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The minimal density of triangles in tripartite graphs

Rahil Baber, J. Robert Johnson and John Talbot

ABSTRACT

We determine the minimal density of triangles in a tripartite graph with prescribed edge densities.

This extends a previous result of Bondy, Shen, Thomassé and Thomassen characterizing those

edge densities guaranteeing the existence of a triangle in a tripartite graph. To be precise we

show that a suitably weighted copy of the graph formed by deleting a certain 9-cycle from K3 33

has minimal triangle density among all weighted tripartite graphs with prescribed edge densities.
Supplementary materials are available with this article.

1. Introduction

Extremal questions for triangles in graphs have a very long history. The first such result,
Mantel’s theorem [6], tells us that a graph with n vertices and more than n?/4 edges must
contain at least one triangle.

For graphs with more than n?/4 edges it is natural to pose a quantitative question: what is
the minimum number of triangles in a graph with a given number of edges? In this direction
Razborov [7] determined (asymptotically) the minimal density of triangles in a graph of given
edge density. This recent result was the cumulation of decades of contributions on this question
due to Bollobés [1], Erdés [3], Lovasz and Simonovits [5] and Fisher [4].

Recently, Bondy et al. [2] considered the very natural question of when a tripartite graph
with prescribed edge densities must contain a triangle. (A tripartite graph is a graph G = (V, E)
for which there exists a partition of its vertices into three vertex classes such that all edges go
between classes. The edge density between a pair of vertex classes X, Y is simply the proportion
of edges present between the two classes: |E(X,Y)|/|X||Y].)

Bondy et al. characterized those triples of edge densities guaranteeing a triangle in a tripartite
graph. As a special case they showed that any tripartite graph in which the density of edges
between each pair of classes is greater than 1/¢ =0.618... contains a triangle (a precise
statement of their full result can be found in the next section).

The aim of this paper is to prove a quantitative result which extends the theorem of Bondy
et al. in the same way that Razborov’s result extends Mantel’s theorem.

The remainder of the paper is organized as follows. Formal definitions and main results
are given in the next section. Our main result splits into two rather different cases and the
following two sections contain their proofs. We finish with some conjectures and open problems.
The proof relies on a computer search. Details of how to obtain the C++ code used for this
search may be found in the appendix.

2. Definitions and results

A tripartite graph is a graph G = (V, E) for which there exists a partition of its vertices into
three independent sets. Throughout, whenever we consider a tripartite graph we will implicitly
assume that a fixed tripartition V =A U B U C is given.
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A weighted tripartite graph (G, w) is a tripartite graph G = (V, E) together with a weighting

w:V — [0, 1] satisfying
Z w(a) = Z w(b) = Z w(c)=1.

acA beB ceC

The weight of an edge zy € E(G) is w(zy) = w(x)w(y). The edge densities of (G, w) are
a(G,w) = Z w(be), P(G,w)= Z w(ac), Y(G,w)= Z w(ab).

bce E(B,C) aceEE(A,Q) abeEE(A,B)

We denote the set of all weighted tripartite graphs by Tri. For a, 3, v € [0, 1] we let Tri(«, 5, 7)
denote the set of all weighted tripartite graphs with edge densities a(G, w) = «, B(G, w) = 5,

Let (G,w) € Tri. A triangle in G is a set of three vertices, a € A,b € B, c € C, such that
ab, ac, bc € E(G). We denote the set of all triangles in G by T(G). The weight of a triangle
xyz € T(G) is w(zyz) = w(z)w(y)w(z). The triangle density of (G, w) € Tri is

t(G,w) = Z w(abc).

abceT (G)

Note that with the obvious definitions of edge and triangle densities for simple tripartite
graphs any such graph can be converted into a weighted tripartite graph with the same edge
and triangle densities by setting the vertex weights to be 1/|A|,1/|B|,1/|C| for vertices in
classes A, B, C, respectively.

Also, any weighted tripartite graph with rational weights can be converted into a simple
tripartite graph with the same edge and triangle densities by taking a suitable blow-up. To
be precise, choose an integer n so that nw(v) is an integer for all vertices v and replace each
vertex of weight = with nx new vertices. The new vertices are clones of the old in the sense
that we join a pair of vertices in the new graph if and only if the pair of vertices they arise
from are adjacent in the weighted graph.

We are interested in how small the triangle density of a weighted tripartite graph with
prescribed edge densities can be. Formally we wish to determine the following function. For
a, 8,7 €[0,1] let

Twin(e, By) =  min G, w).

It is not difficult to believe that this function is well-defined; however, for completeness
we sketch a proof of this fact. Since this makes use of results from much later in the paper we
suggest the reader takes this on trust until they reach the relevant results. Given 0 < o, 8, v < 1,
Lemma 4.1 implies that Tri(c, 8, v) # 0. Now Lemma 4.9 implies that when attempting to
minimize ¢(G, w) over Tri(a, 3, y) we may restrict our search to the finite subfamily consisting
of tripartite graphs with at most three vertices per class. Finally note that for a single tripartite
graph G the problem of determining the minimum value of ¢(G, w), subject to the edge densities
of (G, w) being «, 3,7, is a minimization problem for a continuous function over a compact
domain. Hence T (v, 8, 7v) is well-defined.

The following simple lemma shows that solving this weighted problem will give an asymptotic
answer to the question of how many triangles a simple (unweighted) tripartite graph with given
edge densities must have.

LEMMA 2.1. (i) If G is a simple tripartite graph with edge densities «, 3,7 then it has
triangle density at least Tmin(c, 5, 7).

(ii) For rational «, 3, v, if (H, w) € Tri(«, B3, y) then for all € > 0 there is a simple tripartite
graph G with edge densities «, 3, v and triangle density at most t(H, w) + €.
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FIGURE 1. The tripartite complement of the graph Hy.

Proof. Part (i) is immediate since any tripartite graph can be transformed into a weighted
tripartite graph by weighting vertices uniformly in each vertex class as described above.

For part (ii), let w’ be a rational weighting of H such that if the edge densities of (H, w’)
are o, ',y we have |a — |, |8 = B'], |y — 7', [t(H, w) — t(H, w')| < ie. We can do this since
for a given H the edge and triangle densities are continuous functions of the vertex weights.
Now choose an integer n so that nw’(v) is an integer for all vertices v, and n?|a — o/|, n?|3 —
B'|,n?|y — 4| are all integers. Blow up H by replacing each vertex v with nw’(v) cloned vertices
to form a simple graph G’ with n vertices in each class. Finally, add or remove at most %en2
edges from G’ to form a graph G with edge densities a, 3, ~y. This creates at most %en?’ new
triangles and so the triangle density of G is at most t(H, w') + 3¢ < t(H, w) + €. O

Bondy et al. [2] proved the following sharp Turdn-type result. If (G, w) € Tri(a, £, 7) and
(o, B,7) € R, where

R={(a,3,7) €01 :aB+y>1,ay+ >1,8y+a>1},

then G must contain a triangle.
THEOREM 2.2. Tyin(a, 8,7) =0 < (a, 8,7) € [0, 1]3\R.

In particular, Tyin(d, d, d) = 0 if and only if d < 0.618 . .. (the positive root of the quadratic
2 1
z*+x—1=0).
Our main result (Theorem 2.3) determines the minimal density of triangles in a weighted
tripartite graph with prescribed edge densities.
The tripartite complement of a tripartite graph G is the graph obtained by deleting the
edges of G from the complete tripartite graph on the same vertex classes as G. We will denote
this by G. Let Hg be the graph whose tripartite complement is given in Figure 1.

THEOREM 2.3. For any («, 3,7) € R there exists a weighting w of Hg such that (Hg, w) €
Tri(o, 3, v) and t(Hg, w) = Thin(a, 8, 7).

This theorem combined with Lemma 2.1 shows that a suitable blow-up of Hg has
asymptotically the minimum density of triangles for given edge densities.

There are two distinct cases to consider in the proof of Theorem 2.3, depending on the values
of a, B, . Let

Aler, B,7) = a® + 32 + 4% = 208 — 20y — 28y + 4afy.
We partition R into two regions: R; and Ry where
Ry = {(avﬂv 7) € RCA(O[, /85 ’Y) = 0}
and Ry = R\R;. For R; we have the following result.
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FI1GURE 2. The tripartite complement of the graph Hg.

r—— r———
FIGURE 3. The tripartite complements of the graphs H; and Hf.

THEOREM 2.4. If (o, 8,7) € Ry and Hg is the graph whose tripartite complement is given
in Figure 2, then there exists a weighting w such that (Hg, w) € Tri(«, 3, v), and for any such w

Tin(c, 8,7) =t(Hg,w)=a+ B+~ —2.
Let (G, w) € Tri(a, 8, 7). If ¢(G, w) = Tmin(a, B,7) then (G, w) is said to be extremal. If
there does not exist (G, w') € Tri(a, 8, v) with ¢(G', w’) = t(G, w) and |[V(G")| < |V(G)], then
(G, w) is said to be vertex minimal. The tripartite graphs G and H with specified tripartitions

are strongly-isomorphic if there is a graph isomorphism f : G — H such that the image of each
vertex class in G is a vertex class in H.

