and
(VII)n if 𝑛 > 0, then 𝑓𝑛 � 𝐴𝑛−1 = 𝑓𝑛−1 � 𝐴𝑛−1 and 𝑓 −1

𝑛 � 𝐵𝑛−1 = 𝑓 −1
𝑛−1 � 𝐵𝑛−1.

First, let us show that, assuming we have sequences 〈 𝑓𝑛 : 𝑛 ∈ N〉 and 〈𝐴𝑛 : 𝑛 ∈ N〉 and 〈𝐵𝑛 : 𝑛 ∈ N〉

satisfying (I)𝑛-(VII)𝑛 for all n, the pointwise limit defined by 𝑓 (𝑧) = lim𝑛→∞ 𝑓𝑛 (𝑧) has all of the desired
properties. Suppose D is any compact subset of C. Since

∑∞
𝑛=1

1
2𝑛 converges and since 𝑝(|𝑧 |) is bounded

on D, the fact that (IV)𝑛 holds for all n ensures that the sequence 〈 𝑓𝑛 : 𝑛 ∈ N〉 is uniformly Cauchy on
D. Hence, we can define a function 𝑓 : C → C by letting 𝑓 (𝑧) = lim𝑛→∞ 𝑓𝑛 (𝑧). Since the sequence
〈 𝑓𝑛 : 𝑛 ∈ N〉 is uniformly Cauchy on any compact set, it follows that the convergence of 〈 𝑓𝑛 : 𝑛 ∈ N〉 to
f is uniform on any compact set, and hence, f is an entire function.

Now let us verify that Theorem 5(1)–(4) hold for f. By (I)𝑛 and closure of R in C, we see that 𝑓 � R
is real valued, and since (III)𝑛 holds for all n, we have 𝑓 ′(𝑥) ≥ 1

2 for all 𝑥 ∈ R. Thus, Theorem 5(1)
and Theorem 5(2) hold. Theorem 5(3) holds since the sequence 〈 𝑓𝑛 (𝑥𝑃) : 𝑛 ∈ N〉 is constantly equal
to 𝑦𝑃 . To show that Theorem 5(4) holds, let us prove that for all 𝑖 ∈ N, if 𝑤𝑖 ≠ 𝑥𝑃 , then 𝑓 (𝑤𝑖) ∈ 𝐷𝑖 ,
and if 𝑤𝑖 ≠ 𝑦𝑃 , then 𝑓 −1(𝑤𝑖) ∈ 𝐷𝑖 . Fix 𝑖 ∈ N. We have 𝑤𝑖 ∈ 𝐴2𝑖+1 and 𝑤𝑖 ∈ 𝐵2𝑖+2, and furthermore,
by (V)2𝑖+1 and (VI)2𝑖+2, 𝑤𝑖 ≠ 𝑥𝑃 implies 𝑓2𝑖+1(𝑤𝑖) ∈ 𝐷𝑖 and 𝑤𝑖 ≠ 𝑦𝑃 implies 𝑓 −1

2𝑖+2(𝑤𝑖) ∈ 𝐷𝑖 . Since
(VII)𝑛 holds for all n, we see that both of the sequences 〈 𝑓𝑛 (𝑤𝑖) : 𝑛 ∈ N〉 and 〈 𝑓 −1

𝑛 (𝑤𝑖) : 𝑛 ∈ N〉 are
eventually constant, and indeed, for 𝑛 ≥ 2𝑖 + 2, we have 𝑓𝑛 (𝑤𝑖) = 𝑓2𝑖+1(𝑤𝑖) and 𝑓 −1

𝑛 (𝑤𝑖) = 𝑓 −1
2𝑖+2(𝑤𝑖).

Therefore, 𝑓 (𝑤𝑖) = 𝑓2𝑖+1(𝑤𝑖) and 𝑓 −1(𝑤𝑖) = 𝑓 −1
2𝑖+2(𝑤𝑖), so (4) holds.

