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Abstract

We prove that the Heston volatility is Malliavin differentiable under the classical Novikov
condition and give an explicit expression for the derivative. This result guarantees the
applicability of Malliavin calculus in the framework of the Heston stochastic volatility
model. Furthermore, we derive conditions on the parameters which assure the existence
of the second Malliavin derivative of the Heston volatility. This allows us to apply recent
results of Alòs (2006) in order to derive approximate option pricing formulae in the
context of the Heston model. Numerical results are given.
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1. Introduction

In recent years Malliavin calculus has appeared as a major tool in both theoretical and
computational mathematical finance. This fact is documented by the large number of published
articles in this area. The assumptions on the possibly multidimensional diffusion process Xt ,
which determines the factors of the model, in general require as a minimal condition that the
coefficient functions β and σ in

dXt = β(Xt , t) dt + σ(Xt , t) dWt ,

where Wt denotes a standard Brownian motion, are continuously differentiable and satisfy
a global Lipschitz condition. These assumptions work fine with the standard Black–Scholes
model or the more general models based on linear stochastic differential equations (SDEs).
Problems occur, however, when one uses more advanced models, like the Heston stochastic
volatility model. In this model the stock price is given by the equation

dSt = St (b dt + √
vt dBt), (1.1)

where b denotes a real constant and Bt denotes a Brownian motion, but in contrast to the standard
Black–Scholes model, the volatility vt is itself a diffusion process satisfying the stochastic
differential equation

dvt = κ(θ − vt ) dt + ν
√

vt dWt, (1.2)
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Malliavin differentiability of the Heston volatility 145

where Wt denotes a possibly correlated second Brownian motion and κ, θ , and ν are positive
constants. Obviously, the coefficient functions of this model do not satisfy the standard
assumptions. The square root function is neither differentiable at 0 nor globally Lipschitz.
In this article we present a direct proof of the Malliavin differentiability of the Heston volatility
and its square root and give explicit expressions for their derivatives. Furthermore, we discuss
the existence of the second Malliavin derivative and derive conditions on the parameters κ , θ ,
and ν which guarantee its existence. Recently, in [1] Malliavin calculus techniques have been
applied in order to obtain an extension of the classical Hull and White formula (see [9]) for
the case of correlated stock and volatility. In order to apply the results to the Heston model,
Malliavin differentiability as well as certain integrability conditions of the Malliavin derivative
of the Heston volatility have to be verified. Our application includes an adaptation of the results
of [1] to the case of the Heston volatility, a derivation of a new approximative option pricing
formula for the Heston model, and a precise analysis of the accuracy of this approximation.

The structure of the article is as follows. In Section 2 we give an explicit approximating
sequence for the Heston volatility, while in Section 3 we provide some preliminaries on
Malliavin calculus. We study the Malliavin differentiability of the Heston volatility in Section 4
and present our two main theoretical results. In Section 5 we include our application followed
by numerical results in Section 6. The main conclusions are summarized in Section 7.

2. The Heston volatility model and an approximating sequence

As mentioned in the introduction, the Heston stochastic volatility model consists of a money
market account which we do not specify at the moment, a stock St , and the volatility process
vt with dynamics specified in (1.1) and (1.2), where it is assumed that κ, θ , and ν are positive
constants; see [8]. In the following we consider one fixed probability space (�, G, P) on
which there is defined a Brownian motion (Wt ) that is filtered by the augmented and completed
Brownian filtration which we denote with (Gt ). We also fix an interval [0, T ]. A standard
assumption when using the Heston model is that 2κθ ≥ ν2. This is often called Novikov’s
condition. Given that v0 > 0, this condition guarantees that the volatility process is always
positive, i.e. P({vt > 0 for all t > 0}) = 1. We assume that v0 > 0 and that Novikov’s
condition holds. It is then possible to consider the square root process σt := √

vt . It follows
from the Itô formula that this process satisfies

dσt =
((

κθ

2
− ν2

8

)
1

σt

− κ

2
σt

)
dt + ν

2
dWt. (2.1)

We note that Novikov’s condition implies, in particular, that the factor (κθ/2−ν2/8) appearing
in the drift term of σt is positive. This will play a significant role later. It is not a priori
clear that the SDE (2.1) admits a unique strong solution, but the Yamada–Watanabe lemma
[11, Chapter 5, Proposition 2.18] obviously implies uniqueness of the solution of the SDE
(1.2). For any solution σt of the SDE (2.1), by applying the Itô formula we find that σ 2

t is a
solution of the SDE (1.2). As the latter one is unique, we conclude uniqueness of the solution
for the SDE (2.1) up to a sign. However, if σt solves (2.1), it is obvious that −σt does not and,
therefore, we find uniqueness of the solution of the SDE (2.1). In order to show in Section 4
that σt is Malliavin differentiable we will now define an approximating sequence. Let ε > 0,
and let �ε(x) be a continuously differentiable function satisfying �ε(x) = 1 if x ≥ 2ε and
�ε(x) = 0 if x < ε, while �ε(x) ≤ 1 for all x ∈ R. We note that in this case the derivative
�′