THEOREM 2.5. If(«, f3,7) € Rs and (G, w) € Tri(a, 8, 7) is extremal and vertex minimal,
then G is strongly-isomorphic to Hy, HY, or Hy (see Figure 3).

Proof of Theorem 2.3. The graphs Hg, H7 and H} are induced subgraphs of Hy; hence
Theorems 2.4 and 2.5 imply Theorem 2.3. ]

We conjecture that in fact the extremal graph is always an appropriate weighting of H.
This would also give a simple formula for Ty (e, 8, 7). See Section 5 for details.

3. Proof of Theorem 2.4 (the region R;)
LEMMA 3.1. For any a, 3,7 € [0, 1] and (G, w) € Tri(a, 3,7) we have
tGw)Za+F+v—2.

Proof. Define
{1 it xy € E(G), {1 if zyz € T(G),
]-zy = ]-zyz =

0 otherwise, 0 otherwise.
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Given abc € A x B x C, the number of edges present between these three vertices is at most
two unless abc forms a triangle. Hence

> wlabe)(lpe +lac +1ap) < D> w(abe)(2+ Lape). (3.1)
abce AXBxC abce AxBxC

The left-hand side of (3.1) sums to o + 3 + v, while the right-hand side is 2 + ¢(G, w). Therefore
tG,w)za+G+v—-2. O

LEMMA 3.2. Ifw is a weighting of Hg satisfying (Hg, w) € Tri(a, 3, ), then

t(H&U)) =a+ﬂ+7— 2:Tmin(a7 ﬁv ’7)

For ease of notation the weight associated with a vertex is indicated with a hat above the
label; for example, w(by) is represented as b;.

Proof. Consider a general weighting of Hg with vertices as labelled in Figure 2. We know
az=1-—ay, 132 =1- 51 and ¢, =1 — ¢; since the sum of the weights of the vertices in a class
add up to one. Hence we can express the densities in terms of only a, by and é1. The edge
densities of Hg are

azl—él—i—l;lél, B=1—a1+ a1cq, ’)/21—(;14—&1[;1.
The triangle density is given by

t(H6, U}) = &16161 + (1 — dl)(l — 81)(1 — 61)
=1—a1—b1 — ¢ + a1by + a1¢1 + b1é4
=a+0+v—2.

By Lemma 3.1 we have t(Hg, w) = Tmin(a, 3, 7). U

We now need to determine for which (o, 3,7) € R a weighting w exists such that (Hg, w) €
Tri(a, §,7)-

LEMMA 3.3.

(i) If (o, B,7) € R then a, 3,7y > 0.
(ii) If (o, B,7) € Ry then 0 < o, B,y < 1.

Proof. 1If (o, 8,7v) € R and a =0 then, since af + v > 1, we have v > 1, a contradiction.
Similarly 3,y > 0.

If (v, B, v) € Ro then Ry C R implies that a, 3,7 > 0. If a = 1 then A(a, 8,7) = A(1, 8,7) =
(1-8-7)2=0. But (a,3,7) € Ry implies that A(a, 3,7) <0, a contradiction. Similarly
B,y <1 |

LEMMA 3.4. For (a,(,7) € R there exists a weighting w of Hg such that (Hg,w) €
Tri(a, 3,~) if and only if (o, 8,7) € Ry.

Proof. If (a,f,7) € R then Lemma 3.3(i) implies that a, 3,7 #0. First we will prove
that if (a, 8,7) € R and there exists a weighting w such that (Hg, w) € Tri(ce, §,7), then
(Oé, Ba 7) S R1~
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Let us label the vertices of Hg as in Figure 2. Suppose w is the weighting of Hg such that
(Hg, w) € Tri(a, B, 7). The edge densities in terms of ay, by, ¢ are

a=1—2¢ + 6161, (32)
B=1—a1+a,¢, .
y=1=by +a1by. (3.4)

Case 1: One of «, 3,7 equals one. By Lemma 3.3(ii) (a, 3,7) ¢ R2. Hence (a, 3,7) € R
implies («, 3,7) € Ry.

Case 2: a, 3,7 # 1. Since «, 8,7 # 1 we have a1, by, é1 # 0, 1. Rearranging (3.4) and (3.3) we
can write by and ¢é; in terms of aq,

~ 1—'}/

[ —— 3.5
Ty (3.5)
a1+ 65— 1
61:%. (3.6)
1

Substituting into (3.2) and simplifying gives
adi + (—a+f—7)a +v— By =0.

Hence

ay

_a—B+v+ VA« B7) (3.7)

2
and substituting back into (3.5) and (3.6) gives
o atB-rEVA(efb7) 38
1— 2/6 ) ( . )
—a+ﬁ—|—’}/ivA(a,ﬂ,’Y) (39)

2y

C1 =

By the definition of a weighting we have a1, by, & € R; hence A(a, 8,7) 20, and so (a, 3, 7) €
R;.

Next we will show that if («, 3,7) € Ry then there exists a weighting w such that (Hg, w) €
Tri(a, 8, 7).

Case 1: One of «, 3,7y equals one. Without loss of generality, suppose « =1. Since
(1, 8,7) € R1 C R we have 8 4 v > 1. It is easy to check that a; =, by=1,¢ = B+v-1)/v
satisfy (3.2), (3.3), (3.4) and @y, by, & €[0,1] when 3+~ >1. This is enough to define a
weighting w of Hg.

Case 2: «a, 3,7 # 1. Since A(w, 8,7) >0, we may define ay, bi,é1 €ER by (3.7), (3.8) and
(3.9), taking the positive square root in each case. Due to the way ay, lA)l, ¢1 were constructed
they satisfy (3.2), (3.3) and (3.4). Hence if a4, by, ¢, form a weighting w we will have
(Hg, w) € Tri(a, B, 7). We need only prove ay, by, ¢ € (0, 1).

We will prove @, € (0, 1); the proofs of by, ¢ € (0,1) follow similarly. If 0 < v — 8+~ then
0 < a; because a; is the positive square root version of (3.7). Now (a, 3,7) € R implies
O0<af+vy—1<a+~vy—p0, and consequently 0<a;. By (3.7) if \/A(a, 8,7)<a+0—7
then a1 < 1. Again («, 8, v) € R implies that 0 < ay 4+ 8 — 1 < a + 3 — 7. Hence if we can show
Ala, 8,7) < (a+ 3 —~)? we will be done. Expanding and simplifying yields 0 < 4a83(1 — )
which is true because «, 3,7y € (0, 1). O

Proof of Theorem 2.4. The result follows immediately from Lemmas 3.2 and 3.4. ]
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4. Proof of Theorem 2.5 (the region Ry)

We will begin by introducing a new type of graph in § 4.1 which will allow us to develop a
series of conditions that extremal vertex minimal examples must satisfy. In § 4.2 we outline an
algorithm that allows us to utilize the results of § 4.1 to search for the extremal vertex minimal
graphs in a finite time. This algorithm produces 14 possible graphs. In § 4.3 we eliminate those
not strongly-isomorphic to Hy, H} and Hg by analysing each of them in turn.

4.1. Properties

Our proof strategy for Theorem 2.5 is to establish various properties any extremal and vertex
minimal weighted tripartite graph must satisfy. To prove these properties we introduce a new
type of tripartite graph.

A doubly-weighted tripartite graph (G, w,p) is a weighted tripartite graph (G, w) € Tri
together with a function p: E(G) — (0, 1]. We denote the set of all doubly-weighted tripartite
graphs by DTri. If (G, w, p) € DTri then the weight of an edge xy € E(G) is defined to be

AMzy) = w(zy)p(zy).

The edge density between a pair of vertex classes X and Y is

Z Azy).

zy€B(X,Y)

The triangle density is defined as

tG,w,p) = Z p(ab)p(ac)p(be)w(abe).
abceT(G)

Any (G, w) € Tri may be converted into a doubly-weighted tripartite graph (G, w, p) with
the same triangle and edge densities by adding the function p: E(G) — (0, 1], p(e) =1 for all
e € E(G). Our next result allows us to do the reverse and convert a doubly-weighted tripartite
graph into a weighted tripartite graph, leaving triangle and edge densities unchanged.

LEMMA 4.1. Given (G, w, p) € DTri there exists (G', w') € Tri with the same triangle and
edge densities.

For (G, w,p) € DTri we will say that e € E(G) is a partial edge if p(e) <1. To prove
Lemma 4.1 we need a process to eliminate partial edges without affecting any of the densities.

For a graph G and vertex v € V(G) let I'?(v) denote the neighbourhood of v in G. When no
confusion can arise we write this simply as T'(v). Given a tripartite graph G with a vertex class
X and v € V(G) we write I'§(v) =T%(v) N X. Again when no confusion can arise we write
this simply as I'x (v).

