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Abstract—The study of insect pathogens became established as a distinct discipline in the late 1940s.
In the ~65 years that followed, forest pest management was the main theatre for the development and
practice of insect pathology in Canada. Researchers from the federal government and academic
institutions contributed to the growing discipline by acquiring foundational knowledge on taxonomy,
mode of action, natural occurrence, and ecological role of key pathogens infecting forest pest insects,
covering an array of fungi, Microsporidia, viruses, and bacteria. The ultimate goal was to develop
pathogen-based alternatives to synthetic insecticides used in large-scale forest protection programmes
throughout eastern Canada. That goal was achieved through the development of baculovirus-based
products for control of gypsy moths (Lepidoptera: Erebidae), tussock moths (Lepidoptera: Erebidae),
and various sawfly (Hymenoptera) species, which are now in the hands of private industry and poised
for growing operational use. The second success was the development of products based on Bacillus
thuringiensis Berliner (Bacillaceae), which have almost entirely replaced synthetic insecticides in
forest protection. We review those successes and other key Canadian contributions to forest insect
pathology within the context of emerging digital, molecular, and other technologies, and show how
they have altered today’s face of forest pest management in Canada.

The birth of insect pathology
in Canada

Diseases of insects have been noted and studied
for millennia. Aristotle’s description of honey
bee (Apis mellifera Linnaeus; Hymenoptera:
Apidae) diseases in ~300 BCE is often viewed as
the beginning of the recorded history of insect
pathology. Basic knowledge acquired over
centuries by observing infectious diseases in silk
worms (Bombyx mori Linnaeus (Lepidoptera:
Bombycidae) and honey bees culminated by the
end of the 19th century in an emerging interest to
not only suppress pathogens in beneficial insects
but also in their use to control pest insects
(Steinhaus 1975). It was not until the middle of
the 20th century that the study of insect pathogens
came into its own as a recognised and unified
discipline (e.g., Steinhaus 1945, 1949).

In Canada, insect pathology was a neglected
area of research until after the SecondWorld War.
The potential of insect diseases to control forest
insects was recognised early on by J.J. de Gryse,
who was director of the Agriculture Department’s
Division of Forest Insects, Ottawa, Ontario,
Canada between 1934 and 1952. In that capacity,
he was instrumental in organising the basic
structure underlying today’s federal government
research in forest entomology, including estab-
lishment of the Forest Insect Survey (1936)
and the Forest Insect Laboratory in Sault Ste.
Marie, Ontario, Canada (1940) (Wallace 1990).
De Gryse advocated for an insect diseases
research programme as early as 1923 (Steinhaus
1975). His vision did not become reality until the
late 1940s when the government allocated CDN
$150 000 to build a laboratory for the study of
forest insect pathogens in Sault Ste. Marie. By the
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time the Laboratory of Insect Pathology had been
completed (1950, Fig. 1), the price tag approached
CDN$750 000, the equivalent of roughly CDN
$7.0 million today.
The Canadian government’s decision to fund

the new facility was swayed by a fortuitous bio-
logical control success earlier that decade which
demonstrated the promise of insect pathogens. An
outbreak of the European spruce sawfly, Gilpinia
hercyniae (Hartig) (Hymenoptera: Diprionidae) in
eastern Canada during the 1930s led to the
introduction of parasitoids from Europe (Reeks
1953). However, collapse of the outbreak between
1938 and 1942 was attributed largely to a
nucleopolyhedrovirus, which likely came from
Europe with the parasitoid material (Balch and
Bird 1944; Bird and Elgee 1957). The combined
action of virus and parasitoids is credited for
keeping spruce sawfly populations at endemic
levels (Neilson and Morris 1964). That success,
bolstered by a rapidly expanding outbreak of the
spruce budworm, Choristoneura fumiferana
(Clemens) (Lepidoptera: Tortricidae) in eastern
Canada, helped de Gryse persuade the govern-
ment that a laboratory for the study of insect
pathogens was a necessary addition to the federal
government’s forest insect research capacity in
Sault Ste. Marie (Steinhaus 1975). Around the

same time, the federal government established the
Laurentian Forestry Centre in Québec, Québec,
Canada (1952), which also embraced an active
research programme in forest insect pathology
(Cloutier et al. 2008). Forest pest management
thus became the main theatre for the development
and practice of insect pathology in Canada during
the second half of the 20th century.
The goal of the federal forest insect pathology

research programme was articulated by a vision-
ary de Gryse in personal correspondence to
Steinhaus in 1949: “I hope that, before long, we
may achieve some practical results, but I am far
more interested in the immediate developments of
fundamental research. The rest will come in its
own good time and will be more assured of
success if the work is performed on a scientific
basis” (Steinhaus 1975). Both objectives would
be realised over the ensuing 65 years, as Canadian
researchers in government and university labora-
tories, in close collaboration with insect patho-
logists in the United States of America and
elsewhere, made numerous contributions to our
understanding of forest insect pathogens and how
they can be used to control forest insect pests.
Those contributions, culminating in the first
large-scale commercial use of a microbial pesti-
cide in the world, will be reviewed in this paper.
What follows is a more or less chronological
overview of main research thrusts and develop-
ments and key outcomes in sections arranged by
conventional major pathogen divisions (Fungi,
Microsporidia, Viruses, and Bacteria) and
supported by a necessarily limited selection of the
plethora of publications related to forest insect
diseases that have been published since the birth
of forest insect pathology in Canada.

Fungi

Knowledge of fungal entomopathogens was
still in its infancy when forest insect pathology
started to take shape in Canada. Although work in
the late 18th century by Metchinikoff (in the
Ukraine) and Snow (in Kansas) had firmly estab-
lished the potential of fungi for biological control
of agricultural pests (Lord 2005), little was known
about fungi infecting forest insects. Research
by government scientists focussed on the acqui-
sition of foundational knowledge on occurrence
(Smirnoff and Jobin 1973; Smirnoff and McLeod

Fig. 1. The Laboratory of Insect Pathology in Sault
Ste. Marie in the early 1950s. The Laboratory was
renamed the Insect Pathology Research Institute in
1959. This institute was merged with the Chemical
Control Research Institute in 1977 to form the Forest
Pest Management Institute, which merged with the
Ontario Regional Forestry Centre in 1997 to form the
current Great Lakes Forestry Centre. Photograph
credit: Canadian Forest Service.
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1973), taxonomy (MacLeod 1956; Tyrrell 1972),
morphology (MacLeod et al. 1976), biochemistry
(Brennan et al. 1975), and natural history (Tyrrell
and MacLeod 1972; Tyrrell 1977; Remaudière
et al. 1978) of fungi infecting forest insects. There
was a predominant interest in Entomophthorales,
a group of fungi that stood out in their ability to
cause local or regional epizootics in arboreal
insect populations, in particular species infecting
spruce budworm (Vandenberg and Soper 1978);
eastern hemlock looper, Lambdina fiscellaria
fiscellaria (Guenée) (Lepidoptera: Geometridae)
(Otvos et al. 1973; Smirnoff and Jobin 1973); and
forest tent caterpillar, Malacosoma disstria
Hübner (Lepidoptera: Lasiocampidae) (MacLeod
and Tyrrell 1979). The federal research effort was
complemented by decades of collaborative
research on the same host-pathogen systems at
McGill University (Montréal, Québec, Canada)
and Memorial University (St. John’s, Newfound-
land and Labrador, Canada). That work included
studies on cellular immune response in forest
insects (Dunphy and Nolan 1980, 1981, 1982a),
comparative development and physiology (Dunphy
et al. 1978), and influence of culture media and
physical factors on germination, growth, morpho-
genesis, and mycotoxin production (Nolan and
Dunphy 1978; Dunphy and Nolan 1982b; Dunphy
et al. 1985).
Much of this research was motivated by field

