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ELEMENTARY OPERATORS ON J-SUBSPACE LATTICE ALGEBRAS

PENGTONG L1 AND FANGYAN Lu

The abstract concept of an elementary operator was recently introduced and studied
by other authors. In this paper, we describe the general form of elementary operators
between standard subalgebras of J-subspace lattice algebras. The result can apply
to atomic Boolean subspace lattice algebras and pentagon subspace lattice algebras.

Throughout, if X is a Banach space by B(X) we mean the algebra of all bounded
linear operators on X. The topological dual of X is denoted by X*. For z € X and
f € X*, the operator z ® f is defined by y — f(y)z for y € X, which has rank one if
and only if both z and f are nonzero. For any non-empty subset L C X, Lt stands for
its annihilator, that is L+ = {f € X*: f(z) =0forallz € L}.

Let £ be a subspace lattice on a Banach space X, that is, a family -of (closed)
subspaces of X satisfying

(i) (0), X € £ and

(i) nLyeckL,v,L, €L,
for every family {L,}r of elements of £, where VrL, denotes the closed linear span of
UrL,. The associated subspace lattice algebra Alg L is the set of all operators in B(X)
which leave every subspace in £ invariant. It is easy to see that Alg £ is a unital weakly
closed operator algebra. Put

JL)={KeL:K+(0)and K_# X},

where K_ =V{L € L: K € L}. Call £ a J-subspace lattice if
(i) V{K:KeJ(EL)}=X,
(i) N{K_:KeJ(L)}=(0),
(i) KVK_=X forevery K e J(L),
(ivy KNK_=(0) forevery K e J(L).
The class of J-subspace lattices was defined in [14] and subsequently discussed in

[9, 10]. The simplest example of a J-subspace lattice is any pentagon subspace lattice
P = {(O),K, L, M,X}, where K, L and M are subspaces of a Banach space X such
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that K VL =X, KNM = (0) and L C M. In this case, K_ = M, L_ = K and
J(P) = {K,L}. For further discussions of pentagon subspace lattices may see [4, 6].
Another important member of the class of 7-subspace lattices is atomic Boolean subspace
lattices. The reference [10] tells us that every commutative J-subspace lattice on a
Hilbert space is an atomic Boolean subspace lattice. However, most J-subspace lattices
on a Hilbert space are non-commutative. Therefore, J-subspace lattices and J-subspace
lattice algebras deserve some attention.

For a subspace lattice £, the relevance of 7 (£} is due to the following lemma, from
which we can see that every 7-subspace lattice algebra Alg £, where L is a J-subspace
lattice, is rich in rank one operators.

LEMMA 1. (Longstaff [8].) If L is a subspace lattice on a Banach space X, then
the rank one operator z ® f € Alg L if and only if there exists some K € J (L) such that
z € K and f € KX, where K* means (K.)*.

Let A; and A, be algebras over the same field. In the recent papers [1, 2, 13], the
authors introduced and studied an abstract concept of elementary operators between A,
and A,. They considered an ordered pair (M, M*) where M : A; — A; and M* : A,
— A, are linear mappings such that

{ M (zM*(y)z) = M(z)yM(2),

(1) M*(yM(z)u) = M*(y)zM"*(u)

for all 7,z € Ay,y,u € A;. Following those references, such a pair (M, M*) is called
an elementary operator of A, into A, (of length one). For a,b € A;, denote by M,,
the two-sided multiplication given by M,(z) = azb, £ € A;. Then (M,p, Mp,) is an
elementary operator of A, into itself. The same is true for every double centraliser of a
faithful algebra A, (see [1, 3]). Further, if ¢ is an algebraic isomorphism of A; onto A,,
then (¢, ¢~!) is also an elementary operator of A, into A,. °

Let X be a Banach space. Usually, a subalgebra A C B(X) is called a standard
operator algebra on X if it contains all finite rank operators in B(X). For convenience,
for a subspace lattice £ on X, we similarly call a subalgebra A C Alg L an standard
subalgebra of Alg L if it contains all finite rank operators in AlgL. In our previous
papers [7, 11, 12], we studied derivations, isomorphisms, Jordan derivations and Jordan
isomorphisms between standard subalgebras of J-subspace lattice algebras. Here we
turn our attention to elementary operators. The papers {1, 2] describe the general form
of elementary operators on some concrete algebras which include polynomial algebras,
finite dimensional central simple algebras, standard operator algebras and some special
function algebras. Also, the paper [13] characterises surjective mappings (no linearity is
assumed) between standard operator algebras having the property appearing in (1); in
particular, such mappings are proved to be automatically additive. Note that one of the
main results from [1]} is the following.
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THEOREM 1. Suppose that A; and A, are standard operator algebras on Banach
space X, and X, respectively, and the pair (M, M*) is an elementary operator of A, into
As. Then there exist bounded linear operators T : X; — X3 and S : X5 — X, such that
M(A) =TAS,A € A;, and M*(B) = SBT, B € A,.