ALGORITHM 1 Split. The algorithm Split takes as input (G, w, p) € DTri and an ordered
pair of vertices (x,y), such that xy is a partial edge. Its output, Split(G, w, p, z,y), is a
doubly-weighted tripartite graph, which no longer contains the partial edge zy. If (G', w’, p’) =
Split(G, w, p, x,y) then G’, w', p’ are formed as follows.

(i) Construct G’ from G by replacing the vertex z by two new vertices zp and x; that
lie in the same vertex class as . Add edges from g,z so that T (z0) =T%(z)\{y} and
G (21) =T% ).

(if) Set w'(xo) =w(z)(1 —p(zy)) and w'(x1) = w(z)p(zy). Let w'(v) =w(v) for all ve
V(G)\{z}.

(iii) Set p'(wov) = p'(z1v) = p(av) for all v € T%(z)\{y}, and p'(z1y) = 1. Let p’(uv) = p(uv)
for all uv € E(G) such that u, v # x.
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FIGURE 4. An example of (G, w, p) and Split(G, w, p, x, y). Partial edges are represented by dotted
lines and the solid lines are edges which p maps to 1.

Note that in Split(G, w, p, y, «) (the result of applying Split to (G, w, p) and (y, x)) the vertex y
would have been ‘split’ into two new vertices rather than x. It also does not contain the partial
edge zy. So if we wish to remove the partial edge xy we can choose between Split(G, w, p, z, y)
and Split(G, w, p, y, z).

Figure 4 shows an example application of Split with ‘before’ and ‘after’ pictures of (G, w, p)
and Split(G, w, p, z, y).

LEMMA 4.2. For any (G, w,p) € DTri and zy a partial edge, (G',w', p’) = Split(G, w, p,
x,y) has the same triangle and edge densities as (G, w, p).

Proof.  Without loss of generality, let us assume z € A and y € B. We will prove the result
by calculating the difference in densities between (G’, w’, p’) and (G, w, p) and showing them
to be zero. The change in the edge density between classes A and B is

w(y) (W' (21)p' (z1y) — w(z)p(zy))
+ Y wE) (W (2o)p (wov) + w (21)p (z10) — w(x)p(wv))
vel g (2)\{y}

which is zero. Similarly the change in density between classes A and C is zero. There is no
change in the density between classes B and C since the algorithm Split leaves this part of the
graph untouched. The change in the triangle density is

> (w'(z0) + w'(x1) — w(@))w(w)w(v)p(zu)p(zv)p(uv)

zuwv€T(G),ueB\{y},veC
+ > (@ (@) (@1y) — w(@)p(zy))w(y)w(v)p(zv)py),
zyveT (G),veC

which is zero; hence the triangle and edge densities do not change. |

Proof of Lemma 4.1.  Given (G, w, p) € DTri, if p(e) =1 for all e € E(G) then the weighted
tripartite graph (G, w) will have the same densities as the doubly-weighted tripartite graph.
Suppose (G, w, p) contains a partial edge av, with a € A. We can remove this partial edge
by replacing (G, w,p) by Split(G, w, p, a, v). Unfortunately, this may introduce new partial
edges. However, we can show that by repeated applications of Split we will eventually remove
all partial edges. Consider
Z(G’ w7p) = Z 3d2(v)3

vEA
where
d,(v) ={u e V(G) :uwv € E(G), p(uv) # 1}|.
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If (G, w', p") = Split(G, w, p, a, v) then Z(G', w’, p’) < Z(G, w, p). This is because Split replaces
vertex a with the vertices ag and a1, and so Z changes by
3dz(a0) 4 3dz(a1) _ 3dz(a) — Sdz(a)*l 4 3dz(a)71 _ 3dz(a)
_ _3dz(a)7l.

Since Z is integral and is bounded below (by zero for instance), repeatedly applying Split will
eventually remove all partial edges incident with A. Note that doing this will not have created
any new partial edges between classes B and C.

We can repeat this process on the partial edges leaving B, to get rid of the remaining partial
edges. Let us call the resulting doubly-weighted tripartite graph (G”, w”, p’"). Since we created
(G, w",p") only by applying Split, by Lemma 4.2, (G, w, p) and (G”, w”,p") must have the
same edge and triangle densities. Since (G”,w”, p’") has no partial edges, p”(e) =1 for all
e € E(G"); consequently (G”, w") has the same edge and triangle densities as (G”, w"”, p”) and
therefore (G, w, p). U

Since we can convert easily between weighted and doubly-weighted tripartite graphs, it is
useful to know when there exist doubly-weighted tripartite graphs with the same edge densities
but with smaller triangle densities. Let (G, w, p) be a doubly-weighted tripartite graph. By
carefully modifying p we can adjust the weights of edges whilst not affecting the edge densities
and potentially decreasing the triangle density. Our next result lists a series of conditions under
which this could occur.

Let G be a tripartite graph with vertex classes A, B, C. For a € A, b € B define

Cop={ceC:ac,bce E(G)}.

LemMA 4.3. If (G,w,p) € DTri satisfies conditions (i)—(iv) below, then there exists
(G', w, p’) € DTri with the same edge densities as (G, w, p) but t(G’, w, p’) < (G, w, p):
(i) w(v) >0 for all v € V(G);
(ii) p(e) =1 foralle€ E(A,C)U E(B, C);
(iil) there exist, not necessarily distinct, vertices ag, a1 € A, by, by € B such that a1b; € E(G)
and either agby ¢ E(G) or p(agbo) < 1;
(V) Yoce,, (€) < Ypees,, i)

COROLLARY 4.4. Let (G, w) € Tri. If there exist, not necessarily distinct, vertices ag, a3 €
A, by, by € B such that agby ¢ E(G), a1b1 € E(G) and Cyp, is a proper subset of Cy,p,, then
(G, w) is either not extremal or not vertex minimal.

ayby

Proof of Corollary 4.4.  'We will prove that if (G, w) is vertex minimal then it is not extremal
by applying Lemma 4.3.

Let (G, w) be vertex minimal, so w(v) > 0 for all v € V(G). We can add the function p which
maps all edges of G to 1 to create (G, w, p) € DTri. Now (G, w, p) has the same triangle and
edge densities as (G, w). By Lemma 4.1 it is enough to show that there exists (G’, w’, p') € DTri
with the same edge densities as (G, w, p) but a smaller density of triangles. Note that conditions
(i)—(iii) in the statement of Lemma 4.3 hold for (G, w, p). Thus Lemma 4.3 will provide such

a (G',w',p') if we can show that
Z w(c) < Z w(c).
c€Cagb c€Cayby

Let u € Cayp, \Cagb, - Since (G, w) is vertex minimal, w(u) > 0. Hence

o0bo -

Sow@- Y w@= 3wl zww >0,

c€Cayby c€Cag b, c€Cay5:\Cagbg

in which case all the conditions of Lemma 4.3 are satisfied, and (G, w) is not extremal. O
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by ay

B A
bl._.a2

FIGURE 5. The tripartite complement of the graph Hr.

Proof of Lemma 4.3. If agby ¢ E(G) let G’ be the graph produced from G by adding
the edge agbg. If agbg € E(G) then let G’ = G. Define p’: E(G') — (0, 1] by p’(e) = p(e) for
(S E(G,)\{aobo, albl} and

1) .
/ - 710(@0)11)(1)0) lf aobo ¢ E(G),
P’ (aobo) = 5
p(agbo) + m if apby € E(G),

p'(a1br) = plaibr) — M,

ax
where § > 0 is chosen sufficiently small so that p’(agbo), p’(a1b1) € (0, 1).

The weights and edges have not changed between classes A, C and B, C'. Consequently, the
corresponding edge densities will be the same in (G, w, p) and (G', w, p’). However, the edge
density between class A and B, and the triangle densities may have changed. The difference
in the A, B edge density between (G, w,p’) and (G, w, p) is

g 5
w(QO)w(bO)m —w(a)w(by) — s = 0.

The change in triangle density is

5
> w(ao)w(bo)w(c)m— > wlanwlb)w(e)—————

a
apboceT(G") 0 a1b1ceT(G’)

which simplifies to

(X wo- X @) <o

agboceT(G") a1biceT(G)

where the final inequality follows from condition (iv).
Hence the density of triangles in (G’, w, p’) is smaller than that in (G, w, p), but the edge
densities are the same in both. ]

LEMMA 4.5. Consider the graph H; whose tripartite complement is given in Figure 5. If
(a, B,7) € Ry then there exists a weighting w such that (H7, w) € Tri(a, 8, ) and t(H7, w) =
2/afB(1 —~) + 2y — 2. Furthermore, t(H;, w) < t(Hy,w') for all weightings w’, such that
(H7,w') € Tri(c, 8, 7).

Proof. If (a, 8,7) € R then, by Lemma 3.3(ii), we know that 0 < «, 3,y < 1. Consider a
general weighting of H7, with vertices labelled as in Figure 5. If such a weighting of H7 has edge
densities «, 3,y then «a, 8, <1 implies that a; #0,1,~v. Now given «, 3,7 and a; #0, 1,y
we have enough information to deduce the rest of the weights of the vertices. (Note that this
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may not be an actual weighting since some of these values may lie outside of [0, 1].)