ε(x) = 0 if x < ε or x ≥ 2ε. Furthermore, we define the function 	ε(x) = �ε(x)(1/x)
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with 	ε(0) = 0. The function 	ε(x) is bounded and continuously differentiable satisfying
	′

ε(x) = �′
ε(x)(1/x)−�ε(x)(1/x2). In particular, 	′

ε(x) = −1/x2 if x ≥ 2ε and 	′
ε(x) = 0

if x < ε. Let us now define our approximations σε
t as the solutions of the SDEs

dσε
t =

((
κθ

2
− ν2

8

)
	ε(σ

ε
t ) − κ

2
σε

t

)
dt + ν

2
dWt, (2.2)

with σε
0 = σ0 for all ε > 0.

Proposition 2.1. For each t ∈ [0, T ], the sequence σε
t converges to σt in L2(�).

Proof. We use the dominated convergence theorem in order to obtain this result. Let us first
prove that σε

t converges to σt pointwise. This follows from a standard localization argument.
For each ε > 0, define a stopping time τε via τε(ω) := inf{t | σt (ω) ≤ ε}. Letting ε go to 0,
the sequence of (τε) defines an increasing sequence of stopping times, and it follows from the
strict positivity of σt that limε→0 τε = ∞ almost surely (a.s.). Denoting by σ τε the process
obtained from σ by stopping at τε, it then follows, from the choice of the function 	ε(x), (2.1),
and (2.2), that σ

τ2ε
t = σε

t for all t ≤ τ ε. Now, for fixed t ∈ [0, T ], letting ε go to 0, we obtain
limε→0 σε

t = limε→0 σ
τ2ε
t = σt a.s. Let us now prove that, for each t ∈ [0, T ], σε

t converges to
σt in L2(�). For this, let us consider the Ornstein–Uhlenbeck process ut satisfying u0 = σ0 and

dut = −κ

2
ut dt + ν

2
dWt.

We show that ut ≤ σε
t ≤ σt for each t ∈ [0, T ] a.s. The first inequality follows directly from the

Yamada–Watanabe comparison lemma. To prove the second inequality, this lemma cannot be
applied directly as the drift term in the SDE for σt is not continuous. Since we know, however,
that under our assumptions on the coefficients σt > 0 a.s., the second inequality would indeed
follow from (σ ε

t )2 ≤ σ 2
t . In fact, applying Itô’s formula to vε

t = (σ ε
t )2 gives

dvε
t =

((
κθ − ν2

4

)√
vε
t 	ε(

√
vε
t ) − κvε

t + ν2

4

)
dt + ν

√
vε
t dWt,

while vt = σ 2
t satisfies (1.2). For both vε

t and vt , the condition on the diffusion coefficient
in [11, Chapter 5, Proposition 2.18] can be verified easily by choosing the function h(x) = ν

√
x.

Obviously, the drift term in (1.2) is globally Lipschitz. In addition, it is not hard to verify that
the drift term corresponding to vε

t is globally Lipschitz. Therefore, we can conclude the second
inequality from (

κθ − ν2

4

)√
x	ε(

√
x) − κx + ν2

4
≤ κ(θ − x),

⇐⇒ κθ(
√

x	ε(
√

x) − 1) ≤ ν2

4
(
√

x	ε(
√

x) − 1),

⇐⇒ κθ ≥ ν2

4
,

the latter being true owing to Novikov’s condition. For the last equivalence, we used the
inequality 0 ≤ √

x	ε(
√

x) ≤ 1. Now it follows from ut ≤ σε
t ≤ σt that |σε

t | ≤ |ut | + |σt |.
Since, obviously, ut and σt belong to L2(�), the dominated convergence theorem implies the
desired convergence.
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3. A short review of Malliavin calculus

Let us review some of the basic features of Malliavin calculus. A standard reference for
this is [12]. Let us consider the set S of cylindrical functionals F : � → R, given by F =
f (Wt1 , . . . , Wtl ), where f ∈ C∞

b (Rl ) is a smooth function with bounded derivatives of all
orders and Wt denotes a Brownian motion on �. We define the Malliavin derivative operator
on S via

DsF :=
l∑

i=1

∂f

∂xi

(Wt1(ω), . . . , Wtl (ω)) 1[0,ti ](s).