observations that entomophthoralean mycosis can
affect over 95% of local insect populations (Perry
1985; Perry and Régnière 1986). Manipulation
for effective biological control proved to be an
elusive target, however. Efforts to initiate epizootics
in a spruce budworm outbreak in Newfoundland
by inoculative release of larvae infected with
Entomophthora egressa MacLeod and Tyrrell
(Zygomycota: Entomophthorales) and Zoophtora
radicans (Brefeld) Humber, Ben Ze’ev, and
Kenneth (Zygomycota: Entomophthorales) did not
succeed (Lim et al. 1981; Lim and Perry 1983).
Subsequent inundative releases in the United States
of America with mist blower applications of mass-
produced Z. radicans hyphal bodies failed to
increase prevalence of infection (Soper 1985).
Failures of field applications emphasised the need
to better understand the complexity of processes
underlying sporulation and germination of infec-
tious stages (Perry and Fleming 1989a), dormancy
and persistence of infectivity (Perry 1982), and

timing of infection (Perry and Fleming 1989b)
relative to phenology, movement and density of the
target pest (Perry and Régnière 1986; Perry et al.
1995), as well as effects of weather conditions on
those interactions. Work was initiated to develop
simulation models to optimise introduction of
fungal inocula into forest insect pest populations
(Fleming and Perry 1986), but was discontinued
when the principal investigator (D.F. Perry) left the
Canadian Forest Service.
Interest in Zoophthora and Entomophthora

was superseded during the 1990s by a focus on
Entomophaga aulicae (Reichardt in Bail) Humber
(Zygomycota: Entomophthorales), a species long
known to cause dramatic local epizootics in out-
breaks of defoliating forest Lepidoptera (Perry
and Régnière 1986; Perry et al. 1995). Research
addressed conditions controlling production of
conidia (McDonald and Nolan 1995), protoplasts
and hyphal bodies (Nolan 1988, 1993), and its
mode of action and pathogenesis in forest insects
(Tyrrell 1990; Milne et al. 1994). Interest in
Entomophaga was reinforced by the discovery of
E. maimaiga Humber, Shimazu, and Soper
(Zygomycota: Entomophthorales) in outbreaks
of gypsy moth, Lymantria dispar (Linnaeus)
(Lepidoptera: Erebidae) in 1989 and its sub-
sequent rapid spread throughout eastern North
America (Elkinton et al. 1991). Researchers at the
University of Toronto (Toronto, Ontario, Canada)
developed molecular methods for unequivocal
identification (Walsh et al. 1990), which enabled
confirmation of the Japanese fungus as causative
agent of the panzootic in North America (Hajek
et al. 1990) and subsequent elucidation of the
E. aulicae species complex (Hajek et al. 1991)
and its narrow host range (Hajek et al. 1996).
Although E. maimaiga was introduced as a bio-
logical control agent in various regions of the
United States of America (e.g., Smitley et al.
1995), no such introductions were done in Canada
as the fungus proved quite adapt at naturally
colonising and limiting gypsy moth populations
along the leading edge of the pest’s distribution
(Nealis et al. 1999; Villedieu and van Franken-
huyzen 2004).
Other entomopathogenic fungi of key interest for

pest control are the Fungi Imperfecti, now referred
to as Hypocreales, in particular Beauveria bassiana
(Balsamo) Vuillemin (Ascomycota: Hypocreales)
and Metarhizium anisopliae (Metschnikoff)
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(Ascomycota: Hypocreales). Isolates of those
species account for ~70% of the ~170 commercial
mycoinsecticides that have been developed world-
wide since the early 1980s, mostly for control of
hemipteran and coleopteran pests in agriculture
(de Faria and Wraight 2007). In contrast to large-
scale use for control of Dendrolimus Germar
(Lepidoptera: Lasiocampidae) in China, which
began in the 1950s and culminated in the early
1980s with treatment of up to one million ha of
infested forests annually (Lord 2005), this group of
fungi has received relatively little attention for
control of defoliators in Canada. Spruce budworm
is susceptible to various Hypocreales, including
B. bassiana, M. anisioplae, and Paecilomyces
Samson (now Isaria Persoon) species (Perry et al.
1995; Hicks 2007). Plans to develop Isaria farinosa
(Holmskjold) Fries (Ascomycota: Hypocreales) for
inoculative control of spruce budworm (Perry et al.
1995) and later efforts to develop B. bassiana as a
mycoinsectide for inundative control of forest
Lepidoptera (Hicks 2007) were ultimately not
pursued. Hypocrealean fungi were also assessed
for control of plantation pests, such as white
pine weevil, Pissodes strobi (Peck) (Coleoptera:
Curculionidae) (Kope et al. 2006, 2007; Trudel
et al. 2007). A novel isolate ofB. bassiana (Sabbahi
et al. 2009) is being evaluated for management of
introduced invasive beetle pests, including pine
shoot beetle, Tomicus piniperda (Linnaeus)
(Coleoptera: Curculionidae) (Lavallée et al. 2010);
emerald ash borer, Agrilus planipennis Fairmaire
(Coleoptera: Buprestidae) (Johny et al. 2012a,
2012b); and brown spruce longhorn beetle, Tetro-
pium fuscum (Fabricius) (Coleoptera: Cerambycidae)
(Sweeney et al. 2013). Rather than developing this
fungus as a mycoinsecticide, the approach that is
currently being evaluated for control of invasive
wood-boring pests is augmentation of naturally
occurring isolates in the pest’s habitat through
deployment of attractant traps containing fungal
inoculum to effect dispersal and transmission by the
target pest itself (augmentative release) (Lyons et al.
2012).

Microsporidia

The name Microsporidia was first proposed by
Balbiani in 1882 for spore-forming intracellular
parasites found in silk worm (Steinhaus 1975).
Because Microsporidia were originally considered

Protozoa, only recently having been reclassified as
belonging to the Kingdom Fungi, much of the work
was conducted by parasitologists and proto-
zoologists. Besides early work on species infecting
silk worms and honey bees, research on Micro-
sporidia in insects and interest in their use for
biological control did not emerge until the 1950s. It
was 1961 before the first monograph on insect
Microsporidia was published (Weiser 1961, 2005).
Canadian research contributed to accumulation

of foundational knowledge through the discovery
and description of Microsporidia from a variety of
forest insects (Thomson 1959a, 1959b; Smirnoff
1966, 1975; Wilson and Burke 1971; Percy et al.
1982). Spruce budworm was a key focus, and
studies on the life cycle and taxonomy of its most
ubiquitous pathogen, Nosema fumiferanae
Thomson (Microsporidia: Nosematidae) (Thomson
1955), and how it affects its host (Thomson 1958a)
and its transmission and epidemiology (Thomson
1958b) still stand today as the primary source of
knowledge on this host-pathogen system. The
work was brought to a halt by H.M. Thomson’s
untimely death.
Research on Microsporidia was resumed in the