The aim of this note is to extend this result to the case where A,;, A, are standard
subalgebras of J-subspace lattice algebras and M, M* are linear surjections. We shall
also discuss the continuity of M and M* as well as the case where no surjectivity of M
and M* is assumed.

The following lemma is taken from [14], which is just [5, Corollary 3.8] and [4,
Lemma 3.1] when £ is an atomic Boolean subspace lattice and a pentagon subspace
lattice, respectively.

LEMMA 2. Let L be a J-subspace lattice on a Banach space X and suppose that
T € AlgL is nonzero. Then T has rank one if and only if whenever ATB = 0 with
A,B € Alg L, then either AT =0 orTB = 0.

Now let us state our main result, which can apply to atomic Boolean subspace lattice
algebras and pentagon subspace lattice algebras.

THEOREM 2. Let L; be a J-subspace lattice on a Banach space X; and A; be
a standard subalgebra of Alg L;, where i = 1,2. Suppose that the pair (M, M*) is an
elementary operator of A, into A,, that is, M : A — Ay and M* : Ay — A, are linear
mappings satisfying

- { M(AM*(B)C) = M(A)BM(C),

M*(EM(D)F) = M*(E)DM*(F)

forall A,C,D € A, and B, E, F € A,. If in addition, both M and M* are surjective, then
there exist two densely defined, closed, injective linear mappings T : D(T) C X; = X,
and S : D(S) C X, — X, with dense ranges, and with AR(S) C D(T) and BR(T)
C D(S) for each A € A, and each B € A,, such that

M(Ay=TASy and M*(B)z=SBTz

hold for all A € A,, B € A,, z € D(T) and y € D(S). Here the notation D(-) and R(-)
denote the domain, and respectively the range of a mapping.

For clarity of exposition, we shall organise the proof in a series of lemmas.

LEMMA 3. M and M* are bijective. .

PRrOOF: To see that M is injective, let M(A) = 0 for some A € A,. Let K € J(L,)
be arbitrary. Suppose that there is z € K such that Az # 0. For any nonzero f € K%,
by Lemma 1, z ® f,Az ® f € A;. Noting that the surjectivity of M*, we can write
M*(B) = Az ® f and M*(D) = z ® f for some B,D € A;. We thus by (2) have
that f(Az)Az ® f = M*(B)AM*(D) = M*(BM(A)D)= 0, and so f(Az) = 0. Hence
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Az € KN K_ = (0), a contradiction. This shows that A(K) = (0). Since V{K : K
eJ (L:l)} = X, it follows that A = 0. The proof of injectivity of M* goes similarly,
completing the proof. . 0

In the following, we shall say that a mapping ® : A; — A, preserves rank one
operators in both directions if for any T € A;, the operator ®(T) is of rank one if and
only if T is of rank one. ‘

LEMMA 4. M and M* preserve rank one operators in both directions.

PROOF: Let T € A, be arbitrary. Suppose first that T is of rank one and let
B,D € A, with BM(T)D = 0. Then M*(B)TM*(D) = M*(BM(T)D) = 0 by (2).
Applying Lemma 2, we get that either M*(B)T = 0 or TM*(D) = 0. In the case that
M*(B)T =0, let L € J(L;) be arbitrary and choose nonzero y € L. For any g € L%,
then y®g € A; and there exists A € A; such that M(A) = y®g since M is surjective. So
y®(BM(T)) g = M(A)BM(T) = M(AM*(B)T) = 0, where (BM(T))" is the adjoint of
BM(T). It follows that (BM(T))"g = 0 which implies that (BM(T))*(L%) = (0). Since
N{L_: L € J(La)} = (0), it is easily seen that the linear span of U{Lt : L € J(L,)} is
weak* dense in X3. Thus (BM(T))" = 0 and then BM(T) = 0. If TM*(D) = 0 we can
similarly obtain that M(T)D = 0. Making use of Lemma 2 again, it follows that M(T)
is also of rank one.

For the reverse implication, suppose that M(T) is of rank one. Observe that the
pair (M=, M*™') is an elementary operator of A; into A;, that is, the linear mappings
M-1': Ay — A, and M*™' : A; — A, satisfy
@) { M~YEM*-(D)F) = M~\(E)DM~\(F),

M~ (AM~Y(B)C) = M*"' (A)BM*"'(C)
for all A,C,D € A, and B, E,F € A,. Then we must have that M~! maps every rank
one operator of A, to a rank one operator of A;. So T is of rank one.