. 1— . —a
a2 =1 —ay, by = 77 b2=7 ?1,
1—a1 1—&1
1-— 1-— 1-a
by 128 b1 —a)i-a)
aj Y — a1
1-— 1-— 1-a
18 (-a-d) |
ai Y— a1
which have been deduced from
1:d1+d27 1—’}/:&2?)1, 1:{714-?)2,

].—ﬁ:(].—él)dl, 1—0[2(1—&3)62, ].:él-f-ég—f—ég,

respectively. There are two triangles in H7, with weights dll;l ¢, and dgi)gég; hence the triangle

density is
(i) (-1 e (22 (- )

which simplifies to

1- .
27—2+M+a(1—a1).
1-— aj
This expression is minimized when 1 —a; = +/8(1 —7v)/a, and consequently we obtain the

desired triangle density of 24/a8(1 — ) + 2y — 2. We must now show that the vertex weights
implied by a1 =1 — 4/B(1 — )/« all lie in [0, 1] and that a; #~, 0, 1. Since the sum of the
weights in each class equals one, in order to show that all weights lie in [0, 1] it is sufficient to
show that they are all non-negative.

If a;=~ then 1—vy=+/6(1—-7)/a, which rearranges to ay+ (3 —«a=0. However,
ay+fB—a>ay+—-1>0 (as (a,3,7) € R C R), and hence a; # . Moreover, 1 — d; is
clearly positive, proving that 0 < das and a; # 1. Showing 0 < a; is equivalent to proving
v/B(1 —~)/a <1 which is true if 0 < 8y + o — 3, and this holds because v+« — 8> 8y +
a—1>0. Since by equals 1 — Va(l —7v)/8, a similar argument shows that by, by >0. Tt is
also straightforward to show that ¢, és > 0, but showing é; > 0 requires more work. Using
61 —|—62 —|—63 = 1, él =1- (1 —ﬂ)/&l and 63 =1- (1 — O[)/ZA)Q we obtain

(1—B)bs + (1 — )iy .

a1bo

Co=—1+4

Hence ¢é; > 0 if and only if
CAlllA)Q < (1 - ﬂ)i)g + (1 - Oé)&l.
Substituting a1 =1 — \/B(1 — 7)/a and by =1 — \/a(1 — )/ yields
a+ B —v<2y/af(l—7).

Now a+fB—y>ay+—1>0; hence 0<é if and only if (a+3—7)? <4aB(l—7).
Collecting all the terms onto the left-hand side shows that we require A(«, 8, ) < 0, which we
have from the fact that (a, 3,7) € Rs. O

LEMMA 4.6. For any («, 3,7) € Ra,
Tmin(aa /83 ’7) < mln{aﬁ—’_’y - 17 a7+5 - 1, /B’Y+OZ — 1}

Proof of Lemma 4.6. Without loss of generality, let us assume that

af+y—1l=min{af+v-1,ay+6-1,8y+a—1}
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FIGURE 6. An example of (G, w, p) and Merge(G, w, p, x1, z2). Partial edges are represented by
dotted lines and the solid lines are edges which p maps to 1.

By Lemma 4.5 we know that for any (a,,7) € Rs there exists a weighting w such
that (Hr7,w) € Tri(wa, 8,v) and t(H7, w)=2y/aB8(1 —~)+2y—2. Hence Thin(a, 3,7) <

2v/af(1—79)+2y—2. IfaB +~v—1<2/af(1 —7) + 2y — 2 then
af+1—v<2y/ap(l—7).
Squaring and rearranging yields
(af+~—1)*<0.

Since («, 8, 7) € Ry C R we know a5 + v — 1 > 0 holds true; hence we have a contradiction. [
LEMMA 4.7. Let (o, 8,7) € Ro. If (G, w) € Tri(w, 8, ) is extremal, then |Al, |B|, |C| > 2.
To prove Lemma 4.7 we will require the following algorithm.

ALGORITHM 2 Merge. The algorithm Merge takes as input (G, w,p) € DTri, and two
distinct vertices x1,x9 € X, where X is one of the vertex classes of G. The vertices
x1, T2 must satisfy, for some vertex class Y # X, the properties I'y (z1) =Ty (x2), w(z1) +
w(z2) >0 and p(a1y) =p(ray) =1 for all y €Ty (x1). The output of the algorithm is
represented by Merge(G, w, p, 1, x2) and is a doubly-weighted tripartite graph in which x1, 2
have been replaced by a single new vertex x. For convenience let us write (G',w’,p’) =
Merge(G, w, p, 1, x2). Now G', w', p’ are formed as follows.

(i) Construct G’ from G by replacing the vertices x1, o by a new vertex z in X. Add edges
from x so that I'¢" (z) = TG (x1) UTE ().
(ii) Set w'(z) =w(z1) + w(x2). Let w'(v) = w(v) for all v € V(G')\{x}.
(iii) For u,v € V(G")\{z} and wv € E(G’), let p’(uv) = p(uv). For zv € E(G’) set

w(zy)p(x1v)/w' (x) if z1v € E(G), zov ¢ E(G),
w(za)p(zav)/w' () if x1v ¢ E(Q), z2v € E(G),
(w(z1)p(z1v) + w(z2)p(a2v))/w'(z) if 210 € E(G), 22v € E(G).

P (zv) =

Observe that for y € Y we have zy € E(G’) if and only if 21y, 2oy € E(G) and in this case
p(zy) =1. Tt is easy to check that the edge and triangle densities of (G, w, p) and (G', w', p')
are the same.

Proof of Lemma 4.7. Suppose (G, w) is extremal and, without loss of generality, vertex
class C = {c} contains exactly one vertex. We can assume w(v) # 0 for all v € V(G), as any
vertices with weight zero can be removed without affecting any of the densities. Create a
doubly-weighted tripartite graph (G, w, p) with the same densities as (G, w) by setting p(e) =1
for all e € E(G). We will show that the triangle density of (G, w, p) is at least o8+ v — 1 and
consequently, by Lemma 4.6, (G, w) is not extremal.
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FIGURE 7. A graph with |C| =1 after merging vertices in A and B. The dotted lines represent edges
that may or may not be in the graph.

Since (v, 3,7) € Ra, by Lemma 3.3(ii) we have 8 # 0, 1. Moreover, since C' = {c} we know
that there must exist a vertex in A whose neighbourhood in C' is empty and another whose
neighbourhood in C is {c}. We can replace all vertices a € A satisfying 'c(a) =0 by a single
vertex ag via repeated applications of the Merge algorithm on pairs of such vertices. Similarly
we can replace all vertices with I'c(a) = {c} by a single vertex a;. Having done this we obtain
a doubly-weighted graph in which A = {ag, a1}, aic is an edge and agc is a non-edge. Note the
edges and weights between B and C' remain unchanged but we may have modified the edges
and weights between A and B.

By a similar argument we can reduce B to two vertices by, by, with byc an edge and byc a
non-edge. Let us call this doubly-weighted graph (G’, w’, p’), and note it has the same densities
as (G, w, p) and hence (G, w). By construction we have

apc,boc ¢ E(G'), aic,bice BE(G'), p'(arc)=p'(bic) =1

(see Figure 7).
We now have enough information to determine the weights of all of the vertices:

w'(c)=1, w(a)=p8, w'(a)=1-08, w'(b1)=a, w'(bh)=1-a.

The only information we are lacking about (G’, w’, p’) is which edges are present in E(A, B)
and what their weights are. However, since (a, 3, ) € R, Theorem 2.2 implies that G’ contains
a triangle. Hence a1b; € E(A, B). Since Cy,p, = {c} and Cyypy = Cagp; = Cayp, = 0, Lemma 4.3
tells us that (G, w) will not be extremal unless agbo, apb, a1by are all edges which p’ maps
to 1.

Now, a1bic is the only triangle in the doubly-weighted tripartite graph; hence the triangle
density is w’(aq1)w’(by)p'(a1b1) = A(a1by) (as w'(c), p’(arc), p’(bic) are all 1). By the definition
of edge density in a doubly-weighted tripartite graph, we have

Y= )\(aobo) + )\(aobl) + /\(albo) + /\(albl)
—(1-a)(1-B)+all - §) + (- )+ HC s 1)
=1-af+t(G' v, 7).

Hence the triangle density is a3 + v — 1, which by Lemmas 4.6 and 4.1 implies that (G, w) is
not extremal. O

LEMMA 4.8. If (o, f8,7) € Ry, (G,w) € Tri(a, 8,7) and, for all ay,as € A, Tc(ar) =
I'c(az), then (G, w) is not extremal.

Proof. If there exist any vertices with weight zero, we can remove them without affecting
the densities. Convert the resulting weighted tripartite graph into a doubly-weighted tripartite
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graph and reduce A down to a single vertex, by repeated applications of Merge on the vertices
in A. Any partial edges that appear will lie in F(A, B).