It remains to show that we can inductively define sequences 〈 𝑓𝑛 : 𝑛 ∈ N〉, 〈𝐴𝑛 : 𝑛 ∈ N〉 and
〈𝐵𝑛 : 𝑛 ∈ N〉 that satisfy (I)𝑛–(VII)𝑛 for all 𝑛 ∈ N.

Let 𝑓0 : C→ C be 𝑓0(𝑧) = 3
2 (𝑧−𝑥𝑃) + 𝑦𝑃 , 𝐴0 = ∅ and 𝐵0 = ∅. One may easily verify that (I)0–(VII)0

hold. For 𝑛 > 0, Section 2.1 shows how 𝑓𝑛 is constructed when n is odd, and Section 2.2 shows how 𝑓𝑛
is constructed when n is even.

2.1. When n is odd

Suppose 𝑛 = 2𝑘 + 1 > 0 is odd and that 𝑓𝑖 , 𝐴𝑖 and 𝐵𝑖 satisfying (I)𝑖–(VII)𝑖 have already been defined
for 𝑖 ≤ 2𝑘 . If 𝑘 = 0, we have 𝐴0 = ∅ and 𝐵0 = ∅, whereas if 𝑘 > 0, we have

𝐴𝑛−1 = 𝐴2𝑘 = 𝐴2(𝑘−1)+2 = {𝑤0, . . . , 𝑤𝑘−1}
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and

𝐵𝑛−1 = 𝐵2𝑘 = {𝑤0, . . . , 𝑤𝑘−1}.

In any case, we let 𝐴𝑛 = 𝐴𝑛−1 ∪ {𝑤𝑘 } and 𝐵𝑛 = 𝐵𝑛−1. We define 𝑓𝑛 = 𝑓2𝑘+1 in two cases as follows.
Case 2.1. A: 𝒘𝒌 ∉ {𝒙𝑷} ∪ 𝑨𝒏−1 ∪ 𝒇−1

𝒏−1(𝑩𝒏−1). Let us argue that there is an entire function 𝑔𝑛 such
that

(i) (∀𝑧 ∈ C) 𝑔𝑛 (𝑧) = 0 ⇐⇒ 𝑧 ∈ {𝑥𝑃} ∪ 𝐴𝑛−1 ∪ 𝑓 −1
𝑛−1 (𝐵𝑛−1),

(ii) (∀𝑧 ∈ C) |𝑔𝑛 (𝑧) | ≤
1

2𝑛 𝑝(|𝑧 |) and
(iii) (∀𝑥 ∈ R) 𝑔′𝑛 (𝑥) ≥ − 1

2𝑛 .

Take

ℎ𝑛 (𝑧) = (𝑧 − 𝑥𝑃)
𝛽𝑛 (𝑧 − 𝑤0) · · · (𝑧 − 𝑤𝑘−1) (𝑧 − 𝑓 −1

𝑛−1(𝑤0)) · · · (𝑧 − 𝑓 −1
𝑛−1 (𝑤𝑘−1)),

where 𝛽𝑛 ∈ {1, 2} is such that the degree of ℎ𝑛 is odd. We will show that for small enough positive
𝛼𝑛 ∈ R, the function 𝑔𝑛 (𝑧) = 𝛼𝑛ℎ𝑛 (𝑧) satisfies (i)–(iii). Clearly, ℎ𝑛 satisfies (i), so any such function
𝑔𝑛 (𝑧) satisfies (i). For (ii), choose 𝑚 ∈ N and some positive 𝑐 ∈ R such that |ℎ𝑛 (𝑧) | ≤ |𝑧 |𝑚 + 𝑐 for all
𝑧 ∈ C. By our assumption on p, we have lim |𝑧 |→∞

𝑝 ( |𝑧 |)
|𝑧 |𝑚+𝑐 = ∞, and thus we can let 𝐷 ⊆ C be a large

enough closed disk centered at the origin such that 𝑧 ∈ C\𝐷 implies 1 ≤
𝑝 ( |𝑧 |)
|𝑧 |𝑚+𝑐 . Since p is a continuous

positive function, we can choose a positive 𝛼𝑛 ∈ R such that 𝛼𝑛 ≤ 1
2𝑛 and 𝛼𝑛 ≤

𝑝 ( |𝑧 |)
2𝑛 ( |𝑧 |𝑚+𝑐) for all 𝑧 ∈ 𝐷.