The statement that M™ preserves rank one operators in both directions can be proved
in a similar way. The proof is complete. . 0

In what follows, if L is a subspace lattice and K € J(L), we write F(K) for the set
{z® f:z € K, f € K1}. For a J-subspace lattice £, the following basic properties are
clear and will get repeated use.

(i) KCL_forany K,L € J(L) with K # L;
(i1) if the rank one operator z® f € Alg L, then there exists a unique K € J(L)
such that z € K and f € K.

LEMMA 5. Let K € J(L,). Then there exists a unique K € J(L,) such that
M(F(K)) = F(K) and M*(F(K)) = F(K). In particular, the mapping K — K from
J(L,) into J(Ly) is bijective.

PROOF: Noting that K N K_ = (0), choose fixed nonzero elements zx € K and
fx € Kt with fx(zg) = 1. By Lemmas 1 and 4, there exist an element, say K, in
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J(L2), yk € K and gk € K+ such that, M(zx ® fx) = yx ® gx # 0. We want to prove
that M(F(K)) = F(K). Let z € K and f € K be arbitrary nonzero elements; then
z® f,z® fr,zx ® f € A;. Write

Mz®f)=y®yg, yelL,gelt, LeJ(L),
Mz®fk)=n®gq, w€l,ge€li, LeJL),
Mz ®f)=12909, y2€ Lo, .‘]2€L2l-, Ly € J(Ly).

Moreover, since M* is surjective and preserves rank one operators in both directions,
we also have M*(yo ® go) = Tk ® fx for some nonzero yo € Ly and go € Li_, where
Ly € J(L,). Applying (2) we obtain that

YRg=M(Ez® frx M (yo ® g0) - zx @ f)
=M@z ® fk) Y9®g Mk ® f)
= 91(%0)90(v2)y1 ® go-

It follows that L = L; = L, = Ly since each of y, 1, ¥2,9, 1 and g, is nonzero. In the
above equations, substituting zx and fx for z and f respectively, then Ly = K and
so L = K. This proves that M (FK)) cF (I? ). For the reverse inclusion, because
of (3), we can similarly obtain an K’ € J(L;) such that M~'(F(K)) C F(K'). As
2k ® fx = M~ (yx ® gk), we have K’ = K. Thus F(K) C M(F(K)).

Next we shall prove that M*(F (K )) = F(K). By the symmetry of M and M*,
we can get that M*(F(K)) = F(K") for some K" € J(L,). It suffices to show that
K" = K. Choose z € K and h € K* with h(z) = 1. Since M(F(K)) = F(K), there
exist u € K and | € K2 such that M(u ® [) = z ® h. Suppose to the contrary that
K" # K. Noticing that M*(z ® h) is an operator of rank one in F(K"), we have

2Q@h=Mu®l)-20h-Mu®l)
=Mu®! M'(z®h) u®l)
— M(0) =0,

which is a contradiction.

The uniqueness of K is obvious.

It remains to prove the last statement. Suppose L € J(L;); let y € L and g € L*
be nonzero. Then by Lemma 4 there exist z € K and f € K* for some K € J(£L;) such
that M(z ® f) =y ®g. Therefore y® g € F(K)NF(L) and so L = K. This proves the
surjectivity. The injectivity is clear. We are done. 1]

LEMMA 6. Let z € K, f € KX,y € L and g € L%, where K € J(L,) and
L € J(L,). Then g(M(z ® f)y) =1 if and only if f(M*(y® g)z) = 1.
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PROOF: Since

IMz lyyMz@ fly=MzQ f) - y®@9-M(z® f)y
=Mz®f M'(y®g) zQ® fy
= f(M*(y ® 9)z) M (z ® f)y,

the “only if” part follows. The “if” part can be obtained similarly. 0

LEMMA 7. For every K € J(L,), there exist bijective linear mappings Tx : K
— K and Sk : K - K such that,

(4) M(A)y = TKASKy and M‘(B).’E = SxBTkzx

{oraHAeAl,BeAz,xeKandyel?.

ProoF: For K € .7([:1) fix two nonzero elements rx € K and fx € K+. By
Lemma 5, M(zx ® fx) € .7-'(K) bemg nonzero. In fact, it is easy to see that M(zx @ fx)
# 0 on K. So there exist yx € K and gx € K such that gx(M(zx ® fx)ux) = L.
Define linear mappings Tk and Sk by

TKZ=M(-T®fK)yK, IGK’
Sky = M*(y® gx)zx, ye€K.