early-1970s with the specific goal to explore their
potential for biological control through inoculative
or inundative release (Wilson et al. 1984). Research
addressed dose-mortality relationships (Wilson
1983), in vivo and in vitro production of spores
(Sohi and Wilson 1976; Wilson 1976), interactions
between co-infecting Microsporidia (Wilson 1978),
transmission within and between generations
(Wilson 1982a) and effects of infection on host
fitness (Wilson 1982b; Sanders and Wilson 1990).
Field trials were conducted in the mid-1970s to
evaluate inundative release for spruce budworm
control. Mist blower applications of laboratory-
produced spores resulted in increased levels of
infection, which persisted for about three years in
the case of N. fumiferanae and did not carry over to
the next year in the case of Pleistophora schubergi
Zwölfer (Microsporidia: Nosematidae) (Wilson
et al. 1984), a species that differs from the former
by not being vertically transmitted (Wilson 1982a,
1982b). The interest in Microsporidia for biological
control waned with the lack of field successes and
the work was not continued after G.G. Wilson’s
departure in the early-1990s.
Limited research on N. fumiferanae did con-

tinue with a general focus on its role in spruce
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budworm population ecology. Earlier studies
documented its ubiquitous presence and high
prevalence in peak and declining outbreaks
(Thomson 1960; Neilson 1963; Wilson 1977).
Analysis of spruce budworm population cycles in
New Brunswick, Canada lead Royama (1984) to
suggest that Nosema Nägeli could play a role in
causing population oscillations as part of an uni-
dentified complex of mortality agents acting in
concert with parasitism as the primary driver.
Later analyses of population trends have not
supported such a role (Régnière and Nealis 2007,
2008). Current knowledge indicates that Nosema-
induced direct mortality in outbreak populations
is limited (Eveleigh et al. 2012) and that it likely
acts in concert with other ecological factors that
affect budworm survival and recruitment, such as
foliage depletion (Nealis and Régnière 2004),
flower production (van Frankenhuyzen et al.
2011), spring dispersal of early instars
(van Frankenhuyzen et al. 2007a; Régnière and
Nealis 2008) and moth dispersal (Eveleigh et al.
2007).
More than 50 years after its first description, the

taxonomy of N. fumiferanae was revisited by
using modern molecular tools. Sequencing of
ribosomal DNA and various house-keeping genes
revealed phylogenetic relationships of Nosema
species infecting Choristoneura species and other
forest defoliators (Kyei-Poku et al. 2008, 2011b).
The combined use of molecular tools and
conventional ultra-structure studies is now refin-
ing and aiding the discovery and identification of
Microsporidia infecting various forest insects
(van Frankenhuyzen et al. 2004; Kyei-Poku et al.
2011a).

Viruses

In the beginning…
Scientists at the Laboratory for Insect Patho-

logy and related Canadian Forest Service labora-
tories launched the first Canadian research on
viral insect diseases in the early-1950s. Suscept-
ibility of insects to infection by viruses was
demonstrated in the second decade of the 20th
century, amongst others by studies on the wilt
disease or “flacheria” of gypsy moth (Glaser and
Chapman 1912). Although the discovery of
polyhedral occlusion bodies in infected insects
was made in the 1920s (Steinhaus 1975), it was

not until the electron microscope became avail-
able that virions inside the polyhedra were iden-
tified as the infectious agent. Instrumental in that
discovery was the work by Bergold (1947, 1948)
in Germany, who was the first to report the pre-
sence of virions in occluded viruses from
silkworm, gypsy moth, and nun moth, Lymantria
monacha (Linnaeus) (Lepidoptera: Erebidae)
and by Steinhaus (1948) in the United States
of America, who made similar observations on
a virus from the alfalfa caterpillar, Colias
eurytheme Boisduval (Lepidoptera: Pieridae).
Steinhaus tried to recruit Bergold after the Second
World War, but his efforts “were thwarted by the
U.S. government red tape”, whereas “the
Canadians, more adroit in being able to hire
aliens – particularly biologists – succeeded”
(Steinhaus 1975). It was de Gryse who convinced
Bergold to join the Canadian Forestry Service in a
comprehensive research programme aimed at
exploring the potential of insect viruses for con-
trol of forest pest insects. This was achieved over
the decades that followed through the simulta-
neous combination of foundational research to
identify and characterise viral diseases and
applied research to evaluate their effectiveness in
forest pest management.

From discovery to genomics
Availability of the electron microscope facili-

tated discovery and characterisation of occluded
viruses from a variety of forest insect species
(Table 1). Characterisation initially focussed on
virus ultrastructure and biochemistry (Bergold
1953, 1963) and cellular biology of host response
and infection processes (Bird 1952, 1957, 1958).
Early forays into the biochemistry of viral nucleic
acids (Wyatt 1952) led to a citation byWatson and
Crick in their landmark paper on the double
helix structure of DNA. Over the decades that
followed, biochemical characterisation shifted
from physicochemical properties of polyhedra
and associated viral particles (Arif and Brown
1975; Bergold 1963) to properties of the DNA
itself. Initially genetic characterisation included
determination of melting curves, molecular
weight, buoyant densities, GC content, and
restriction endonuclease profiles (Arif 1976;
Rohrman et al. 1982; Arif et al. 1986; Keddie and
Erlandson 1995), the latter permitting differ-
entiation of isolates from various hosts and of
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Table 1. Canadian contributions to the discovery, description, and characterisation of viruses from forest defoliators.

Order Family Species Virus Reference

Lepidoptera Tortricidae Choristoneura fumiferana (Clemens) NPV Bird and Whalen (1954)
Lepidoptera Tortricidae Choristoneura fumiferana (Clemens) GV Bird (1959)
Lepidoptera Tortricidae Choristoneura fumiferana (Clemens) CPV Bird and Whalen (1954)
Lepidoptera Tortricidae Choristoneura fumiferana (Clemens) EPV Bird (1974)
Lepidoptera Tortricidae Choristoneura biennis Freeman EPV Bird et al. (1971); Thézé et al. (2013)
Lepidoptera Tortricidae Choristoneura freemani Razowski GV Arif et al. (1986)
Lepidoptera Tortricidae Choristoneura freemani Razowski NPV Thumbi et al. (2013)
Lepidoptera Tortricidae Choristoneura freemani Razowski CPV Graham et al. (2008)
Lepidoptera Tortricidae Choristoneura conflictana (Walker) EPV Cunningham et al. (1973)
Lepidoptera Tortricidae Choristoneura pinus Freeman NPV Stairs (1960)
Lepidoptera Tortricidae Choristoneura retiniana (Walsingham) GPV Arif et al. (1986)
Lepidoptera Tortricidae Choristoneura rosaceana (Harris) NPV Lucarotti and Morin (1997)

Smirnoff and Burke (1970); Thumbi et al. (2013)
Lepidoptera Tortricidae Choristoneura rosaceana (Harris) EPV Thézé et al. (2013)
Lepidoptera Tortricidae Operophtera bruceata (Hulst) NPV Smirnoff (1964)
Lepidoptera Geometridae Erannis tiliaria (Harris) NPV Smirnoff (1962a)
Lepidoptera Geometridae Lambdina fiscellaria fiscellaria (Guenée) NPV Cunningham (1970); Levin et al. (1997)
Lepidoptera Geometridae Lambdina fiscellaria sominaria (Hulst) NPV Morris (1962); Levin et al. (1997)
Lepidoptera Geometridae Lambdina fiscellaria lugubrosa (Hulst) NPV Sager (1957); Levin et al. (1997)
Lepidoptera Erebidae Orgyia pseudotsugata (McDunnough) NPV Morris (1963)
Lepidoptera Erebidae Orgyia pseudotsugata (McDunnough) CPV Laitinen et al. (1996)
Lepidoptera Erebidae Orgyia leucostigma (Smith) NPV Thumbi et al. (2011)
Lepidoptera Erebidae Orgyia leucostigma (Smith) CPV Krywienczyk et al. (1969)
Lepidoptera Erebidae Lymantria dispar (Linnaeus) NPV Kuzio et al. (1999); Zhang et al. (2010)
Lepidoptera Lasiocampidae Malacosoma disstria Hübner NPV Stairs (1964); Erlandson et al. (2006)
Lepidoptera Lasiocampidae Malacosoma disstria Hübner CPV Krywienczyk et al. (1969)
Hymenoptera Diprionidae Gilpinia hercyniae (Hartig) NPV Balch and Bird (1944)
Hymenoptera Diprionidae Neodiprion abietis (Harris) NPV Olofsson (1973); Duffy et al. (2006; 2007)
Hymenoptera Diprionidae Neodiprion pratti banksianae Rohwer NPV Bird (1955)
Hymenoptera Diprionidae Neodiprion lecontei (Fitch) NPV Lauzon et al. (2004; 2006)
Hymenoptera Diprionidae Neodiprion sertifer (Geoffroy) NPV Bird and Whalen (1953); Garcia-Maruniak et al. (2004)
Hymenoptera Diprionidae Neodiprion swainei Middleton NPV Smirnoff (1961)
Hymenoptera Tenthredinidae Pristiphora geniculata (Hartig) NPV Smirnoff (1968)