Now repeatedly apply Split choosing to replace vertices in B rather than A, until no more
partial edges remain. Consequently we have modified the weighted graph into a new weighted
graph with the same densities and now |A| = 1. By Lemma 4.7 we know this is not extremal
and hence (G, w) was not extremal. O

Our next lemma is an adaptation of a convexity argument by Bondy et al. (see [2, proof of
Theorem 3]). This allows us to reduce the problem of determining which tripartite graphs can
be both vertex minimal and extremal to those with at most three vertices in each vertex class.

LEMMA 4.9. If (G, w) € Tri is extremal and vertex minimal, then |A|, |B|, |C| <3
Again we introduce an algorithm to prove this lemma.

ALGORITHM 3 Reduce. The algorithm Reduce takes as input (G, w) € Tri and a vertex
class X of G, satisfying |X| > 3. Its output, represented by Reduce(G, w, X), is a weighted
tripartite graph, which has the same edge densities as (G, w), but with | X| < 3, and a triangle
density at most that of (G, w).

To help explain the algorithm we will suppose X = A (the other choices of X work similarly).
For each vertex a; € A let

ﬁi = Z U)(C), Vi = Z w(b)7 li = Z w(bc)

celc(aq) belp(aq) bce E(B,C),a;bceT(Q)
By definition
|Al | Al |A|
8= Z az Bzv Y= Z az Yis t(Gv w) = Z w(ai)ti'
=1

Consider the convex hull
[A]| [A]|

Pz{z:xz Biy Yis ti) sz—landxz/ }
i=1

Setting z; = w(a;) shows that (8,7, t(G,w)) lies in P. By varying the values of the x;
we can decrease the value of ¢(G,w) to t' such that (8,~,t') lies on the boundary of P.
Moreover, by triangulating the facet of P containing (8, ,t'), we can express (3, ,t') as a
convex combination of at most three elements of {(3;, v, t;) : 1 <4 < |A]}. Consequently we can
write
|A|
(B, 7, 1) :Z»’Cz‘(ﬁi,%‘,ti)

i=1

where > z; =1 and at most three of the x; are positive, the rest being zero. Now define a
new weighting w’ for G by w'(a;) = x;, w'(v) = w(v) for v € V(G)\A. The weighted tripartite
graph (G, w') has the same edge densities as (G, w) and a new triangle density ¢’ satisfying
t' <t(G, w). Furthermore, we can remove the zero weighted vertices from A so that |A] <3
and the densities are unchanged.

Proof of Lemma 4.9. Suppose (G, w) is extremal and vertex minimal with, without loss of
generality, |A| > 3. Now, using Algorithm 3, Reduce(G, w, A) has the same deunsities as (G, w)
(since (G, w) is extremal), but it has fewer vertices, contradicting the vertex minimality of
(G, w). O
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LEMMA 4.10. Let (G,w) be a weighted tripartite graph. If there exist distinct vertices
a1, as € A with T'c(ay) =T¢(az) and |B| =3, then (G,w) is not extremal or not vertex
minimal.

Proof. Convert (G, w) into a doubly-weighted tripartite graph and replace a1, as with a
vertex a by applying Merge (we may assume w(a;) + w(az) > 0 by vertex minimality of (G, w)).
Now A has reduced in size by one. If there are partial edges they will lie between classes A and
B. Use the Split algorithm to remove them, choosing to replace vertices in B rather than A.
Now convert the doubly-weighted graph back into a weighted graph. This weighted graph will
have the same densities as (G, w), A has one less vertex, and |B| > 3. If |B| =3 then this
weighted graph is of smaller order than (G, w). If |B| >3 we can use Reduce to modify the
weights of vertices in B, such that at most three of them have a non-zero weight. Simply
remove all vertices with zero weight and the resulting graph will be of smaller order than G,
contradicting vertex minimality. |

LEMMA 4.11. Consider a weighted graph (G, w). If there exist distinct vertices aj, as € A
with T'(a1) =T'(ag) then (G, w) is not vertex minimal.

Proof. Remove vertex as and increase the weight of a; by w(as). The resulting weighted
graph has the same densities as (G, w). O

LEMMA 4.12. Given a tripartite graph G with |A| =3, not necessarily distinct, vertices
ag, a1 € A, by, by € B such that apby ¢ E(G), a1b1 € E(G) and Cyypy = Cayp,, construct two
graphs G1, G as follows.

(i) Let G} = G — a1by. Construct Gy from G by adding a new vertex az to A and adding
edges incident to ay so that TG (ag) = I'%1 (ag) U {bo}.

(ii) Let G4 = G + agby. Construct Gy from G by adding a new vertex as to A and adding
edges incident to ay so that T2 (as) = % (a;)\{b1 }.

Note that in G and G2 we have |A| = 4. Let H denote the family of eight graphs constructed
from G or G by deleting a single vertex from A.

If (G, w) is extremal and vertex minimal then there exists H € H and a weighting w’ of
H such that (H,w') has the same edge densities as (G, w) and is also extremal and vertex
minimal.

Proof. Our proof will involve first showing that there exists a weighting w” of Gy, G5 such
that either (G, w”) or (G2, w”) have the same densities as (G, w).

Form a doubly-weighted graph (G, w, p) with p(e) =1 for all e € E(G). Since Coypy = Cayby s
if we add the edge agby to G we can move weight from edge a1b1 to apbg, by modifying p(a1b1)
and p(agby), whilst keeping the edge and triangle densities constant. If we move as much
weight as we can from aib; to agby, one of two things must happen. Either we manage to
make p(apby) = 1 before p(a;by) reaches zero, or p(a;by) reaches zero (so we remove edge a1b;)
and p(apbp) < 1. In either case we have at most one partial edge, either a1b; or apby. We can
remove the partial edge by an application of the Split algorithm, introducing an extra vertex
into class A. The two possible resulting graphs are G5 and G, respectively. Hence there exists
a weighting w” such that either (G1, w") or (G2, w”) have the same densities as (G, w).

Without loss of generality, let us assume (G7, w”) has the same densities as (G, w). Since
|A| =4 for G, applying the Reduce algorithm will remove at least one vertex from A to create
a doubly-weighted graph, say (H,w'), with the same edge densities and possibly a smaller
triangle density. However, since t(G, w) = t(G1, w") > t(H, w’) and (G, w) is extremal, we must
have t(G,w) =t(H,w"), implying (H,w’) is extremal. We can also conclude, by the vertex
minimality of (G, w), that H is formed from G; by removing exactly one vertex from A.  [J
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FIGURE 8. The tripartite complements of the graphs Fr and Fy.

by @ ®a;

B .CLQA
bl. ® a3

FIGURE 9. Canonical labelling of vertices and vertex classes.

4.2. Search for extremal examples

We have now developed a number of important conditions that any vertex minimal extremal
examples must satisfy. These will, eventually, allow us to conduct an exhaustive search for such
graphs (with the aid of a computer). This will then leave us with a small number of possible
extremal graphs which we will deal with by hand.

Recall that the tripartite graphs G and H (as always with specified tripartitions) are strongly-
isomorphic if there is a graph isomorphism f : G — H such that the image of each vertex class
in G is a vertex class in H.

It turns out that if we can eliminate graphs that are strongly-isomorphic to two particular
examples, F; and Fy (see Figure 8), then our computer search will be able to eliminate many
more possible extremal vertex minimal examples, and thus reduce the amount of work we will
finally need to do by hand.

For ease of notation we will henceforth implicitly label the vertices and vertex classes of all
figures as in Figure 9. Indices of vertices start at 1 and increase clockwise. Recall that the
weight associated with a vertex is indicated with a hat above the label; for example, w(b;) is
represented as by.

LEMMA 4.13. If (o, 8,7) € Ry then, for all weightings w such that (F7, w) € Tri(«, 3, ),
(F7, w) is either not extremal or not vertex minimal.

To prove Lemma 4.13, we first need to prove the following result about the graph Fg given
in Figure 10.

LEMMA 4.14. For any «, 3,7 € [0, 1] and weighting w satisfying (Fg, w) € Tri(c, 8, 7) we
have

t(Fe,w) Zmin{af+~v—1,ay+ 5 —-1,8y+a—1}. (4.1)
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FIGURE 10. The tripartite complement of the graph Fg.