Clearly, Tx(K) C K and Sx(K) C K. Let y€ K and A € A;. Then

M(A)y = gx(M(zk ® fr)yx)M(A)y
= M(A) -y®gk - M(zk ® fx)yx
= M(AM*(y® gx)zk ® fr)yK
= M(ASky ® fx)yx
= Tx ASky.

This proves that the first equality is true in (4). To prove the second equality, let x € K
and B € A;. By Lemma 6, fx(M*(yx ® gx)zx) = 1. Thus

M*(B)z = fx(M*(yx ® gx)zx)M*(B)z
=M*(B) - z® fx - M"(yk ® gx)zx
= M*(BM(z ® fx)yk ® 9k)Tk
= M*(BTkz ® gx)zxk
= SxBTkzx.

Now we want to prove that Tk is bijective. Let us first assume that Txx = 0 for
some z € K. Fix a nonzero zo € K and let f € K* be arbitrary. Then there is B € A,
such that M*(B) = 2, ® f. So f(z)zo = M*(B)z = SkBTxz = 0, and moreover
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f(z) = 0. This implies that z € K N K_ = (0). Hence Tk is injective. In order to
prove that Tk is surjective, let y € K be nonzero. Pick g € K+ with 9(y) = 1. By
Lemma 5 we can write M(z ® f) = y® g for some z € K and f € K. We thus have
y=Mz® fly=Tk -z ® f-Sky = f(Sky)Tkz. This yields the surjectivity of Tx.

Similarly we can prove that Sk is bijective. The proof is complete. 1]

In the remainder of this paper, for every K € J(L;), Tx and Sk will denote the
linear mappings as constructed in Lemma 7. Obviously, they depend on the choices of
Tk, fk, Yk and gx. So it will be assumed that those choices have been made for each
KeJ (El).

For a subspace lattice £, it will be convenient to denote by (J(L)) the (not neces-
sarily closed) linear span of U{K : K € J(L)}. Suppose that £ is a J. -subspace lattice
and that K;,---, K, are distinct elements of J(L). If z; € K; such that Z z; = 0, then
each z; € K; N (V;2K;) € K; N K;_ = (0). Thus every z € (J (L)) has a represen-
tation as follows: z = Zn:z‘,- with z; € K;, 1 < ¢ € n, where K,,---, K,, are distinct
elements of J(L). If z ils_;lonzero and each z; is required to be nonzero, this representa-
tion is unique up to permutations of z;,--- ,z,. In addition, Lemma 5 tells us that the
mapping K — K from J(L,) onto J(L,) is bijective. Therefore, the following linear
mappings Ty and Sy are well-defined.

LEMMA 8. Define T : (J([,l)> (J (L) ) by Toz = ZTK,:E,, where z = Zz,
with z; € K;, 1 < i < n, and K, -+, K,, being distinct eIements of J(L,); and deﬁne

o (T(La)) = (J (L1)) by Soy = 2 Sk,y;, where y = 2 y; withy; € K;,1 < n,
and Ki,---, K, being distinct elemeuts of J(£,). Tben To and Sy are bijective and
satisfy

M(A)yy =ToASoy and M*(B)x = SyBTyz

forallAe A, B€ Ay, T € (J(£1)> andy € (J(£2)>

ProOF: By Lemma 7, it is easily proved that T, and Sy are bijective.

Let A€ Ajandlety € (J (£2)> being of the form described in this lemma. Applying
(4) we compute

M(A)y =3 M(A)y, = ZTK,ASK,y, TO(ZASK,ZIJ>

Jj=1 j= i=1

= ToA (Z Sij,-) = Ty ASoy.
j=1

The other equality can be proved similarly, completing the proof. 1]
Now we are in a position to prove our main result.
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PRroOF OF THEOREM 2: Suppose G(Tp) = {(:1:, Toz) : z € (J(£1)>} and G(Sp)

(y,Soy) :y €(J (£2)>}, which are the graphs of Ty and S, respectively. To define T
and S, we let
D, = {z € X : (z,y) € G(Ty) for some y € X,},

= {y € X, : (y,z) € G(S,) for some = € X;}

where G(Ty) and G(Sp) denote the norm closures. Obviously, they are linear manifolds
and (J (L)) C D1, (J(L2)) C De. Since (J(L1)) and (J(L;)) are dense in X; and X,
respectively, the same must be true for D; and D,.