Note: NPV, nucleopolyhedrovirus, Baculoviridae; GV, granulovirus, Baculoviridae; CPV, cypovirus, Reoviridae; EPV, entomopoxvirus, Poxviridae.
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closely related genomic variants (Rohrman et al.
1978; Arif et al. 1986; Williams and Otvos 2005;
Zhang et al. 2010). The availability of cloning
techniques in the 1980s lead to the construction of
physical DNA maps for a number of forest insect
nucleopolyhedroviruses (Arif et al. 1984, 1985;
Arif 1986), and characterisation of genes and
genomic regions coding for specific polypeptides
(Arella et al. 1988; Barrett et al. 1995; Bah et al.
1997; Echeverry et al. 1997; Li et al. 1997a,
1997b). Critical to these achievements was the
parallel development of methods for establishing
and culturing permissive insect cell lines (Wyatt
1956; Sohi and Cunningham 1972; Sohi et al.
1984; Sohi 1995; Whittome-Waygood et al.
2009) as systems for virus purification and gene
expression (Arif and Pavlik 2013).
The advent of ever more efficient and less

expensive sequencing technologies early in the
new century facilitated in-depth elucidation of
phylogenetic relationships based on gene sequence
homologies (Jakubowska et al. 2007; Graham
et al. 2008; Zhang et al. 2010), and eventually
sequencing of entire genomes. Approximately
60 baculovirus genomes have been sequenced
worldwide with new genome sequences being
added at an increasing rate. Complete sequences
are known for a variety of forest insect viruses,
thanks to collaboration between researchers
from government laboratories and universities
across Canada, including nucleopolyhedroviruses
from C. fumiferana (de Jong et al. 2005; Lauzon
et al. 2005), C. freemani Razowski (Lepidoptera:
Tortricidae) (Thumbi et al. 2013), C. rosaceana
(Harris) (Lepidoptera: Tortricidae) (Thumbi et al.
2013), Orgyia leucostigma (Smith) (Lepidoptera:
Erebidae) (Thumbi et al. 2011), Neodiprion
sertifer (Geoffroy) (Hymenoptera: Diprionidae)
(Garcia-Maruniak et al. 2004; Lauzon et al. 2006),
N. lecontei (Fitch) (Hymenoptera: Diprionidae)
(Lauzon et al. 2004, 2006), and N. abietis (Harris)
(Hymenoptera: Diprionidae) (Duffy et al. 2006);
granulovirus from C. fumiferana and C. freemani
(Escasa et al. 2006); a cypovirus from C. freemani
(Graham et al. 2008); and entomopoxviruses from
C. biennis Freeman and C. rosaceana (Thézé et al.
2013). Genomic sequence homologies are now
being applied to elucidate the molecular basis of
target insect specificity (Lauzon et al. 2006) and to
facilitate regulatory approval of viruses as forest
insect control products (Lapointe et al. 2012).

Development of virus-based control products
Much of the success of baculoviruses for

control of forest insects in Canada depended on a
concomitant and concerted field evaluation of
their potential as control agents. The first field
trials took place in the early-1950s in southern
Ontario with a nucleopolyhedrovirus from the
European pine sawfly, N. sertifer, which was
brought in from Sweden and propagated in the
laboratory (Bird 1953). In the decades that
followed, numerous field tests were undertaken to
examine baculoviruses for control of eruptive
forest insects in more than 20 different baculo-
virus/host systems (as reviewed by Smirnoff
and Juneau 1973; Cunningham and Kaupp 1995;
Wallace and Cunningham 1995; Cunningham
1998). In those investigations, baculovirus
occlusion bodies were typically obtained by
infection of laboratory-reared larvae (in the case
of lepidopteran defoliators) or by harvesting dead
larvae after treatment of heavily infested stands
(in the case of hymenopteran defoliators),
followed by grinding of freeze-dried cadavers to
a fine powder. The occlusion bodies were
suspended in a water solution containing synthetic
stickers and other additives, and applied with mist
blowers, backpack sprayers, or aircraft, using
pest-specific and product-specific application
prescriptions, as reviewed by Cunningham and
Entwistle (1981) and van Frankenhuyzen
et al. (2007b). Baculovirus introductions proved
to be very effective for suppression of eruptive
forest insect populations in many of those tests
(Cunningham 1998).
Field evaluation of baculoviruses for popula-

tion control was underpinned by years of basic
research on their prevalence (Laitinen et al. 1996;
Lucarotti et al. 2004; van Frankenhuyzen et al.
2005), transmission (Bird 1961; Smirnoff 1962b;
Roland and Kaupp 1995; Cory and Myers 2003;
Graves et al. 2012a, 2012b), and role (Neilson
1963; Myers 2000; Cooper et al. 2003) in forest
insect outbreaks and concomitant laboratory
characterisation of their virulence (Stairs 1965;
Ebling and Kaupp 1997; Ebling et al. 1998;
Ebling et al. 2004). The role of baculoviruses in
host population dynamics varies from species to
species. In the case of spruce budworm, baculo-
viruses typically remain at low prevalence during
an outbreak cycle (Lucarotti et al. 2004) as
naturally occurring epizootics have never been
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reported (Cunningham and Kaupp 1995). In
contrast, viral epizootics are often associated with
population declines in tussock moths (Otvos et al.
1995; van Frankenhuyzen et al. 2005), tent
caterpillars (Myers 2000), gypsy moths (Hajek
1997), and sawflies (Bird and Elgee 1957;
Smirnoff 1972; Oloffson 1987; Wallace and
Cunningham 1995). It is therefore not surprising
that the use of baculoviruses for management of
outbreak populations has been most successful for
species with population cycles that are primarily
driven by indigenous viral disease, specifically
sawflies (Wallace and Cunningham 1995; Moreau
et al. 2005), Douglas-fir tussock moth (Orgyia
pseudotsugata (McDunnough); Lepidoptera:
Erebidae) (Otvos and Shepherd 1991; Otvos et al.
1995), whitemarked tussock moth, (O. leucostigma)
(Embree et al. 1984), and gypsymoth (Cunningham
et al. 1991, 1993). Augmentation of indigenous
viral disease through spray application can not only
control (Cunningham et al. 1991, 1993) but also
terminate (Moreau et al. 2005) and even prevent
(Otvos et al. 1987) outbreaks of those species.
Field successes lead to the development and

registration of several baculovirus products by the
Canadian Forest Service between the early-1980s
and early-2000s (Table 2). Before the start of the
new millennium, products were produced
in-house, using methods that were tailored to
optimise yield and virulence (Kaupp and Ebling
1993; Ebling and Kaupp 1998, 1999; Otvos et al.
2006; Thorne et al. 2008). However, baculovirus
products were not used for operational pest
control because there were no commercial products.
Efforts to facilitate baculovirus commercialisation
focussed initially on the nucleopolyhedrovirus of
gypsy moth, which was first registered as
GypchekTM in the United States of America and
later as DisparvirusTM in Canada (Cunningham
1998), andwhich became the target for a commercial
pilot production facility in Sault Ste. Marie funded

by American Cyanamid during the early-1990s.
When the company pulled out, the Canadian
Forest Service attempted to promote commercia-
lisation by transferring product registrations to
private industries, but to no avail. High production
costs, resulting from the need for in vivo produc-
tion, and market limitations resulting from high
target specificity combined with the cyclical
nature of target pest outbreaks and multi-year
treatment efficacy, made baculovirus forestry
products unattractive for private investment.