Proof.  Suppose (4.1) fails to hold. Since I contains only one triangle, asbecy, and using
the fact that ao =1 — a1, bo =1 — by, éo =1 — ¢, we have

t(Fo,w) = (1 —a1)(1 — by)éy, (4.2)
a=b1(1—¢)+ (1 —b)e, (4.3)
B=ai(l—é1)+ (1—a)é, (4.4)

y=1—aib. (4.5)

Substitute (4.2), (4.3), (4.4) and (4.5) into t(Fs, w) < af + v — 1 and rearrange to obtain
(1 —2a1)(1 — 2by)(1 — é1)é1 + arbyéy <O0. (4.6)
This implies (since é1,1— ¢, a1, by > 0) that 0<1—2a; or 0<1—2b; (if 1— 241 <0 and
1 — 2b; <0 then the left-hand side of (4.6) would be non-negative).
If 0 <1 —2a; is true then substitute (4.2), (4.3), (4.4) and (4.5) into ¢(Fs, w) < ay+ G —1
and rearrange to obtain
a1b181(2 = b1) + a1 (1 — b1)*(1 — é1) + (1 — 2a1) (1 — by) (1 — é1) < 0.
But each term on the left-hand side is strictly non-negative so we have a contradiction.
If instead 0 < 1 — 2b; holds, then looking at t(Fs, w) < By + o — 1 yields
d16161(2 — dl) + 61(1 - &1)2(1 - él) + (1 — 2?)1)(1 — dl)(l - 61) <0,

which is similarly false. U
Proof of Lemma 4.13. Suppose (Fr,w) is extremal and vertex minimal. We may assume

w(v) € (0,1) for all ve V(Fy). If ¢(Fr,w) > af + v —1 then, by Lemma 4.6, (F7,w) is not
extremal, so we may assume that

t(Fr,w)<af+vy-1, (4.7)

and similarly
t(Fr,w) <ay+p—1, (4.8)
t(Fr,w) <By+oa—1 (4.9)

Consider moving all the weight from b3 to bs to create the following weighting w’ of F; defined
formally as w'(v) =w(v) for all ve V(G)\{bs, b3}, w'(bs)=w(bs)+ w(bs) and w’(bs)=0.
Changing the weighting from w to w’ does not change the edge density between A and C,
or B and C, but it may have increased the edge density between A and B and the triangle
density. Let us call the new edge density, between A and B, +'. Its value can be expressed in
terms of the old weights and densities

7, =7 + &233.
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Similarly
t(Fy, w') = t(Fyr, w) + agbséy.

If we can show that

t(Fr,w') <af++" -1, (4.10)
t(Fr,w') <ay + 6 -1, (4.11)
t(Fr,w')<py +a-1 (4.12)

all hold, then, since w’(b3) =0, we could remove by from F; leaving all densities unchanged,
and the resulting graph would be strongly-isomorphic to Fg. This contradicts Lemma 4.14;
hence our assumption that (F7, w) is extremal and vertex minimal must be false.

First let us show that (4.10) holds. Consider

af + ’}/ —-1- t(F7, w’) =af+ (’}/ + dzi)g) —1-— (t(F7, w) + d28361)
= af +v— 1 t(Fr,w) + azbs(1 - &)
> 0.
The inequality holds because a8 +~v — 1 — t(F7, w) > 0 by (4.7) and aq, by, ¢ € (0, 1).
To prove (4.11) we look at
ay + B —1—t(Fr,w') = aly + asbs) + 8 — 1 — (t(Fr, w) + azbséy)
=ay+0-1- t(F7, w) + dzi)g(a — él)
We know ay + 8 — 1 —t(Fr,w) >0 by (4.8), and aa, bs > 0, so all we have to do is show that
a — ¢, > 0. By definition « is the sum of the weighted edges between B and C, and hence
o= (62 + 83)61 + 6162
=1 —=0b1)é1 +b1(1 —¢&).
Therefore
a—é=1—=b)er+bi(1—¢)—é&
=by(1—2¢1).
Since by is greater than zero, we require é; < 1 /2.

Consider Cy,,p, = {c2} and Cy,p, = {c1}. Construct (F7, w, p) € DTri by setting p(e) =1 for
all edges of F7. If é; < ¢é; then, by Lemma 4.3, we know we can achieve a smaller triangle
density. Therefore é; < é must hold, or equivalently ¢ < 1/2 (as é; + é; = 1).

Similarly, to prove (4.12) consider

By +a—1—t(Fy,w') =0y + a =1 — t(Fy, w) + asbs (5 — &).

By (4.9) we need only show 3 — ¢ > 0, which is true because 8 — é = a1(1 — 2¢1), a1 > 0 and
&< 1)2. O

LEMMA 4.15. For all weightings w such that (Fy, w) € Tri, (Fy, w) is either not extremal
or not vertex minimal.

Proof. Let us assume that (Fy, w) is extremal and vertex minimal, in which case w(v) #0
for all v € V(Fy). Construct (Fig, w’) € Tri from (Fy, w) as follows.
(i) Create Fig from Fy by removing the edge asc;. Add a new vertex into C, labelled c4,
and add in edges so that TF10(c,) =TE (¢;) U A.
(if) Set w'(v) =w(v) for all v € V(Fip)\{c1, cs}. Let

oy wlaw(er)
w'len) = w(ay) + w(as)

w(ag)w(cr)

and  w'(cq) = wlan) £ wiag)’
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The edge density between A and B remains unchanged and it is easy to check that the density
between B and C' also has not changed. The change in edge density between A and C' is

wlag)w' (c1) +w'(cq) — w(az)w(ecr) — w(az)w(er) = 0.

The triangles in Fy are ajbsca, asbics, asbacy and the triangles in Fig are a1bsco, asbics, ajbacy,
asbacy. Hence the change in triangle density between (Fy, w) and (Fig, w') is

(w(ay) +w(az))w(b)w' (cq) — w(az)w(bs)w(cy) = 0.

Therefore (Fy, w) and (Fig, w’) have the same triangle and edge densities.

Note that T'5(a1) = T'ei°(a3) = {ca, cs}. Since |C| =4 we can apply the Reduce algorithm
to class C'in Fyg, and the resultant output (F”, w’) € Tri has the same edge densities and the
same triangle density (because (Fy, w) is extremal). Moreover, |V (F")| = |V (Fy)| (as (Fy, w) is
vertex minimal) and T5" (a1) = TE” (as). Hence we can apply Lemma 4.10 to (F”/, w"), showing
that it is either not extremal or not vertex minimal and so the same must be true of (Fy, w). [

Our goal is to produce a list of all tripartite graphs G for which there exists a weighting w
such that (G, w) € Tri(a, 8, 7) is extremal and vertex minimal for some («, 8, 7) € Re. With
this aim in mind we have developed a number of results that allow us to show (G, w) is not
extremal or not vertex minimal by simply examining G, irrespective of the weighting w.

By Lemmas 4.7 and 4.9 we need only consider tripartite graphs G in which all vertex classes
contain either two or three vertices. This reduces the problem to a finite search. However,
tripartite graphs with |A| = |B| =|C| =3 can contain 27 possible edges, so naively there are
at least 227 ~ 100000000 graphs to consider. We can decrease the possible number of graphs
by looking at only those that contain triangles, since otherwise («, 3, v) ¢ R by Theorem 2.2.
By Lemma 4.11 we know that if G has a class containing a pair of vertices with identical
neighbours then it is not vertex minimal (because we can move all the weight from one vertex
to the other). Similarly the more technical results given in Corollary 4.4, Lemmas 4.8, 4.10,
4.12, 4.13 and 4.15 can also be used to eliminate graphs without knowledge of the vertex
weights. Tripartite graphs that are strongly-isomorphic to graphs eliminated by these results
will also not be extremal or not vertex minimal, and so may also be discarded.

Unfortunately applying Corollary 4.4, Lemmas 4.8, 4.10-4.13, 4.15 and Theorem 2.2 to
over 100000000 tripartite graphs would take too long to perform by hand, but can easily be
done by computer. A C++ implementation is given in the Appendix (which is available via
the multimedia link on the online article webpage). This algorithm produces a list of possible
extremal vertex minimal tripartite graphs in Ry, which are equivalent up to strong-isomorphism
to the 14 graphs given in Figure 11. To decrease the number further we will have to check each
of these graphs by hand.

4.3. Specific graphs

To complete the proof of Theorem 2.5 we need to eliminate the 11 graphs found by the
computer search, other than Hr, H; and Hg. (In the list of 14 graphs these are Gg, G7 and
(13, respectively.)

To be precise we will show that for each G;, 1 <i< 14, i #7,8,13, if (o, 8,7) € Ry then
there does not exist a weighting w such that (G;, w) € Tri(«, 8, v) and (G, w) is both extremal
and vertex minimal.

LEMMA 4.16. If (o, 8,7) € Ry then, for all weightings w such that (G1, w) € Tri(a, 8, 7),
(G1, w) is not extremal.

Proof. G, is strongly-isomorphic to Fs. Hence Lemmas 4.14 and 4.6 imply (G1,w) is not
extremal. 0
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El ? ? GQ ] j Gg
c—o0 c——o0
64 ; L] ; 65 ; ; 66
Gr GA Gy .
oc———o0 o——o0 o———o0
él[) G G12

FIGURE 11. The tripartite complements of the graphs produced by the computer search.

LEMMA 4.17. If (o, 8, 7) € Ro then, for all weightings w such that (Gz, w) € Tri(«, 8, 7),
(G2, w) is not extremal.

