EISENSTEIN'S CRITERIA FOR ABSOLUTE IRREDUCIBILITY OVER A FINITE FIELD

Kenneth S. Williams

(received May 9, 1966)

Let p denote a prime and n a positive integer. Write $q = p^n$ and let k_q denote the Galois field with q elements. The unique factorization domain of polynomials in $m(\geq 2)$ indeterminates x_1, \ldots, x_m with coefficients in k_q is denoted by $k_q[x_1, \ldots, x_m]$. It is the purpose of this note to prove the following generalization of Eisenstein's irreducibility criteria and to point out some of its consequences.

THEOREM 1. Suppose $f(x_1,\ldots,x_m)$ is a (not necessarily homogeneous) polynomial $\in k_q[x_1,\ldots,x_m]$, such that, if f is regarded as a polynomial in some indeterminate $x_i (1 \leq i \leq m)$ of degree $d(1 \leq d < q)$ then there exists an absolutely irreducible polynomial $\hat{\beta}(x_1,\ldots,x_{i-1},x_{i+1},\ldots,x_m)$ with coefficients in k_q , with the properties

$$\beta / f_d$$
, β / f_r (r = 0, 1, ..., d-1) and β^2 / f_o ,

where f_r denotes the coefficient of x_i^r (r = 0, 1, ..., d). Then f is absolutely irreducible in $k_q[x_1, ..., x_m]$.

Proof. Without loss of generality we can take i = m. As $k = \begin{bmatrix} x_1, \dots, x_{m-1} \end{bmatrix}$ is a unique factorization domain and \dot{p} is an irreducible element in it, by Eisenstein's irreducibility criteria (see for example [2]), f is irreducible in $k = \begin{bmatrix} x_1, \dots, x_m \end{bmatrix}$. Suppose however that f is not absolutely irreducible in

Canad. Math. Bull. vol. 9, no. 5, 1966

 $k_q[x_1, ..., x_m]$. Then there is a normal extension k_q of k_q over which f splits into $a \ge 2$ conjugate factors, say,

$$f(x_1, ..., x_m) = \prod_{s=1}^{a} (g_s(x_1, ..., x_m).$$

Taking $x_m = 0$ we obtain

$$f_{o}(x_{1},...,x_{m-1}) = \prod_{s=1}^{a} h_{s}(x_{1},...,x_{m-1}),$$

where

$$h_s(x_1, ..., x_{m-1}) = g_s(x_1, ..., x_{m-1}, 0).$$

As $\beta \mid f$ over k and so over k we have

$$\oint | \Pi h_{s}|$$

$$s=1$$

over k_q . But β is absolutely irreducible over k_q and so is irreducible over k_q . Hence

over k_q , for some $s(1 \le s \le a)$. By conjugacy this is true for all $s(1 \le s \le a)$.

Let

$$h_s = \beta \ell_s$$
 (s = 1, 2, ..., a)

where $\ell_{s} = \ell_{s}(x_{1}, ..., x_{m-1}) \in k_{q}[x_{1}, ..., x_{m-1}]$. Then

$$f_{0} = \prod_{s=1}^{a} h_{s} = \beta^{a} \ell,$$

where $\ell = \prod_{s} \ell_{s}$ is defined over k_{s} . This contradicts

$$a \ge 2$$
 as \int_0^2 / f_0 .

COROLLARY 1. Suppose f is such that there exists a linear polynomial $\ell(x_1,\ldots,x_{m-1})\in k_q[x_1,\ldots,x_{m-1}]$ with the properties

$$\ell / f_d$$
, $\ell / f_r (r = 0, 1, ..., d-1)$ and ℓ^2 / f_o .

Then f is absolutely irreducible in $k_q[x_1, ..., x_m]$.

<u>Proof.</u> This follows immediately from theorem 1 as a linear polynomial is always absolutely irreducible.