Commercialisation
A different path was followed for the develop-

ment and commercialisation of AbietivTM, a pro-
duct containing the nucleopolyhedrovirus of the
balsam fir sawfly, N. abietis. A sustained outbreak
of this pest in Newfoundland during the 1990s
precipitated a multi-year partnership between
governments, private industry, and academia to
investigate the pest’s ecology and impact and to
explore options for biological control (Lucarotti
et al. 2007a, 2007b). A nucleopolyhedrovirus was
isolated from a local population and mass-
produced in the field for further characterisation
(Duffy et al. 2006, 2007; Graves et al. 2012b;
Lucarotti et al. 2012), field evaluation on ~22 000 ha
between 2001 and 2005 (Moreau et al. 2005;
Moreau and Lucarotti 2007) and environmental
safety testing. The Canadian Forest Service
obtained conditional registration in 2006 and full
registration in 2009 of AbietivTM for control of
balsam fir sawfly. A licensing agreement with a
newly formed company, Sylvar Techno-
logies Inc. (Fredericton, New Brunswick, Canada),
led to the first operational use of a commercially
produced baculovirus product in our history of
forest pest management. AbietivTM was used
for control of balsam fir sawfly in Newfoundland on
15 000 ha each in 2006 and 2007, 10 000 ha
in 2008, and 5000 ha in 2009, and on 10 000 ha in

Table 2. Baculoviruses registered in Canada for use against forest insect pests.

Trade name Scientific name Year of registration Registered against

Lecontvirus WP NeleNPV 1983 Neodiprion lecontei
Virtuss OpMNPV 1983 Orgyia pseudotsugata
TM Biocontrol-1 OpMNPV 1987 Orgyia pseudotsugata
Disparvirus LdMNPV 1997 Lymantria dispar
Abietiv NeabNPV 2006 Neodiprion abietis
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New Brunswick in 2011. The licensing agreement
with Sylvar Technologies was subsequently
expanded to include DisparvirusTM, VirtussTM,
and LecontvirusTM (Table 2). In 2011, a 60%
controlling interest in Sylvar Technologies
was acquired by an international biocontrol com-
pany, Andermatt Biocontrol AG (Grosdietwil,
Switzerland), which added the forestry products
to a suite of baculovirus products targeted against
agricultural pests. So after more than 60 years of
government investment in research and develop-
ment, baculovirus products for forest insect
control are now in the hands of commercial
interests, a development that is hoped to sustain
and expand their production and availability for
operational use into the future.
Despite inconsistent availability, baculovirus pro-

ducts have been applied to tens of thousands of
hectares of insect-infested forests since the onset of
field testing in the 1950s. Such use has to date met
with broad general acceptance by the Canadian
public due to several key features. Viruses that are
used in forest pest control products are ubiquitous in
terrestrial and aquatic environments and occur natu-
rally in the target pest populations. They lack infec-
tivity to organisms outside their extremely narrow
host range, which is limited to one (GypchekTM,
DisparvirusTM, LecontvirusTM, AbietivTM) or a few
closely related species in the same genus
(VirtussTM). There have been no reports of negative
impacts of their use in forest protection on ecosys-
tems other than the effect on the target host species,
as reviewed by Lapointe et al. (2012). Because of
their natural role in pest population cycles, their high
degree of target specificity, and effects across pest
generations, baculoviruses are generally considered
to be the ecologically most responsible forest pest
control option available to date.

Bacteria

Among the scientists recruited to staff the
Laboratory for Insect Pathology were several
bacteriologists. Their search for bacteria that
could be conscripted in the war against the spruce
budworm quickly focussed on Bacillus
thuringiensis Berliner (Firmicutes: Bacillaceae), a
bacterium that had been described in 1915 as a
pathogen of flour moth, and which had been used
against corn borer in Europe during the late-1920s
and early-1930s. The first commercial product in

North America (ThuricideTM) was produced by
the Bioferm Corporation in California, United
States of America and became available in 1957
(Steinhaus 1975), around the same time that
Canadian scientists started to consider the use of
this pathogen for spruce budworm control.
Canadian research over the 35 years that followed
shaped B. thuringiensis into a commercially
viable and effective alternative to conventional
insecticides for control of many lepidopteran for-
est pests. Success of B. thuringiensis in the
Canadian forestry market became the basis for
much broader subsequent development world-
wide as a biopesticide in forestry, agriculture, and
human health (van Frankenhuyzen 1993).

Early mode of action research
Research in the 1950s and 1960s focussed on

mode of action of B. thuringiensis. Pivotal con-
tributions include the discoveries that: (i) parasporal
bodies formed during sporulation are protein
crystals (Hannay 1953); (ii) crystals are responsible
for larval toxicity (Angus 1954); (iii) solubilisation
of crystals under alkaline conditions releases toxin
proteins which change ion permeability of midgut
cell membranes (Heimpel and Angus 1959; Fast
and Angus 1965; Fast and Morrison 1972);
(iv) crystal proteins bind to the cell surface (Murphy
et al. 1976); and (v) spores and spore-associated
virulence factors enhance the toxic effects of crystal
protein by causing septicemia and accelerating
larval death (Heimpel and Angus 1959; Fast 1977).
Other work explored diversity of B. thuringiensis
isolates and their pathogenicity (Heimpel and
Angus 1960; Smirnoff 1965; Yamvrias and Angus
1970), biochemistry and serology of delta-
endotoxins (Krywienczyk and Angus 1967; Fast
and Angus 1970; Krywienczyk et al. 1981; Fast
1983), and histopathology of intoxication (Heimpel
and Angus 1959; Percy and Fast 1983). This work
laid the foundation for a knowledge base that
expanded rapidly in ensuing years as the pest con-
trol potential of B. thuringiensis started to capture
the interest of research laboratories and pesticide
manufacturers around the world.