Then it follows that for every 𝑧 ∈ C, we have

|𝛼𝑛ℎ𝑛 (𝑧) | ≤ 𝛼𝑛 (|𝑧 |
𝑚 + 𝑐) ≤

1
2𝑛

𝑝(|𝑧 |).

Let us verify that (iii) holds for small enough 𝛼𝑛. Since ℎ𝑛 is odd and has a positive leading coefficient,
the derivative of ℎ𝑛 � R is bounded below. So we may let 𝑑 = inf{ℎ′𝑛 (𝑥) : 𝑥 ∈ R} ∈ R. Thus, we may
choose a small enough positive 𝛼𝑛 ∈ R such that 𝛼𝑛𝑑 ≥ − 1

2𝑛 , and then it follows that for all 𝑥 ∈ R, we
have 𝛼𝑛ℎ

′
𝑛 (𝑥) ≥ 𝛼𝑛𝑑 ≥ − 1

2𝑛 .
Using the case assumption that 𝑤𝑘 ∉ {𝑥𝑃} ∪ 𝐴𝑛−1 ∪ 𝑓 −1

𝑛−1 (𝐵𝑛−1), we see that 𝑔𝑛 (𝑤𝑘 ) ≠ 0, and hence
it follows that the set

{ 𝑓𝑛−1 (𝑤𝑘 ) + 𝑀𝑔𝑛 (𝑤𝑘 ) : 𝑀 ∈ [0, 1]}

is a nontrivial interval of real numbers. Thus, since 𝐷𝑘 is dense in R, it follows that there is some
𝑀𝑛 ∈ [0, 1] such that 𝑓𝑛−1 (𝑤𝑘 ) + 𝑀𝑛𝑔𝑛 (𝑤𝑘 ) ∈ 𝐷𝑘 . We define

𝑓𝑛 (𝑧) = 𝑓𝑛−1(𝑧) + 𝑀𝑛𝑔𝑛 (𝑧).

Let us show that (I)𝑛–(VII)𝑛 hold. It is trivial to see that (I)𝑛 and (II)𝑛 are true. For (III)𝑛, notice that
because 𝑀𝑛 ∈ [0, 1], and since (iii) and (III)𝑛−1 both hold, we have for all 𝑥 ∈ R,

𝑓 ′𝑛 (𝑥) = 𝑓 ′𝑛−1 (𝑥) + 𝑀𝑛𝑔
′
𝑛 (𝑥) ≥

1
2
+

1
2𝑛−1 −

1
2𝑛

=
1
2
+

1
2𝑛

,

and thus 𝑓𝑛 : R→ R is a bijection. For (IV)𝑛, we have for all 𝑧 ∈ C,

| 𝑓𝑛 (𝑧) − 𝑓𝑛−1 (𝑧) | = 𝑀𝑛 |𝑔𝑛 (𝑧) | ≤
1
2𝑛

𝑝(|𝑧 |),

where the last inequality follows since 𝑀𝑛 ∈ [0, 1] and (ii) holds. Let us verify that (V)𝑛 holds. From
the definition of 𝑓𝑛 = 𝑓2𝑘+1 and the way we chose 𝑀𝑛, it follows that 𝑓𝑛 (𝑤𝑘 ) ∈ 𝐷𝑘 (notice that 𝑤𝑘 ≠ 𝑥𝑃
by our case assumption). Thus, (V)𝑛 holds. (VI)𝑛 holds trivially since n is odd. To see that (VII)𝑛 holds,