This operator and the iterated operators Dn are closable and unbounded from Lp(�) into
Lp(�×[0, T ]n) for all n ≥ 1. Their respective domains are denoted by D

n,p and are obtained
as the closure of S with respect to the norms defined by

‖F‖p
n,p = ‖F‖p

Lp(�) +
n∑

k=1

‖DkF‖p

Lp(�×[0,T ]k).

The adjoint of the Malliavin derivative operator D : D
1,2 → L2(� × [0, T ]) is called the

Skorohod integral and denoted by δ. This operator has the property that its domain contains
the class L2

a(�×[0, T ]) of square integrable adapted stochastic processes and its restriction to
this class coincides with the Itô integral. We will make use of the notation δ(u) = ∫ T

0 ut dWt ,
and recall that L

n,2 := L2([0, T ], D
n,2) is included in the domain of δ for all n ≥ 1. For more

details, we refer the reader to [12, Chapter 1]. Later, we will use the following anticipative Itô
formula; see [2].

Proposition 3.1. Let us consider the processes Xt = X0 + ∫ t

0 us dWs + ∫ t

0 vs ds, where X0 is
F0-measurable and u, v ∈ L2

a([0, T ] × �). Furthermore, consider a process Zt = ∫ T

t
θs ds

for some θ ∈ L
1,2. Let F : R

3 → R be a twice continuously differentiable function for which
there exists a positive constant C such that, for all t ∈ [0, T ], F and its derivatives evaluated
in (t, Xt , Zt ) are bounded by C. Then it follows that

F(t, Xt , Zt ) = F(0, X0, Z0) +
∫ t

0

∂F

∂s
(s, Xs, Zs) ds +

∫ t

0

∂F

∂x
(s, Xs, Zs) dXs

+
∫ t

0

∂F

∂z
(s, Xs, Zs) dZs +

∫ t

0

∂2F

∂x∂z
(s, Xs, Zs)

(∫ T

s

Dsθr dr

)
us ds

+ 1

2

∫ t

0

∂2F

∂x2 (s, Xs, Zs)u
2
s ds.

4. Malliavin differentiability of the Heston volatility

In this section we will show that both the Heston volatility, vt , as well as its square root σt

belong to D
1,2. We will also derive conditions under which the second Malliavin derivative of

the Heston volatility exists.

Lemma 4.1. We have σε
t ∈ D

1,2 and, for r < t ,

Drσ
ε
t = ν

2
exp

(∫ t

r

(
−κ

2
+

(
κθ

2
− ν2

8

)
	′

ε(σ
ε
s )

)
ds

)
.
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Proof. Follows directly from [6, Theorem 2.1].

We are now ready to prove the following result.

Proposition 4.1. Assuming that 2κθ ≥ ν2, we have σ ∈ D
1,2 and, for r < t ,

Drσt = ν

2
exp

(∫ t

r

(
−κ

2
−

(
κθ

2
− ν2

8

)
1

σ 2
t

)
ds

)
.

Proof. We know from Proposition 2.1 that, for each t ∈ [0, T ], the sequence σε
t converges

to σt in L2(�). Since this convergence is also pointwise, we conclude, by using the properties
of the function 	ε(x), that

Drσ
ε
t = ν

2
exp

(∫ t

r

(
−κ

2
−

(
κθ

2
− ν2

8

)
	′

ε(σ
ε
t )

)
ds

)

converges pointwise to

G := ν

2
exp

(∫ t

r

(
−κ

2
−

(
κθ

2
− ν2

8

)
1

σ 2
t

)
ds

)
.

It follows from Novikov’s condition that the exponent in Drσ
ε
t is negative for all choices of ε

and, therefore, |Drσ
ε
t | ≤ ν/2 for all ε. From the bounded convergence theorem we conclude

that Drσ
ε
t converges to G in L2(�). Finally, Lemma 1.2.3 of [12] implies that σt ∈ D

1,2

and Drσt = G.

Corollary 4.1. We have |Drσt | ≤ (ν/2) exp(−(κ/2)(t − r)) and σt ∈ L
1,2.

Proof. Follows directly from Proposition 4.1.

Corollary 4.2. We have vt ∈ L
1,2 and, for r < t ,

Drvt = ν exp

(∫ t

r

(
−κ

2
−

(
κθ

2
− ν2

8

)
1

vt

)
ds

)√
vt .

Proof. For fixed t ∈ [0, T ], we have vt ∈ L2(�) and

ν exp

(∫ t

r

(
−κ

2
−

(
κθ

2
− ν2

8

)
1

vt

)
ds

)√
vt ∈ L2(�)

follows again from the boundedness of the exponential. It then follows from Exercise 1.2.13
of [12] that vt ∈ D

1,2. As in Corollary 4.1, we conclude, from the explicit expression, that vt ∈
L

1,2.