From first field tests to operational
acceptance
At the same time that foundational research was

being conducted, Canadian Forest Service scien-
tists spearheaded a concerted field development
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effort starting in the early-1960s. Mounting con-
cerns about the environmental impact of yearly
spray operations with dichlorodiphenyltri-
chloroethane in eastern Canada resulted in
political pressure to field test B. thuringiensis as a
possible alternative, a step that was at that time
considered by the principal investigator (T.A.
Angus) to be highly premature. The availability of
ThuricideTM ushered in a decade of intermittent
field testing, with generally inconsistent and
inadequate results (Morris et al. 1975). Two
developments were of particular significance in
improving efficacy and accelerating commercia-
lisation: the discovery and adoption of the super-
ior kurstaki isolate of HD-1 for commercial
production in the early-1970s, and the con-
comitant adoption of the International Unit for
standardisation of product quality and potency
(van Frankenhuyzen 1995). Commercial products
improved during the 1970s and facilitated exten-
sive field testing under auspices of the CANUSA
programme, a collaboration of industry and
agencies at various levels of government on both
sides of the border. New formulations were tested
and application prescriptions were developed in
terms of hardware (types of aircraft and spray
dispersal systems), timing, and frequency of
treatment, and application rates required to
increase spray deposition (Smirnoff 1980) and
efficacy (Smirnoff and Morris 1982; Morris
1984). Although effectiveness of B. thuringiensis
sprays improved markedly over time, results
remained inconsistent and treatment costs were
much higher than with chemical insecticides (van
Frankenhuyzen 1995).
Operational use in the early-1980s before cost

and efficacy were competitive with chemical
insecticides catalysed significant cost reductions
and provided the experience to improve efficacy.
Cost effectiveness started to improve as formula-
tions became more concentrated and suitable for
undiluted application in volumes as low as 2.4 L
per ha. This not only increased spray aircraft
efficiencies but also reliability of treatment effi-
cacy (Lewis et al. 1984; Morris et al. 1984; Dorais
1985; Kettela 1985; Smirnoff 1985), while large-
scale use and competitive bidding forced the
product cost further down. By the mid-1980s,
product cost, application cost, and efficacy were
not far from being at par with the use of the
organophosphate FenitrothionTM, which by then

had become the mainstay of forest protection in
Canada. Cost reductions opened the door for
provincial jurisdictions to favour B. thuringiensis
over synthetic insecticides in response to mount-
ing public opposition to chemical sprays. As a
result, between 1985 and 1990 B. thuringiensis
products gradually replaced synthetic insecticides
in spruce budworm control programmes across
Canada (van Frankenhuyzen 2000).
In most of Canada, B. thuringiensis is now the

only agent used for management of lepidopteran
forest defoliators. Between 1985 and 2012,
commercial products were applied on a cumula-
tive total of about 10 million ha of insect-infested
forests, primarily to prevent excessive defoliation
by spruce budworm, other budworm species,
gypsy moth, and eastern hemlock looper (Fig. 2).
Its use declined sharply in the early-1990s as the
spruce budworm outbreak in eastern Canada
collapsed, and shifted towards western provinces
for control of both eastern and western spruce
budworms (Fig. 2). The steep increase in area
sprayed between 2007 and 2012 reflects the
recurrence of epidemic spruce budworm popula-
tions in Québec, which is viewed as the onset of a
new outbreak that is expected to once again sweep
across eastern North America.
Large-scale operational use of B. thuringiensis

in forestry has been characterised by broad public
acceptance and preference over the use of
synthetic insecticides (Chang et al. 2009). The
adoption of B. thuringiensis in the context of
public opposition to large-scale aerial application
of chemical insecticides no doubt contributes to
this acceptance. Although not as target-specific as
baculoviruses, B. thuringiensis products have
high specificity compared to broader spectrum
organophosphates. Public acceptance is further
facilitated by numerous studies showing that
effects on non-target organisms and indirect
effects on forest ecosystem processes are either
nonexistent or limited and temporary (e.g.,
Kreutzweiser et al. 1992, 1996; Addison 1993;
Addison and Holmes 1995, 1996; Holmes 1998;
Addison et al. 2006). Large-scale use in urban
settings, for example for control of introduced
invasive pests, is a more contentious issue
(Ginsburg 2006) despite studies showing no
public health impacts of aerial applications in
Canada (Pearce et al. 2002) or elsewhere (Green
et al. 1990).
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Reducing efficacy constraints
Operational use of B. thuringiensis for man-

agement of defoliating forest insects went hand in
glove with research to increase both efficacy and
efficiency of spray programmes. Much of that
research was conducted under auspices of an
association of agencies and industries that have a
stake in forest pest management, which is now

called the Spray Efficacy Research Group-
International (SERG-I). SERG-I started in the
early 1980s as a New Brunswick-based coopera-
tive aimed at improving efficacy of aerial pesti-
cide spraying. Lessons learned from aerial
application of chemical insecticides, in particular
the importance of controlled droplet application
and use of ultra-low spray volumes, were readily

Fig. 2. Operational use (total hectares treated) of B. thuringiensis for control of defoliating forest Lepidoptera
across Canada between 1985 and 2012. Data for these figures were obtained from provincial forest protection
agencies and compiled by the lead author.
Top panel: Use by province (MN, Manitoba; BC, British Columbia; SK, Saskatchewan; AB, Alberta; NS, Nova
Scotia; NL, Newfoundland and Labrador; NB, New Brunswick; QC, Québec; ON, Ontario)
Bottom panel: Use by major pest (GM, gypsy moth, Lymantria dispar; WSBW, western spruce budworm,
Choristoneura freemani; EHL, eastern hemlock looper, Lambdina fiscellaria fiscellaria; JPBW, jack pine
budworm, Choristoneura pinus; ESBW, eastern spruce budworm, Choristoneura fumiferana)
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transferred to B. thuringiensis once it became
operationally accepted (van Frankenhuyzen
1995). That required modified timing of applica-
tion, considering that the agent has to be ingested
to be effective and that it has limited residual
toxicity (van Frankenhuyzen and Nystrom 1989).
It also required a trade-off between minimum
emitted droplet size and product potency (van
Frankenhuyzen and Payne 1993) to ensure
delivery of a lethal dose in operationally attainable
spray deposits of one or two droplets per
needle (Payne and van Frankenhuyzen 1995) and
to minimise temporary inhibition of feeding
caused by ingestion of sublethal doses (Fast and
Régnière 1984; van Frankenhuyzen 1990). Those
interactions were eventually integrated into a
process-oriented, model to simulate efficacy of
B. thuringiensis sprays against spruce budworm
(Cooke and Régnière 1996). Field validation of
the model (Régnière and Cooke 1998) supports
the notion that current understanding of interact-
ing processes that underlie the efficacy of
B. thuringiensis against spruce budworm is rea-
sonably complete. Subsequent testing of model
predictions in multi-year experimental pro-
grammes in the late-1990s in Québec under a
range of operational conditions led to current
application and treatment prescriptions for opti-
misation of foliage protection (Bauce et al. 2004).

Reducing efficiency constraints
Increasing aerial spray programme efficiency

was the second main thrust behind 30 years of
research supported by SERG-I, an effort that was
driven by Forest Protection Limited in New
Brunswick and other forest protection agencies
across eastern Canada, with participation of com-
panies, universities, federal and provincial govern-
ments, and the United States Department of
Agriculture, Forest Service. Although key accom-
plishments of this research pertain to forestry
application of pesticides in general, they have
been and are being applied primarily to the use of
B. thuringiensis, and are therefore briefly
reviewed below.
Major contributions to refining efficiency of

foliage protection programmes came from
advancements in aerial application technology
and electronic guidance systems that were
attained from extensive research conducted
during spruce budworm control programmes in

the 1980s and early-1990s. Advancements
culminated in the AccuairTM Aerial Management
(AAM) System (McLeod et al. 2012), a sophisti-
cated onboard guidance and control system that
optimises flight lines on a spray block to com-
pensate for changes in wind direction and aircraft
altitude while spraying. The AAM system is the
result of 30 years of modelling and field validation
on how to minimise off-target drift and maximise
on-target deposition of droplets in the size range
used in ultra-low-volume forestry applications
(Picot et al. 1985, 1986; van Vliet and Picot 1987;
Crabbe and McGooeye 1995; Wiesner 1995). By
linking real-time recordings of spray aircraft
position and near-canopy meteorological condi-
tions with a spray droplet dispersion model to
predict down-wind spray deposition, the system
makes real-time predictions for spray aircraft
flight paths that will maximise on-target spray
coverage. Field validation has shown that AMM
allows accurate application of B. thuringiensis
and other pesticides to small blocks of complex
shape. It is now used in combination with an
auto-flow system that automatically adjusts
pesticide flow rate through the atomisers for
changes in aircraft ground speed in order to reduce
variability in application rate (McLeod et al.
2012).
Another key contribution was the development