https://doi.org/10.1017/fms.2023.54 Published online by Cambridge University Press

https://doi.org/10.1017/fms.2023.54


6 B. Cody et al.

note that since 𝑔𝑛 (𝑧) = 0 if 𝑧 ∈ {𝑥𝑃} ∪ 𝐴𝑛−1 ∪ 𝑓 −1
𝑛−1 (𝐵𝑛−1), it follows directly from the definition of 𝑓𝑛

that 𝑓𝑛 � 𝐴𝑛−1 = 𝑓𝑛 � 𝐴𝑛−1 and 𝑓 −1
𝑛 � 𝐵𝑛 = 𝑓 −1

𝑛−1 � 𝐵𝑛−1.
Case 2.1. B: 𝒘𝒌 ∈ {𝒙𝑷} ∪ 𝑨𝒏−1 ∪ 𝒇−1

𝒏−1(𝑩𝒏−1). Then we let 𝑓𝑛 = 𝑓𝑛−1, 𝐴𝑛 = 𝐴𝑛−1 ∪ {𝑤𝑘 } and
𝐵𝑛 = 𝐵𝑛−1. Let us argue that this definition of 𝑓𝑛 satisfies (V)𝑛; the rest of (I)𝑛–(VII)𝑛 are easily seen
to hold by the inductive hypothesis. Suppose 𝑤𝑘 ≠ 𝑥𝑃 . Since the enumeration of W is one-to-one, we
have 𝑤𝑘 ≠ 𝑤 𝑗 for all 𝑗 ≤ 𝑘 − 1. Thus, for some 𝑗 ≤ 𝑘 − 1, we have 𝑤𝑘 = 𝑓 −1

𝑛−1 (𝑤 𝑗 ), and because
𝑓𝑛−1 (𝑥𝑃) = 𝑦𝑃 , 𝑓𝑛−1 is injective and 𝑤𝑘 ≠ 𝑥𝑃 , it follows that 𝑤 𝑗 ≠ 𝑦𝑃 . Since 2 𝑗 + 2 ≤ 𝑛 − 1 and since
it follows by our inductive assumptions (VII)ℓ for ℓ ≤ 𝑛 − 1, that 𝑓𝑛−1 � 𝐴2 𝑗+2 = 𝑓2 𝑗+2 � 𝐴2 𝑗+2, we see
that 𝑤𝑘 = 𝑓 −1

𝑛−1(𝑤 𝑗 ) = 𝑓 −1
2 𝑗+2 (𝑤 𝑗 ) ∈ 𝐷 𝑗 . Then 𝐷 𝑗 = 𝐷𝑘 by (*) from page 4. So, 𝑓𝑛 (𝑤𝑘 ) = 𝑓𝑛−1 (𝑤𝑘 ) =

𝑤 𝑗 ∈ 𝐷 𝑗 = 𝐷𝑘 , and hence, (V)𝑛 holds.

2.2. When n is even

Now suppose 𝑛 = 2𝑘 + 2 is even, where 𝑘 > 0, and that 𝑓𝑖 , 𝐴𝑖 and 𝐵𝑖 satisfying (I)𝑖–(VI)𝑖 have already
been defined for 𝑖 ≤ 2𝑘 + 1. We have

𝐴2𝑘+1 = {𝑤0, . . . , 𝑤𝑘 }

and

𝐵2𝑘+1 = {𝑤0, . . . , 𝑤𝑘−1}.