For every £ € D;, we shall prove that there exists a unique y € X, such that
(z,y) € G(To). For this purpose, assume that (z,,), (z,v2) € G(Tp) with y1,y, € X,.
Then (0,y; — ¥2) € G(Tp). So there is a sequence {z,}% of elements in (T(L1)), such
that z, — 0 and Tz, — y1 — yo. Let L € J(L3) be arbitrary, and pick a nonzero y € L.
Then for any ¢ € L, we have M*(y ® g)z, — 0. On the other hand, by Lemma 8,
M*(y® g)xn = So-y® g Tozn = 9(Tozn)Soy — 9(y1 — y2)Soy. Noting that Soy # 0,
it follows that g(y; — y2) = 0. Hence y; — y» € L_; moreover, y; — y; € ﬂ{L- : L
€ J(L2)} = (0). Thus y; = ya, as desired.

Similarly, we can prove that for every y € Dy, there exists a unique z € X; such
that (y,z) € G(So).

Define two mappings T : D(T) C X; — X, and S : D(S) C X; — X in an obvious
way, such that G(T) = G(Tp) and G(S) = G(S,), where D(T) = D; and D(S) = Ds. It
is easily seen that T and S are densely defined, closed and linear. Also, they are injective.
For example, suppose that Sy = 0 for some y € D(S); then (y,0) € G(S;). So there
exists a sequence {y,}° of elements in (J L»)), such that y, — y and Spyn — 0. For
any K € J(L1), pick a nonzero z € K. For every h € K2, since M(F(K)) = F(K),
there are z € K and f € K+ such that M(z® f) = z® h. We then have M(z ® f)y,
— M(z ® f)y. But, by Lemma 8, M(z ® flgn = To -2 ® f - Sovn = f(Soyn)Toz — 0.
Thus h(y)z = M(z ® f)y = 0, which implies y € K_. Since J(Ls) = {K K e J(Ly)}
by Lemma 5, we get y = 0. Similar arguments apply to T

Since T extends Ty and the range of Tp is J(L2) by Lemma 8, it follows that R(T)
is dense in X,. Similarly, Sy has dense range.

Now we shall prove that AR(S) C D(T) and M(A)y = TASy, for every A € A,,
y € D(S). Because of (y,Sy) € G(S,), we then choose a sequence {y’,}%° of elements
in (J(L,)) satisfying y, — v and Sy, — Sy. So ASpy, = ASy and, by Lemma 8,
ToASoy!, = M(A)y, - M(A)y. Noting that (ASoy;,, ToASey,) € G(To) for each y;, we
get that (ASy, M(A)y) € G(T). Therefore ASy € D(T) and M(A)y = TASy. A similar
argument shows that BR(T) C D(S) and M*(B)r = SBTz, for every B € A, and
z € D(T). This completes the proof. 0

Taking into account Theorem 1, a natural question is proposed as follows: In The-
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orem 2, if the condition that M and M* are surjective is removed, what is the conclu-
sion? To this question, we have observed that there are linear mappings T : (J (£1))
= (J(Ly)) and S : (J(L2)) — (T(L1)) such that, M(A)y = TASy and M*(B)z
= SBTz for A€ Ay, B€ Ay, z € (J(£1)) and y € (J(L2)). Obviously T and S are
densely defined. But, we cannot prove that they are also closed.

We shall conclude by considering the continuity of M and M* in Theorem 2.

PROPOSITION 1. Under the assumptions of Theorem 2, if A, and A, are closed
subalgebras, then M and M* are (norm) continuous.

ProOOF: Since A; and A, are closed, by the closed graph theorem it suffices to show
that M and M* are closed operators.

For every K € J(L,), we first prove that Tk and Sk are closed operators and hence
continuous, where Ty and Sk are defined as in Lemma 7. Suppose K € J(£,). Let
{zn}$°, z be in K and y in K such that z, — z and Txz, — y. For any g € K+,

(TK(:::,, —z)) = g(y — Tkz). On the other hand, choose z € K with Skz # 0 since
Sk : K = K is bijective. It follows from (4) that

9(Tk(zn — 2))Skz =Sk - 2@ g- Tx(zTn — ) = M*(2® g)(zn — ) = 0.

Hence g(y — Txz) = 0, and so y — Txz € K N K_ = (0). This shows that T is closed.
By similar arguments, we can conclude that Sk is also closed.

Now suppose that {A,}$°, A are in A; and B in A, satisfying A, = A and M(A4,)
— B. Let K € J(£;) and y € K. Then applying Lemma 7, M(A,)y = TxA.Sky
— TxASky = M(A)y. But M(A,)y — By holds also. So M(A)y = By forall y € K.
Noting that Lemma 5, we have M(A) = B. Hence M is closed. Similarly, M* is closed.
This completes the proof. 0
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