Proof. Suppose (G, w) is extremal; by Lemma 4.6 we must have ¢(Ga, w) <af+vy — 1.
The edge and triangle densities are given by
a=by + (1 - by)é,
B=1-a1+acy,
v =a1b + (1 —a1)(1—by),
t(Ga, w) = a1byéy 4+ (1 — ay) (1 — by)éy.
Substituting into ¢(G2, w) < af + v — 1 and simplifying yields
ar(1=b1)(1—é)(1+&1) <0
which is false. U

LEMMA 4.18. For (o, 8,7) € R there exist no weightings w of G3 such that (Gz, w) €
Tri(a, 8, 7).
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Proof. (3 is strongly-isomorphic to Hg. Hence the result follows immediately from
Lemma 3.4. U

LEMMA 4.19. If (a, 8,7) € Ry then, for all weightings w such that (G4, w) € Tri(a, 8, 7),
(G4, w) is either not extremal or not vertex minimal.

Proof. Let us assume (G4, w) € Tri(e, §,7) is vertex minimal, and so w(v) #0 for all
v € V(Gy4). By Lemma 3.3(ii) we also have a, 3,7 #0, 1. The densities in terms of the vertex
weights a1, be, ¢1, and ¢é3, are as follows:

by = 16—04’ (4.13)
iy = 17_éla, (4.14)
. _(1-a)1-p5)
e
t(Gygyw) =~ — ¢ — w. (4.15)

C1
From (4.15) we can deduce that ¢(G4, w) will be minimized when ¢; is as large or as small
as possible, because the second derivative with respect to ¢; is negative. Since by <1 and
a1 <1, (4.13) and (4.14) imply that é; € [1 — o, (1 — @) /7]
Substituting ¢, =1 — « into (4.15) gives (G4, w) = ay + § — 1. Substituting ¢; = (1 — «) /v
into (4.15) gives t(G4, w) = vy + a — 1. Hence for é; € [1 — a, (1 — «) /7] we have

t(Gy, w) Zmin{ay+ 0 -1, 8y +a —1}.

Lemma 4.6 therefore tells us that (G4, w) can not be extremal. O

LEMMA 4.20. If (o, B,7) € Ry then, for all weightings w such that (G5, w) € Tri(c, 8, 7),
(G5, w) is either not extremal or not vertex minimal.

Proof. Suppose («, 3,7) € Ry and (G5, w) € Tri(«, 8, 7). We will show that there exists a
weighting w’ of G4 such that (G4, w') € Tri(e, 8, v) and (G4, w') = (G5, w). Since |V (G4)| =
|[V(G5)|, Lemma 4.19 implies that (G5, w) is either not extremal or not vertex minimal.

Suppose (G5, w) is vertex minimal, in which case we may assume w(v) > 0 for all v € V(G5).
To prove there exists (G4, w') with the same densities as (G5, w), note that I'g(a;) ='p(az)
in G5. Hence we can modify G5 by applying Merge on aq, as, labelling the resulting merged
vertex by a. This creates one partial edge acy. Apply Split on this edge, to remove it, choosing
to replace the vertex cy. The resulting weighted tripartite graph has the same densities as
(G5, w) and it is easy to check that it is strongly-isomorphic to Gj. |

LEMMA 4.21. If (o, B,7) € Ry then, for all weightings w such that (Gg, w) € Tri(c, 5, 7),
(Gg, w) is either not extremal or not vertex minimal.

Proof. Suppose («, 3,7) € Ry and (Gg, w) € Tri(a, 8, 7). We will show that there exists a

weighting w’ of G5 such that (G5, w') € Tri(e, 8, v) and t(G5, w') = t(Gg, w). Since |V (G5)| =
|V (Gs)|, Lemma 4.20 implies that (Gg, w) is either not extremal or not vertex minimal.
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Suppose (Gg, w) is vertex minimal, in which case we may assume w(v) > 0 for all v € V(Gp).
To prove there exists (G5, w’) with the same densities as (Gg, w), note that 'c(by) =T (bs)
in Gg. Hence we can modify Gg by applying Merge on bs, b3, labelling the resulting merged
vertex b. This creates one partial edge asb. Apply Split on that edge, to remove it, choosing to
replace the vertex ag. The resulting weighted tripartite graph has the same densities as (Gg, w)
and it is easy to check that it is strongly-isomorphic to Gs. |

LEMMA 4.22. For (a, 3,7) € R there exist no weightings w of Gy such that (Gg, w) €
Tri(e, 8,7).

Proof. Suppose (G, w) € Tri(a, 8,7) for (o, 3,7) € Ry. If w(ca) =0 then removing co
leaves Gy strongly-isomorphic to Hg. Hence we get a contradiction from Lemma 3.4. If w(cy) =0
or w(by) =0 then a =1, and (1, 3,7) ¢ Rz by Lemma 3.3(ii). Similarly we can show all other
vertices must have a non-zero weight. We will get a contradiction by showing that A(a, 3,7) =0
and hence (o, 3, 7) ¢ Ra.

Consider a new weighting w’ given by w'(v) =w(v) for all v € V(Gy)\{c1, 2}, w'(c1) =
w(cy) +w(c2) and w'(cz) =0. For convenience let us write o = a(Go,w’) (note that
B(Go, w) = and v(Gg,w') =7). Since w'(cz) =0 we could remove it from Gg without
changing any densities and the resulting weighted tripartite graph would be strongly-
isomorphic to Hg; let w” be the corresponding weighting. Since w(v) #0 for all v € V(Gy),
we know w”(v) #0 for all v € V(Hg), and consequently ¢(Hg, w”) > 0. Lemma 3.2 tells us
that Tiin (o', 8, v) = t(Hg, w") > 0; therefore by Theorem 2.2 we have (¢, 3, v) € R. Moreover,
Lemma 3.4 implies that A(a/, 8,v) > 0.

Since o/ =1 —w'(b2)w'(c1) =1 — w(b2)w(c1) — w(bz2)w(cz), we have

o = a—w(by)w(cs).
Hence we can write a = o’ + €, where € = w(bz)w(cz) > 0. Consider

Aler, B,7) = Ald +¢,8,7)
= A, B,7) + 2 + €% — 23 — 2y + 4efy
= A, B,7) + € +2e(a + B+ —2)+4e(1 - B)(1 —7)
= A(, B,7) + € + 2et(Hg, w") + 4e(1 — B)(1 — 7).

Since each term is non-negative we have A(q, 8,7) > 0. Therefore (a, 3,7) ¢ Rz, which is a
contradiction. ]

LEMMA 4.23. For all weightings w such that (G19, w) € Tri, (G19, w) is either not extremal
or not vertex minimal.

Proof.  Suppose (G1g, w) is extremal and vertex minimal; hence w(v) # 0 for all v € V(G1p).
Convert (G19, w) into a doubly-weighted tripartite graph by adding the function p which maps
all edges to 1. Applying Merge on (G190, w, p) and bg, b3 results in only one partial edge being
created beg (where b is the vertex replacing bs, bs). We can apply Split on that edge, choosing
to replace the vertex cz, and then revert back to a weighted graph (G}, w’) say. Now (G, w’)
has the same densities as (G719, w) but G}, has |B| =2 and |C|=3. Moreover, Gy has the
property that I'g(a;) =T g(as), and this is also true in G},. Hence, applying Lemma 4.10
to (Gly,w') and aq, ag, we see that (G}, w’) is not extremal or not vertex minimal. Since
[V(GY0)] =V (Gio)]| the same is true of (Gig, w). O

LEMMA 4.24. For all weightings w such that (G11, w) € Tri, (G11, w) is either not extremal
or not vertex minimal.

Proof. The proof is almost identical to that of Lemma 4.23. The only difference is at the
end, where now we have I'g(a;) = I'g(a2) holding true, and so we apply Lemma 4.10 to vertices
a1 and as instead. |
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LEMMA 4.25. For all weightings w such that (G12, w) € Tri, (G12, w) is either not extremal
or not vertex minimal.

Proof.  Suppose (G12,w) is vertex minimal, so w(v) >0 for all v € V(G12). Of the three
statements a; < az, by < b2, ¢1 < ¢, at least two must be true or at least two must be false.
Without loss of generality, let us suppose that a; < ao, by < by are both true.

The densities of (G2, w) are given by

o= b1y + boéy + 3,

B =a1ce + G261 + as,

N = G1by + doby + bs.
Consider the doubly-weighted tripartite graph (Gi2, w,p) where p maps all edges to 1. It
has the same densities as (G12, w). If we move a sufficiently small amount of weight ¢ > 0 from

vertex c¢g to ¢1, @ and (8 increase. By decreasing p(bscs) and p(ascs) respectively we can keep
all densities unchanged. More precisely set

p(bgCg) =1- (5(62 — 81)/6363, p(CLgCg) =1- (5(&2 — dl)/&gég.