We will define 𝑓𝑛, 𝐴𝑛 and 𝐵𝑛 in two cases as follows.
Case 2.2. A: 𝒇−1

𝒏−1(𝒘𝒌) ∉ {𝒙𝑷} ∪ 𝑨𝒏−1 ∪ 𝒇−1
𝒏−1(𝑩𝒏−1). Then we let 𝑔𝑛 be an entire function such that

(i) (∀𝑧 ∈ C) 𝑔𝑛 (𝑧) = 0 ⇐⇒ 𝑧 ∈ {𝑥𝑃} ∪ 𝐴𝑛−1 ∪ 𝑓 −1
𝑛−1 (𝐵𝑛−1),

(ii) (∀𝑧 ∈ C) |𝑔𝑛 (𝑧) | ≤
1

2𝑛 𝑝(|𝑧 |) and
(iii) (∀𝑥 ∈ R) 𝑔′𝑛 (𝑥) ≥ − 1

2𝑛 .

For example, as in the case above where n was odd, we could take

𝑔𝑛 (𝑧) = 𝛼𝑛 (𝑧 − 𝑥𝑃)
𝛽𝑛 (𝑧 − 𝑤0) · · · (𝑧 − 𝑤𝑘 ) (𝑧 − 𝑓 −1

𝑛−1(𝑤0)) · · · (𝑧 − 𝑓 −1
𝑛−1 (𝑤𝑘−1))

satisfying (i)–(iii) by choosing 𝛼𝑛 small enough and 𝛽𝑛 ∈ {1, 2} so that the degree of 𝑔𝑛 is odd. By our
inductive assumption about 𝑓𝑛−1 and by (iii), it follows that for any 𝑀 ∈ [0, 1] and any 𝑥 ∈ R, we have

𝑓 ′𝑛−1(𝑥) + 𝑀𝑔′𝑛 (𝑥) ≥
1
2
+

1
2𝑛−1 −

1
2𝑛

=
1
2
+

1
2𝑛

> 0.

Thus, the function 𝑓𝑛−1 + 𝑀𝑔𝑛 : R→ R is a bijection. Let us argue that the set

{( 𝑓𝑛−1 + 𝑀𝑔𝑛)
−1(𝑤𝑘 ) : 𝑀 ∈ [0, 1]}

is a nontrivial interval of real numbers. It will suffice to show that ( 𝑓𝑛−1 + 𝑔𝑛)
−1(𝑤𝑘 ) ≠ 𝑓 −1

𝑛−1(𝑤𝑘 ).
Suppose ( 𝑓𝑛−1 + 𝑔𝑛)

−1(𝑤𝑘 ) = 𝑓 −1
𝑛−1 (𝑤𝑘 ). Then 𝑓𝑛−1 ( 𝑓

−1
𝑛−1(𝑤𝑘 )) = 𝑤𝑘 and ( 𝑓𝑛−1 + 𝑔𝑛) ( 𝑓

−1
𝑛−1(𝑤𝑘 )) =

𝑤𝑘 . This implies that the functions 𝑓𝑛−1 and 𝑓𝑛−1 + 𝑔𝑛 are equal at the point 𝑓 −1
𝑛−1(𝑤𝑘 ), and hence,

𝑔𝑛 ( 𝑓
−1
𝑛−1 (𝑤𝑘 )) = 0, which contradicts (i) by our case assumption that 𝑓 −1

𝑛−1 (𝑤𝑘 ) ∉ {𝑥𝑃} ∪ 𝐴𝑛−1 ∪

𝑓 −1
𝑛−1 (𝐵𝑛−1).

Thus, since 𝐷𝑘 is dense inR, it follows that there is some 𝑀𝑛 ∈ [0, 1] such that ( 𝑓𝑛−1+𝑀𝑛𝑔𝑛)
−1(𝑤𝑘 ) ∈

𝐷𝑘 . We fix such an 𝑀𝑛 and define

𝑓𝑛 (𝑧) = 𝑓𝑛−1 (𝑧) + 𝑀𝑛𝑔𝑛 (𝑧).
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We also let 𝐴𝑛 = 𝐴𝑛−1 and 𝐵𝑛 = 𝐵𝑛−1 ∪ {𝑤𝑘 }. The verification that (I)𝑛–(VII)𝑛 hold is straightforward
and similar to the above; it is therefore left to the reader.

