EISENSTEIN'S CRITERIA FOR ABSOLUTE IRREDUCIBILITY OVER A FINITE FIELD ## Kenneth S. Williams (received May 9, 1966) Let p denote a prime and n a positive integer. Write $q = p^n$ and let k_q denote the Galois field with q elements. The unique factorization domain of polynomials in $m(\geq 2)$ indeterminates x_1, \ldots, x_m with coefficients in k_q is denoted by $k_q[x_1, \ldots, x_m]$. It is the purpose of this note to prove the following generalization of Eisenstein's irreducibility criteria and to point out some of its consequences. THEOREM 1. Suppose $f(x_1,\ldots,x_m)$ is a (not necessarily homogeneous) polynomial $\in k_q[x_1,\ldots,x_m]$, such that, if f is regarded as a polynomial in some indeterminate $x_i (1 \leq i \leq m)$ of degree $d(1 \leq d < q)$ then there exists an absolutely irreducible polynomial $\hat{\beta}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_m)$ with coefficients in k_q , with the properties $$\beta / f_d$$, β / f_r (r = 0, 1, ..., d-1) and β^2 / f_o , where f_r denotes the coefficient of x_i^r (r = 0, 1, ..., d). Then f is absolutely irreducible in $k_q[x_1, ..., x_m]$. Proof. Without loss of generality we can take i = m. As $k = \begin{bmatrix} x_1, \dots, x_{m-1} \end{bmatrix}$ is a unique factorization domain and \dot{p} is an irreducible element in it, by Eisenstein's irreducibility criteria (see for example [2]), f is irreducible in $k = \begin{bmatrix} x_1, \dots, x_m \end{bmatrix}$. Suppose however that f is not absolutely irreducible in Canad. Math. Bull. vol. 9, no. 5, 1966 $k_q[x_1, ..., x_m]$. Then there is a normal extension k_q of k_q over which f splits into $a \ge 2$ conjugate factors, say, $$f(x_1, ..., x_m) = \prod_{s=1}^{a} (g_s(x_1, ..., x_m).$$ Taking $x_m = 0$ we obtain $$f_{o}(x_{1},...,x_{m-1}) = \prod_{s=1}^{a} h_{s}(x_{1},...,x_{m-1}),$$ where $$h_s(x_1, ..., x_{m-1}) = g_s(x_1, ..., x_{m-1}, 0).$$ As $\beta \mid f$ over k and so over k we have $$\oint | \Pi h_{s}|$$ $$s=1$$ over k_q . But β is absolutely irreducible over k_q and so is irreducible over k_q . Hence over k_q , for some $s(1 \le s \le a)$. By conjugacy this is true for all $s(1 \le s \le a)$. Let $$h_s = \beta \ell_s$$ (s = 1, 2, ..., a) where $\ell_{s} = \ell_{s}(x_{1}, ..., x_{m-1}) \in k_{q}[x_{1}, ..., x_{m-1}]$. Then $$f_{0} = \prod_{s=1}^{a} h_{s} = \beta^{a} \ell,$$ where $\ell = \prod_{s} \ell_{s}$ is defined over k_{s} . This contradicts $$a \ge 2$$ as \int_0^2 / f_0 . COROLLARY 1. Suppose f is such that there exists a linear polynomial $\ell(x_1,\ldots,x_{m-1})\in k_q[x_1,\ldots,x_{m-1}]$ with the properties $$\ell / f_d$$, $\ell / f_r (r = 0, 1, ..., d-1)$ and ℓ^2 / f_o . Then f is absolutely irreducible in $k_q[x_1, ..., x_m]$. <u>Proof.