If a1 = ag and 51 = 52, then increasing the weight of ¢; to ¢; 4+ ¢ and removing co will result
in a weighted tripartite graph with the same densities as (G2, w) but with fewer vertices.
Hence we know that p(bscs) < 1 or p(ascs) < 1. Consequently we now have a doubly-weighted
tripartite graph with the same edge densities as (G12, w) but a strictly smaller triangle density.
Hence by Lemma 4.1, (G12, w) is not extremal. o

Suppose now that two of the statements a; < a2, by < b2 and ¢é; < ¢; are false; for example,
a1 > as and by > by. We can repeat the above argument, this time moving weight from c¢;
to ¢z, again constructing a doubly-weighted tripartite graph with the same edge densities but
a smaller triangle density. |

LEMMA 4.26. If (a, 3,7) € Ra then, for all weightings w such that (G4, w) € Tri(c, 5, 7),
(G4, w) is either not extremal or not vertex minimal.

Proof. Suppose (G4, w) is extremal and vertex minimal, so w(v) > 0 for all v € V(G14).
Consider the doubly-weighted tripartite graph (G4, w,p), where p maps all edges to 1.
Applying Lemma 4.3 to (G14, w,p) on the non-edge a1b; and the edge azbs tells us that,

in order to be extremal,
> w0> Yl

c€Cayby c€Cugyby
must hold. Since Cq,p, = {c2, c3} and Cy.p, = {c1} we must have ég + é3 > ¢ or equivalently
1—2¢ >0 (using the fact that é; 4+ ég + é3 = 1). Similarly we can show that 1 — 2é; >0 by
looking at asbs, ai1bs, and 1 — 2¢é3 >0 by taking asbs, asb;. By symmetry we must have
1—2w(v) 20 for all v € V(G14). Note that the function w’ defined by w'(v) =1 — 2w(v) for
all v € V(G14) provides a valid weighting of G14, as w’(v) > 0 for all v € V(G14) and the sum
of the weights in a class, X say, is

S w(v) = 3 (1 - 2u(v))

veX veX
=|X[-2) w(v)
veX
=|X| -2
=1

because every class in (G14 has size 3.
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Recall that 5& is the tripartite complement of the graph Gi4. Consider the weighted
tripartite graph (Gi4, w’), with edge densities
(G, w') =o', B(Gra,w')=F", (G, w')=7"
We can write down o’ in terms of a:
o = (1—=2b1)(1 —2¢1) + (1 — 2by)(1 — 2¢5) + (1 — 2bs)(1 — 2¢3)
=3 - 2(81 + by + 53) —2(¢1 4+ ¢+ é3) + 4(31@1 + by + 6353)
=3 —4(1 — byéy — baéy — bsés)
=3 —4a;
similarly 3/ =3 — 43 and ' = 3 — 4v. Next let us write ¢(G14, w’) in terms of t(G14, w):
#(Gha, w') = (1= 2d1)(1 — 2by)(1 = 2¢1) + (1 — 2az)(1 — 2bo) (1 — 262)
+ (1 — 2ag)(1 — 2bs) (1 — 2¢3)
=3 —2(d1 + g + a3) — 2(by + by + bs) — 2(é1 + ¢ + &3)
+ 4(arby + a1é1 + b1éy + agby + Gocy + baéy + asbs + asés + bsés)
— 8(a1b1é1 + obacs + a3baés)
= 1+ 4(arby + a1¢; + b1éy + by + Gaéy + baéy + asbs + dsés + baés
— 2a1b161 — 2a0baéy — 2a3baés — a1 — o — G3)
=1+ 4((1 — a1)biér + (1 — ag)baéa + (1 — a3)bsés
— a1 (1 —b1)(1 = ¢é1) — az(1 — ba)(1 — é2) — as(1 — b3)(1 — ¢é3))
= 1+ 4((az + az)biéy + (a1 + a3)baéa + (a1 + a2)bsés
— 1 (by + b3) (&2 + &3) — Ga(by + b3) (&1 + &3) — ag(by + bo)(é1 + &2))
= 1+ 4(—aybyés — 1 bséy — dobiés — aobséy — asbyéy — asbyty)
=1—4t(G14, w).

Without loss of generality, suppose o’ < 3’ <. Since (G4, w) is extremal by Lemma 4.5 we
g Y,

have
(G4, w) < 2¢/aB(l —7) + 2y — 2.
Rewriting in terms of o/, 3,7/, t(G14, w') gives
3427 = (G, ') VB - )3 = ) (1 +7).

Note that in any weighted tripartite graph the triangle density is bounded above by all of the
edge densities, thus ¢(G14, w') </, and so

3427 -/ <V/B-a)B-8)1+7).
Squaring both sides and rearranging yields
0 /(47 — &)+ (35 — o) +3( — o) + (3 - a') <O,

Each term is non-negative (because 0 < o/ < ' <4’ < 1), and so the only way this can be true
is if o’ = ' =+' =0. Hence a = 3 =+ = 3/4, but such values do not lie in Ry due to the fact
that A(3/4,3/4,3/4) = 0. Thus we have a contradiction and our assumption that (G4, w) is
extremal and vertex minimal must be false. ]

Proof of Theorem 2.5. Our computer search tells us that the only possible extremal and
vertex minimal tripartite graphs are strongly-isomorphic to those given in Figure 11. Given
(a, B,7) € Ry for all weightings w, then (G1, w), (G2, w), (G3,w), (G4, w), (G5, w), (Gg, w),
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(Gy, w), (Gro,w), (G11,w), (G12,w), (G14,w) are either not extremal, not vertex minimal or
do not lie in Tri(a, 8, ) by Lemmas 4.16-4.26, respectively. This just leaves G7, Gg and G13
which are strongly-isomorphic to H7, H7 and Hy, respectively. |

5. Conjectures

The following conjecture, if true, would allow us to write Timin(a, 3, ) as a simple expression
for all values of o, 8,7 € [0, 1].

CONJECTURE 5.1. For vy < «, 3,

if (a, 8,7) € [0, 1°\R,

Tnin(c, B,7) = 2\/aﬁ (I-=v)+2y—2 if (o, B,7) € Ra,

a+pB+v—2 otherwise.
To prove Conjecture 5.1 it is sufficient to prove the subsequent conjecture.

CONJECTURE 5.2. If (o, f,7) € Ry then, for all weightings w such that (Hg,w) €
Tri(o, 3, 7), (Hg, w) is either not extremal or not vertex minimal.

THEOREM 5.3. Conjecture 5.2 implies Conjecture 5.1.

Proof. Theorems 2.2 and 2.4 tell us when Ty,in (e, 8,7) =0 and o + 5 + v — 2, respectively.
By Theorem 2.5 and Conjecture 5.2 we know that the only extremal tripartite graphs we have
to consider are H; and H’. Let us show that H’ can do no better than Hy.

Let (o, 8,7) € Re and (H%, w') € Tri(a, 3, ). We need to show there exists a weighting w
for H; so that (Hr,w) has the same densities as (H7, w’). Note that T'4(b2) =T 4(b3) in HY,
and w'(b2) + w'(b3) > 0 (otherwise o =1 which can not occur according to Lemma 3.3(ii)).
Hence we can modify H} by applying Merge on bo, b3, labelling the resulting merged vertex b.
This creates one partial edge bca. Apply Split to this edge to remove it, choosing to replace the
vertex co. The resulting weighted tripartite graph has the same densities as (H%, w’) and it is
easy to check that it is strongly-isomorphic to Hr.

Therefore when (a, 3, v) € Re we need only consider graphs strongly-isomorphic to Hy, and
by Lemma 4.5 we get Tmin(c, 5, 7) is equal to

min{2v/af(1 — 7) + 2y — 2,2/ ay(1 — B) + 26 — 2,2¢/By(1 — @) + 2a — 2}.

To finish the proof let us show that v < § if and only if

2vVay(l1—=0)+26—-222/af(l—7)+2y—2.

We can prove a similar result for v < a. For ease of notation let dy = 2/ay(1 — 3) + 28 — 2
and do =a+ 8+ v — 2. So we have

di 2 2y/ap(l —7) +2y -2
di +2(1—7) = 2y/aB(1 —7)
(di +2(1-7))? > 4af(l —v)
= (d2 +2(1 - 7)) = Ae, B,7)
df +4dy (1 —7) > d5 + 4da(1 — ) — A, 8, 7)
di +4dy — d3 — 4dy + A(e, B,7) = 4y(d1 — da).

11
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By Lemma 3.1 we know dy — da > 0. It is easy to check that d; — d2 = 0 implies A(a, 8,7) =0
which is not true, since («, 3, y) € Ry. Consequently we have

2 _J2 _
di 22y aB(l—7)+2y -2 At Z?d 4d§?A(a7ﬂ77)>7
1 — U2

Substituting dy =2y/ay(1 — ) +28 — 2 and dy = a + §+ v — 2 into
d? +4dy — d3 — 4dy + A(a, 3, 7)
4(dy — ds)

shows that it simplifies to 3. Thus

2/ ay(1—=B)+28—-222/aB(l —v)+2y—2 < B>1. O

Appendix

A C++ implementation of the algorithm to produce the final list of extremal vertex minimal
tripartite graphs may be downloaded from http://www.ucl.ac.uk/~ucahjmt/GraphFinder.cc.
The graphs it outputs are given in Figure 11.
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