Case 2.2. B: 𝒇−1
𝒏−1(𝒘𝒌) ∈ {𝒙𝑷} ∪ 𝑨𝒏−1 ∪ 𝒇−1

𝒏−1(𝑩𝒏−1), or equivalently, 𝑤𝑘 ∈ {𝑦𝑃} ∪ 𝑓𝑛−1(𝐴𝑛−1) ∪
𝐵𝑛−1. Then we define 𝑓𝑛 = 𝑓𝑛−1. As in the odd case above, this definition of 𝑓𝑛 is easily seen to
satisfy (I)𝑛–(V)𝑛 and (VII)𝑛. Let us check (VI)𝑛. Suppose 𝑤𝑘 ≠ 𝑦𝑃 . Since the enumeration of W is
one-to-one, we have 𝑤𝑘 ≠ 𝑤 𝑗 for all 𝑗 ≤ 𝑘 − 1, and hence, 𝑤𝑘 = 𝑓𝑛−1 (𝑤 𝑗 ) for some 𝑗 ≤ 𝑘 , where
𝑤 𝑗 ≠ 𝑥𝑃 . Since 2 𝑗 + 1 ≤ 𝑛 − 1, it follows by our inductive assumptions (V)ℓ for ℓ ≤ 𝑛 − 1 that
𝑓𝑛−1 � 𝐴2 𝑗+1 = 𝑓2 𝑗+1 � 𝐴2 𝑗+1 and 𝑤𝑘 = 𝑓𝑛−1(𝑤 𝑗 ) = 𝑓2 𝑗+1 (𝑤 𝑗 ) ∈ 𝐷 𝑗 . Then by (*) from page 4,
𝐷 𝑗 = 𝐷𝑘 . So 𝑓 −1

𝑛 (𝑤𝑘 ) = 𝑓 −1
𝑛−1(𝑤𝑘 ) = 𝑤 𝑗 ∈ 𝐷 𝑗 = 𝐷𝑘 .

This concludes the proof of Theorem 5.

3. Proof of Theorem 2

To prove the ⇐ direction of Theorem 2, assume that
{
𝑓𝑃 : 𝑃 ∈ R2} is a sparse analytic system and

consider the subcollection
{
𝑓(0,𝑦) : 𝑦 ∈ R

}
. Since 𝑓(0,𝑦) passes through the point (0, 𝑦) and each 𝑓(0,𝑦)

is analytic, and hence continuous, it follows that for 𝑦 ≠ 𝑦′, 𝑓(0,𝑦) � (−∞, 0) ≠ 𝑓(0,𝑦′) � (−∞, 0). So

F :=
{
𝑓(0,𝑦) � (−∞, 0) : 𝑦 ∈ R

}

is a continuum-sized collection of analytic functions on the common domain 𝐷 := (−∞, 0). Furthermore,
given any 𝑧 ∈ 𝐷, since 𝑧 ≠ 0 and the 𝑓𝑃’s formed a sparse analytic system, it follows that

{ 𝑓(0,𝑦) (𝑧) : 𝑦 ∈ R}

is countable. So F is a collection of analytic functions as in clause (2) of Erdős’ Theorem 1. So by that
theorem, CH must hold.

To prove the ⇒ direction of Theorem 2 – which is heavily inspired by Erdős’ proof of Theorem 1 –
assume CH and fix an enumeration 〈𝑤𝛼 : 𝛼 < 𝜔1〉 of R. Fix any partition D of the reals into countable
dense subsets of R.4 For each 𝛼 < 𝜔1, let 𝐷𝛼 be the unique member of D containing 𝑤𝛼. Also fix an
𝜔1-enumeration 〈𝑃𝛼 = (𝑎𝛼, 𝑏𝛼) : 𝛼 < 𝜔1〉 of R2.