during the 1990s of the spruce budworm decision
support system, which permits users to determine
the effects of different foliage protection scenarios
on marginal timber supply benefits (MacLean
et al. 2001, 2002). Subsequent improvements
and integration of other spatial and non-spatial
tools produced the AccuairTM Forest Protection
Optimization System (ForPRO), a software
package that allows users to better target and
optimise both direct and indirect economic bene-
fits of forest protection programmes, and to
simulate impacts of spruce budworm and other
insect outbreaks and planned foliage protection
programmes on stand and forest development
(Chang et al. 2011; Hennigar et al. 2007; Iqbal
et al. 2012). Integration of ForPro with AAM for
management of spruce budworm and other forest
insects has eliminated the need for the large spray
blocks that characterised operational programmes
during the 1980s and 1990s. Forest inventory and
stand information are now used to target protec-
tion programmes to vulnerable stands that are
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most in need of protection, while advanced
navigation and control systems enable efficient
targeting of blocks with irregular shape and size
that typically result from that process (McLeod
et al. 2012).

Mode of action research in the molecular era
Changing social attitudes towards pesticide use

during the 1980s converged with the advent of
recombinant DNA technology, leading to a
dramatic increase in the interest in B. thuringiensis
as a biopesticide around the world. The demon-
stration in Canadian forestry that B. thuringiensis as
an operational tool could indeed compete with
synthetic insecticides in terms of cost and efficacy
was pivotal in drawing the world’s attention to the
natural diversity of B. thuringiensis strains as a
source for socially acceptable pest control products
in other markets (van Frankenhuyzen 1993).
Cloning of the first crystal protein genes in the
early-1980s opened the door for exploiting the
diversity of B. thuringiensis pesticidal proteins, and
led to the application of powerful molecular tools
that revolutionised mode of action research.
Against this background of rapidly developing

new technologies, P.G. Fast from the Canadian
Forest Service recognised the need for and merits
of a multidisciplinary approach for further unra-
velling B. thuringiensis toxin mode of action.
To that end he established in the early-1980s the
Biocide research network by engaging scientists
from a broad array of disciplines in federal
government, universities, and National Research
Council laboratories. That engagement lasted well
beyond the ~10 years of formal collaboration into
the new millennium. By integrating a suite of
modern technologies, Biocide participants have
made key contributions to understanding toxin
mode of action, particularly in the areas of crystal
protein chemistry, receptor binding, and pore
formation.
Notable early advances in crystal protein

chemistry include the use of Raman spectroscopy
to shed light on sunlight-inactivation of crystal
protein (Pozsgay et al. 1987; Puzstai et al. 1991)
and X-ray diffraction to decipher for the first time
the three-dimensional structure of a Lepidoptera-
active crystal protein (Grochulski et al. 1995).
Pusztai-Carey et al. (1995) developed a method to
separate, identify, and purify crystal proteins by
using high pressure liquid chromatography, which

has become the international gold standard for
studies on a variety of topics, such as crystal protein
structure-function relationships (Grochulski et al.
1995; Padilla et al. 2006), specificity (Monnerat
et al. 1999), resistance (Anilkumar et al. 2008), and
non-target effects (Hilbeck et al. 1999; Kramarz
et al. 2007). Other technologies were applied to
garner novel insights in crystal protein binding to
receptors on the surface of midgut cells, and in
formation of ion channels by postbinding inser-
tion of toxin molecules into the cell membrane
(generally referred to as pore formation), pro-
cesses which are critical in determining toxicity
and target specificity. Surface plasmon resonance
revealed kinetics of toxin-receptor interactions
(Masson et al. 1994, 1995a, 2002a) and proved
useful in unraveling mechanisms of resistance to
crystal proteins (Masson et al. 1995b; Luo et al.
1997; Tabashnik et al. 1998), while atomic force
microscopy and Fourier transform infra-red
spectroscopy were used to visualise for the first
time the insertion of toxin molecules into cell
membranes (Vie et al. 2001; Laflamme et al.
2008).
Further insights into the complex process of

pore formation were obtained by combining
electrophysiology with cell physiology and
molecular genetics. Pore formation was studied
with micro-electrophysiological techniques
measuring toxin-induced changes in membrane
potential of either epithelial cells in whole larval
midgut preparations (“patch-clamping”;
Peyronnet et al. 1997) or of artificial lipid bilayers
(“planar lipid bilayers”; Schwartz et al. 1993,
1997a). Pore formation was also studied using
cultured insect cells (Schwartz et al. 1991; Potvin
et al. 1998; Villalon et al. 1998) and epithelial
cell preparations obtained from homogenised
insect midguts (brushborder membrane vesicles;
Peyronnet et al. 2001). Studies using these tech-
niques revealed for the first time the primary role
of calcium and chloride in toxin action (Schwartz
et al. 1991) and the presence of endogenous ion
channels in the apical membrane of epithelial cells
(Peyronnet et al. 2004), and elucidated the influ-
ence of various biophysical and biochemical
factors on pore formation (Fortier et al. 2005,
2007; Vachon et al. 2006; Brunet et al. 2010b). In
combination with site-directed mutagenesis, those
techniques permitted probing the importance of
specific toxin regions or amino acid residues in
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pore formation. Systematic replacement of indi-
vidual amino acids revealed the involvement of
specific domains (Schwartz et al. 1997b; Masson
et al. 2002b), interdomain salt bridges (Coux et al.
2001), specific α-helices (Masson et al. 1999;
Vachon et al. 2002, 2004; Girard et al. 2009), and
interhelical loops ( Lebel et al. 2009; Brunet et al.
2010a). A recent synthesis of results from
this work and from related studies elsewhere in
the world has yielded the most parsimonious
and empirically best supported model of
B. thuringiensis crystal protein mode of action
that is available to date (Vachon et al. 2012).
Conspicuous in the molecular era of mode of

action research is the declining role of Canadian
Forest Service scientists. With full operationalisa-
tion of B. thuringiensis in forest protection during
the preceding decades, the product development
phase that was initiated by the Canadian Forest
Service 60 years earlier came to an end. As
B. thuringiensis attained “mature product” status,
the federal government gradually reduced its related
research investments. Besides some work on spore-
associated virulence factors (Kyei-Poku et al. 2007;
Milne et al. 2008; Kalmykova et al. 2009), inter-
actions with midgut microbes (van Frankenhuyzen
et al. 2010) and recent syntheses of crystal protein
specificity (van Frankenhuyzen 2009, 2013),
federally funded research on B. thuringiensis has
virtually ground to a halt.