</u> This follows immediately from theorem 1 as a linear polynomial is always absolutely irreducible. COROLLARY 2. If $f(x_1, \dots, x_{m-1}) \in k_q[x_1, \dots, x_{m-1}]$ has at least one absolutely irreducible factor $\beta(x_1, \dots, x_{m-1}) \in k_q[x_1, \dots, x_{m-1}]$ such that β^2 / f then $$f(x_1, \ldots, x_{m-1}) - x_m^d$$ is absolutely irreducible in $k_{q}[x_{1}, \dots, x_{m}]$. <u>Proof.</u> This is obviously a special case of theorem 1 and provides a generalization of lemma 3 of [1]. Note. Theorem 1 need not be confined to finite fields, it could have been stated for any field which is not algebraically closed, as the proof is quite general. We now prove theorem 2 which provides a generalization of corollary 3 of [1]. THEOREM 2. Let $f(x_1, \ldots, x_m)$ be a (not necessarily homogeneous) polynomial ϵ $k_q[x_1, \ldots, x_m]$ of degree $d(1 \le d < q)$ and let a ϵ k_q . Set $$f_a(x_1, ..., x_m) = f(x_1, ..., x_m) - a$$ and $$f_a^*(x_0,...,x_m) = x_0^d f_a(x_1/x_0,...,x_m/x_0).$$ Also for $r = 0, 1, \ldots, d$ let $$f_a^r(x_1, \dots, x_m) = \frac{1}{r!} \frac{\partial^r f_a^*}{\partial x_0^r}$$ $x_0 = 0$. (Note that f_a^r only depends on a when r = d). Suppose there exists an absolutely irreducible polynomial $p(x_1, \dots, x_m) \in k_q[x_1, \dots, x_m]$ with the properties $$\beta \mid f_a^r (r = 0, 1, ..., d-1) \text{ and } \beta^2 \mid f_a^o.$$ Then f is universal - that is, for any a ϵ k there are y_1, \ldots, y_m ϵ k such that $$f(y_1, \ldots, y_m) = a$$ provided q > D(m, d), where D depends only on m and d. Proof. We have $$f_a^*(x_0,...,x_m) = \sum_{r=0}^{d} f_a^r(x_1,...,x_m) x_0^r$$. As f_a^d is a constant β / f_a^d except when the constant is zero. In that case $(y_1, \ldots, y_m) = (0, \ldots, 0)$. Otherwise, by theorem 1, f_a^* is absolutely irreducible in f_a^* . Hence by a theorem of Lang and Weil (see for example [1], p.12) the number N of zeros of f_a^* in f_a^* satisfies $$|N - q^{m}| < A(m, d) q^{m - 1/2}$$ where A(m, d) depends only on m and d. Let N_1 denote the number of zeros of f_a in k with $x_0 = 0$. Then (see for example [1], p. 12) $$N_1 < B(m, d)q^{m-1}$$, where B(m, d) depends only on m and d. Now N_2 - the number of zeros of f in k with x = 1 - satisfies $$N_1 + (q-1)N_2 = N$$ so $$N_2 - q^{m-1} = \frac{1}{q-1} \{ (N-q^m) - N_1 + q^{m-1} \}.$$ Hence $$|N_2 - q^{m-1}| \le \frac{1}{q-1} \{ |N - q^m| + N_1 + q^{m-1} \}$$ $$< \frac{1}{q-1} \{ Aq^{m-1/2} + Bq^{m-1} + q^{m-1} \}$$ $$\le \frac{2}{q} \{ Aq^{m-1/2} + Bq^{m-1/2} + q^{m-1/2} \}$$ $$= Cq^{m-3/2}.$$ where C = 2(A + B + 1) depends only on m and d. Hence $$N_2 > q^{m-1} - Cq^{m-3/2}$$ and so $$N_2 > 0$$ $$q > D(m, d),$$ provided where $D = C^2$ depends only on m and d as required. ## REFERENCES - 1. B.J. Birch and D.J. Lewis, p-adic forms. J. Ind. Math. Soc., 23 (1959), pages 11-32. - 2. B.L. Van der Waerden, Modern Algebra. Fred. Ungar Publish. Co. N.Y., (1953), page 74. Carleton University, Ottawa