Fix an 𝛼 < 𝜔1. By Theorem 5, there exists an entire 𝑓𝛼 : C→ C such that:
(1) 𝑓𝛼 � R is a real analytic bijection with strictly positive derivative;
(2) 𝑓𝛼 (𝑎𝛼) = 𝑏𝛼 (i.e., 𝑓𝛼 � R passes through the point 𝑃𝛼);
(3) For each 𝑤 𝜉 in the countable set 𝑊𝛼 := {𝑤 𝜉 : 𝜉 < 𝛼},

(a) if 𝑤 𝜉 ≠ 𝑎𝛼, then 𝑓𝛼 (𝑤 𝜉 ) ∈ 𝐷 𝜉 ; and
(b) if 𝑤 𝜉 ≠ 𝑏𝛼, then 𝑓 −1

𝛼 (𝑤 𝜉 ) ∈ 𝐷 𝜉 .
We claim that { 𝑓𝛼 � R : 𝛼 < 𝜔1} is a sparse analytic system, and the only nontrivial requirement

to verify is that if 𝑤 ∈ R, then both

𝐴𝑤 :=
{
𝑓𝛼 (𝑤) : 𝛼 < 𝜔1 and 𝑤 ≠ 𝑎𝛼

}

and
𝐵𝑤 :=

{
𝑓 −1
𝛼 (𝑤) : 𝛼 < 𝜔1 and 𝑤 ≠ 𝑏𝛼

}

are countable. Say 𝑤 = 𝑤 𝜉 ; then,

𝐴𝑤 = 𝐴𝑤𝜉 ⊆ { 𝑓𝛼 (𝑤 𝜉 ) : 𝜉 < 𝛼 < 𝜔1 and 𝑤 𝜉 ≠ 𝑎𝛼}︸����������������������������������������������︷︷����������������������������������������������︸
⊆𝐷𝜉 , by 3a

∪ { 𝑓𝛼 (𝑤 𝜉 ) : 𝛼 ≤ 𝜉}︸�������������������︷︷�������������������︸
countable because 𝜉<𝜔1

,

4For example, define an equivalence relation ∼ on R by: 𝑥 ∼ 𝑦 iff 𝑦 = 𝑟 𝑥 for some nonzero 𝑟 ∈ Q. Then the set of equivalence
classes constitutes a partition of R into countable dense subsets of R. We thank Alex Misiats for pointing out this example (since
our original draft used CH to get such a partition).
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and hence, 𝐴𝑤 is countable. Similarly,

𝐵𝑤 = 𝐵𝑤𝜉 ⊆ { 𝑓 −1
𝛼 (𝑤 𝜉 ) : 𝜉 < 𝛼 < 𝜔1 and 𝑤 𝜉 ≠ 𝑏𝛼}︸������������������������������������������������︷︷������������������������������������������������︸

⊆𝐷𝜉 , by 3b

∪ { 𝑓 −1
𝛼 (𝑤 𝜉 ) : 𝛼 ≤ 𝜉}︸��������������������︷︷��������������������︸

countable because 𝜉<𝜔1

,

and hence, 𝐵𝑤 is countable.

4. Proof of Theorem 4

The next lemma is the key connection between sparse analytic systems and predictors.
Lemma 6. Suppose F = 〈 𝑓𝑃 : 𝑃 ∈ R2〉 is a sparse analytic system. Let ∼ be the equivalence relation
on R generated by the set

𝑋 :=
{
(𝑢, 𝑣) ∈ R2 : ∃𝑃 ∈ R2 (

𝑢 ≠ 𝑥𝑃 ∧ 𝑣 ≠ 𝑦𝑃 ∧ 𝑓𝑃 (𝑢) = 𝑣
)}
.