COROLLARY 2. If $f(x_1, \dots, x_{m-1}) \in k_q[x_1, \dots, x_{m-1}]$ has at least one absolutely irreducible factor $\beta(x_1, \dots, x_{m-1}) \in k_q[x_1, \dots, x_{m-1}]$ such that β^2 / f then

$$f(x_1, \ldots, x_{m-1}) - x_m^d$$

is absolutely irreducible in $k_{q}[x_{1}, \dots, x_{m}]$.

<u>Proof.</u> This is obviously a special case of theorem 1 and provides a generalization of lemma 3 of [1].

Note. Theorem 1 need not be confined to finite fields, it could have been stated for any field which is not algebraically closed, as the proof is quite general.

We now prove theorem 2 which provides a generalization of corollary 3 of [1].

THEOREM 2. Let $f(x_1, \ldots, x_m)$ be a (not necessarily homogeneous) polynomial ϵ $k_q[x_1, \ldots, x_m]$ of degree $d(1 \le d < q)$ and let a ϵ k_q . Set

$$f_a(x_1, ..., x_m) = f(x_1, ..., x_m) - a$$

and

$$f_a^*(x_0,...,x_m) = x_0^d f_a(x_1/x_0,...,x_m/x_0).$$

Also for $r = 0, 1, \ldots, d$ let

$$f_a^r(x_1, \dots, x_m) = \frac{1}{r!} \frac{\partial^r f_a^*}{\partial x_0^r}$$
 $x_0 = 0$.

(Note that f_a^r only depends on a when r = d). Suppose there exists an absolutely irreducible polynomial $p(x_1, \dots, x_m) \in k_q[x_1, \dots, x_m]$ with the properties

$$\beta \mid f_a^r (r = 0, 1, ..., d-1) \text{ and } \beta^2 \mid f_a^o.$$

Then f is universal - that is, for any a ϵ k there are y_1, \ldots, y_m ϵ k such that

$$f(y_1, \ldots, y_m) = a$$

provided q > D(m, d), where D depends only on m and d.

Proof. We have

$$f_a^*(x_0,...,x_m) = \sum_{r=0}^{d} f_a^r(x_1,...,x_m) x_0^r$$
.

As f_a^d is a constant β / f_a^d except when the constant is zero. In that case $(y_1, \ldots, y_m) = (0, \ldots, 0)$. Otherwise, by theorem 1, f_a^* is absolutely irreducible in f_a^* . Hence by a theorem of Lang and Weil (see for example [1], p.12) the number N of zeros of f_a^* in f_a^* satisfies

$$|N - q^{m}| < A(m, d) q^{m - 1/2}$$

where A(m, d) depends only on m and d. Let N_1 denote the number of zeros of f_a in k with $x_0 = 0$. Then (see for

example [1], p. 12)

$$N_1 < B(m, d)q^{m-1}$$
,

where B(m, d) depends only on m and d. Now N_2 - the number of zeros of f in k with x = 1 - satisfies

$$N_1 + (q-1)N_2 = N$$

so

$$N_2 - q^{m-1} = \frac{1}{q-1} \{ (N-q^m) - N_1 + q^{m-1} \}.$$

Hence

$$|N_2 - q^{m-1}| \le \frac{1}{q-1} \{ |N - q^m| + N_1 + q^{m-1} \}$$

$$< \frac{1}{q-1} \{ Aq^{m-1/2} + Bq^{m-1} + q^{m-1} \}$$

$$\le \frac{2}{q} \{ Aq^{m-1/2} + Bq^{m-1/2} + q^{m-1/2} \}$$

$$= Cq^{m-3/2}.$$

where C = 2(A + B + 1) depends only on m and d.

Hence

$$N_2 > q^{m-1} - Cq^{m-3/2}$$

and so

$$N_2 > 0$$

$$q > D(m, d),$$

provided

where $D = C^2$ depends only on m and d as required.

REFERENCES

- 1. B.J. Birch and D.J. Lewis, p-adic forms. J. Ind. Math. Soc., 23 (1959), pages 11-32.
- 2. B.L. Van der Waerden, Modern Algebra. Fred. Ungar Publish. Co. N.Y., (1953), page 74.

Carleton University, Ottawa