Forest pest control with B. thuringiensis in
the molecular era
Cloning of the first crystal protein genes not

only revolutionised research on the mode of
action of B. thuringiensis, but also its application
in pest control. The insertion of crystal protein
genes in plants to produce insect-resistant trans-
genic crops has found widespread adoption in
agricultural production around the world since its
introduction in the mid-1990s. Advances in tech-
nologies for in vitro propagation and genetic
transformation of various tree species accelerated
the development of transgenic forest trees during
the 1990s. Using B. thuringiensis crystal protein
genes, insect resistance has been engineered into
several tree species, including poplar (Populus
Linnaeus; Salicaceae), walnut (Juglans Linnaeus;
Juglandaceae), larch (Larix Miller; Pinaceae),
eucalyptus (Eucalyptus L’Héritier de Brutelle;
Myrtaceae), and white spruce (Picea glauca

(Moench) Voss; Pinaceae), as reviewed by van
Frankenhuyzen and Beardmore (2004). In
Canada, the development of efficient methods for
transformation and somatic embryogenesis of
spruces permitted the creation of a spruce
budworm-resistant white spruce, which was
tested in a confined field trial (Lachance et al.
2007). The key objective of that project was not to
design budworm-resistant trees for commercial
plantations, but to develop proof of concept in
conifer genetic engineering using insect resistance
as a model silvicultural trait. Bt-spruce also served
as a model system for the development of
protocols to evaluate environmental effects of
transgene applications (Lamarche and Hamelin
2007; Leblanc et al. 2007). Canadian scientists are
now playing a role in defining an international
framework for proper evaluation of commercial
release of transgenic trees (Häggman et al. 2013).
Transgene applications of B. thuringiensis crystal
proteins in forestry may never be desirable,
considering the myriad of ecological risks asso-
ciated with their deployment (van Frankenhuyzen
and Beardmore 2004), not the least of which is the
induction of resistance in key target pests such as
the spruce budworm (van Frankenhuyzen et al.
1995).

The future of insect pathology in
Canada

The preceding synopsis documents key con-
tributions made by Canadian scientists to the
study of forest insect diseases from when insect
pathology was first established as a discipline in
its own right until today, a period of about
65 years. Developments in Canada over that per-
iod largely reflected the development of the dis-
cipline elsewhere in the world. The emerging
promise of insect pathogens for sustainable and
ecologically acceptable control of insect pests
around the middle of the previous century led to
active research programmes in insect diseases in
many countries (Steinhaus 1975). This effort
resulted in the development of pathogen-based
approaches for control of a broad range of insect
pests around the world, including products
based on B. thuringiensis (Charles et al. 2000),
baculoviruses (Hunter-Fujita et al. 1998) and
Hypocreales fungi (de Faria and Wraight 2007),
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as well as classical biological control using insect
pathogens (Hajek and Delalibera 2010).
Much of the research in Canada was driven by

the desire to develop products that could replace
broad-spectrum synthetic insecticides in aerial
forestry applications. As a result, investigations
focussed primarily on pathogens that could be
mass-produced, stored, and formulated for aerial
spray application. Bacillus thuringiensis and
baculoviruses met those criteria and became
prime candidates for development as control
products that fit this chemical control paradigm.
That phase of insect pathology research may now
have come to an end: the “low-hanging fruit” has
been picked, and most likely candidates have been
developed to commercialisation. There are no
doubt other agents that can be developed as pest
control products, in particular other baculo-
viruses, but such activities are now likely to fall
within the purview of private enterprise.
The future of forest insect pathology research in

Canada is being shaped by several drivers which

are necessitating a shift in research from the
chemical control paradigm to more biologically
oriented approaches (Fig. 3). In addition to an
accelerating global trend to reduce reliance of syn-
thetic pesticides in favour of more natural control
products, the context of forest pest management is
changing from one that uses reactive “fire-fighting”
approaches in response to full-blown outbreaks to
using more pro-active suppression approaches
earlier in outbreak cycles. Treatment with baculo-
viruses to suppress infestations of Douglas-fir
tussock moth (Otvos and Shepherd 1991) and bal-
sam fir sawfly (Moreau et al. 2005) are examples of
how registered pest control products can be used in
an augmentative biological control approach.
Other examples show that pathogens can be
used successfully in traditional biological control
approaches involving inoculative rather than
inundative releases. Early experience with the
nucleopolyhedrovirus of the European spruce
sawfly (Bird and Elgee 1957) and the more
recent example of Entomophaga maimaiga in

Main drivers

are shifting forest insect pathology research 

From To

Developing pathogens that require repeated
inundative release (spray application)

Using microscopy-based methods to search
for pathogens that fit the chemical control
paradigm

A primary focus on cyclic outbreaks of
native defoliators

Developing pathogens that can be used in pro-active,
population suppression approaches involving limited
inoculative or epizootic release (augmentative or
classical biological control).

Using DNA-based technologies to search for
pathogens that fit the biological control paradigm

A primary focus on new outbreaks of established
invasive exotics

1. The strategic goal of

sustainable forest
management is
dictating a shift in pest
management from
reactive fire-fighting to
pro-active suppression
approaches

2. The introduction and

establishment of
invasive alien pests
have added a new
dimension to Canada’s
forest pest
management
challenges

The availability of3.
molecular tools has
opened new avenues for
research and
development of
entomopathogens for
forest pest management

•

•

•

•

•

•

Fig. 3. Main drivers affecting the direction of forest insect pathology research.
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North America and its effect on outbreak dynamics
of gypsy moth (Elkinton et al. 1991) are both
(fortuitous) examples that classical biological con-
trol with pathogens can work. The most promising
target pests for such an approach are established
invasive exotic pests (Hajek and Delalibera 2010),
which have increased in importance during the past
15 years. Regulatory restrictions are making the
introduction of exotic pathogens for classical bio-
logical control of introduced insect pests increas-
ingly difficult (Lacey et al. 2001), causing a shift in
focus to augmentation of indigenous pathogens as a
more practical intermediate approach (e.g., Lyons
et al. 2012).
In addition, new insights are suggesting entirely

different ways of exploiting insect pathogens for
pest control in the future. For example, associa-
tions of entomopathogenic fungi with host plants
(Vega et al. 2009) involving mutualistic interac-
tions (Behie et al. 2012) suggest a possible role of
endophytic or mycorhizal fungi that also infect
insects or that produce insecticidal secondary
metabolites. The latter approach is already being
pioneered by J.D. Irving Ltd. in New Brunswick
to obtain white spruce with high tolerance to
spruce budworm feeding (Miller et al. 2008;
Sumarah et al. 2008, 2010). At the same time, the
advent of affordable genome sequencing and
other powerful molecular tools is superseding
traditional microscopy-based methods for patho-
gen identification and characterisation, and are
offering an opportunity to re-examine natural
diversity, prevalence, and ecological role of
entomopathogens in forest insect populations and
their habitats at an ecologically relevant scale, as a
framework for the development and deployment
of novel pathogen-based pest management
approaches.
The shift from developing spray products to

developing ecologically framed control approa-
ches requires a new thrust of foundational
research on insect pathogens and their ecology,
using modern technologies. This is not in line
with today’s reality of declining investments in
both “public good” and basic research. Insect
pathology research positions are disappearing due
to natural attrition from government laboratories
and universities across the country. For example,
between 1965 and 1995 the Canadian Forest
Service had between 10 and 15 research positions
that dealt with insect pathogens in some capacity

at any given time, a number that has dwindled to
two or three. Similar trends are apparent at
Agriculture and AgriFood Canada, the other fed-
eral department that traditionally has had sig-
nificant capacity in insect pathology focussed on
pests of agricultural importance. This trend clearly
signals the demise of insect pathology in Canada.
Unless it is reversed, the potential of insect
pathogens for sustainable management of insect
pests in forestry, agriculture, and public health
may never be realised beyond the few spray
products that have been developed to date. In
that case this contribution will stand not only as
the first but also as the last review of Canada’s
innovations in insect pathology and the use of
insect pathogens for sustainable management of
forest pest insects.
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