Then,
(1) Each ∼-equivalence class is countable.
(2) For every 𝑃 = (𝑥𝑃 , 𝑦𝑃) ∈ R

2 and every 𝑧 ∈ R: if 𝑧 ≠ 𝑥𝑃 , then 𝑧 ∼ 𝑓𝑃 (𝑧).
Before proving Lemma 6, we say how the proof of Theorem 4 is finished: assuming CH, Theorem 2

yields the existence of a sparse analytic system. Let ∼ be the equivalence relation on R induced by the
sparse analytic system via Lemma 6. The properties of ∼ listed in the conclusion of Lemma 6 satisfy
the assumptions of Lemma 20 of Cox-Elpers [6], and that lemma tells us that if 𝑆 := R/∼ and

P : R⌣𝑆 → 𝑆

is any analytic-anonymous S-predictor,5 then P fails to predict the function 𝑥 ↦→ [𝑥]∼ for almost every
𝑥 ∈ R.6 In particular, there is no good analytic-anonymous S-predictor.

(Proof of Lemma 6). Part (2) holds because, by the definition of sparse analytic system, 𝑓𝑃 is injective
and 𝑓𝑃 (𝑥𝑃) = 𝑦𝑃 . So if 𝑧 ≠ 𝑥𝑃 , then 𝑓𝑃 (𝑧) ≠ 𝑦𝑃; so not only is 𝑧 ∼ 𝑓𝑃 (𝑧), but the pair

(
𝑧, 𝑓𝑃 (𝑧)

)
is an

element of X.
To prove part (1), since X generates ∼, it suffices to prove that for every 𝑧 ∈ R, both

𝑧↑ := {𝑣 ∈ R : (𝑧, 𝑣) ∈ 𝑋} = {𝑣 ∈ R : ∃𝑃 ∈ R2 (𝑧 ≠ 𝑥𝑃 ∧ 𝑣 ≠ 𝑦𝑃 ∧ 𝑓𝑃 (𝑧) = 𝑣)}

and

𝑧↓ := {𝑢 ∈ R : (𝑢, 𝑧) ∈ 𝑋} = {𝑢 ∈ R : ∃𝑃 ∈ R2 (𝑢 ≠ 𝑥𝑃 ∧ 𝑧 ≠ 𝑦𝑃 ∧ 𝑓𝑃 (𝑢) = 𝑧)}

are countable. But
𝑧↑ ⊆ { 𝑓𝑃 (𝑧) : 𝑧 ≠ 𝑥𝑃}

and
𝑧↓ ⊆ { 𝑓 −1

𝑃 (𝑧) : 𝑧 ≠ 𝑦𝑃},

which are both countable by definition of sparse analytic system. �

5Recall these notions were defined in Section 1.
6Strictly speaking, the statement of [6, Lemma 20] only implies that an analytic-anonymous predictor fails to predict 𝑥 ↦→ [𝑥 ]∼

on a positive-measure set. This is good enough to answer Question 3, since such a predictor would not be good. But the proof of
[6, Lemma 20] – which was due essentially to Bajpai-Velleman [2] – shows that an analytic-anonymous predictor can successfully
predict 𝑥 ↦→ [𝑥 ]∼ only for those x lying in some fixed equivalence class, which, in the context of Lemma 6, is countable. So
analytic-anonymous predictors fail to predict 𝑥 ↦→ [𝑥 ]∼ almost everywhere in this situation.
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5. Concluding Remarks

The notion of a sparse analytic system obviously generalizes to a sparse Γ-system for any Γ ⊆

Homeo+(R), and Lemma 6 easily generalizes to such systems. In fact, Section 4 of Bajpai-Velleman [2]
and Section 5 of Cox-Elpers [6] can both be viewed as constructions, in ZFC alone, of sparse Γ-systems
(with Γ = ‘increasing 𝐶∞ bijections’ in [2] and Γ = ‘increasing smooth diffeomorphisms’ in [6]).

We have shown that CH implies a negative answer to Bajpai-Velleman’s Question 3, but it is open
whether ZFC alone implies a negative solution.
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