Let us now discuss the existence of the second Malliavin derivative of the Heston volatility.
As indicated before, in order to guarantee the existence of the second Malliavin derivative we
have to strengthen the conditions on the coefficients slightly. Lemma 4.2, below, will be used
in the proofs of Proposition 4.2 and Proposition 5.2, below.

Lemma 4.2. Let n ≥ 2 and δ := 4κθ/ν2 > n, and letting L(t) = (ν2/4κ)(1 − e−kt ) there
exists a positive constant C(n) such that, for all t ∈ [0, T ],

E

[
1

σn
t

]
≤ C(n)

L(t)

(
ekt

σ0

)n/2−1

.

https://doi.org/10.1239/aap/1208358890 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358890


Malliavin differentiability of the Heston volatility 149

Proof. From the proof of Lemma A.1 of [5] we deduce that

E

[
1

σn
t

]
= 1

2n/2�(n/2)L(t)n/2

∫ 1

0
un/2−1(1 − u)2kθ/ν2−n/2−1 exp

(
−σ0e−ktu

2L(t)

)
du

= 1

2n/2�(n/2)L(t)

∫ 1

0
un/2−1(1 − u)2kθ/ν2−n/2−1

(
ekt

σ0u

)n/2−1

×
(

σ0e−ktu

L(t)

)n/2−1

exp

(
−σ0e−ktu

2L(t)

)
du.

Then, using the fact that yn/2−1e−y ≤ C(n) for some positive constant C(n) and any y > 0,
we can write

E

[
1

σn
t

]
≤ C(n)

2n/2�(n/2)L(t)

(
ekt

σ0

)n/2−1 ∫ 1

0
(1 − u)2kθ/ν2−n/2−1 du

≤ C(n)

L(t)

(
ekt

σ0

)n/2−1

,

which completes the proof.

Proposition 4.2. Assume that 4κθ > 3ν2, then σt ∈ D
2,1 with

DτDrσt = ν2

2

(
κθ

2
− ν2

8

)
exp

(∫ t

τ∨r

(
−k

2
−

(
kθ

2
− ν2

8

)
1

σ 2
s

)
ds

)

×
∫ t

τ∨r

exp

(∫ s

τ∨r

(
−k

2
−

(
kθ

2
− ν2

8

)
1

σ 2
u

)
du

)
1

σ 3
s

ds

for τ < t and 0 otherwise. Furthermore, if 2κθ > 3ν2, we have σt ∈ L
2,2 and

E |DτDrσt |2 ≤ C(n, σ0, T )ν2(t − r)(ln t − ln r),

where C(n, σ0, T ) is a constant depending on n, σ0, and T but not on t , τ , or ν.

Proof. Without loss of generality, we assume that τ > r and formally obtain

DτDrσt = Dτ

ν

2
exp

(∫ t

r

(
−κ

2
−

(
κθ

2
− ν2

8

)
1

σ 2
t

)
ds

)

= ν

2
exp

(∫ t

r

(
−κ

2
−

(
κθ

2
− ν2

8

)
1

σ 2
t

)
ds

) ∫ t

τ

(
−

(
κθ

2
− ν2

8

))
(−2)

1

σ 3
s

Dτσs ds

= ν2

2

(
κθ

2
− ν2

8

)
exp

(∫ t

r

(
−k

2
−

(
kθ

2
− ν2

8

)
1

σ 2
s

)
ds

)

×
∫ t

τ

exp

(∫ s

τ

(
−k

2
−

(
kθ

2
− ν2

8

)
1

σ 2
u

)
du

)
1

σ 3
s

ds.

Here we used the facts that Dτσs = 0 for τ > r and s ∈ [r, τ ). We will show that if 4κθ > 3ν2,
this expression is contained in L1(�). This guarantees the existence of the second Malliavin
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derivative and, furthermore, guarantees that the expression just derived is in fact the second
Malliavin derivative. In order to do this, note that, for r < τ and s < t ,

exp

(∫ t

r

(
−κ

2
−

(
κθ

2
− ν2

8

)
1

σ 2
s

)
ds

)
≤ exp

(∫ s

τ

(
−κ

2
−

(
κθ

2
− ν2

8

)
1

σ 2
u

)
du

)
,

already follows from 2κθ ≥ ν2. This implies that

|DτDrσt | ≤ C

∫ t

τ

exp

(∫ s

τ

(
−κ − 2

(
κθ

2
− ν2

8

)
1

σ 2
u

)
du

)
1

σ 3
s

ds

≤ C

∫ t

τ

exp

(
−2

(
κθ

2
− ν2

8

) ∫ s

τ

1

σ 2
u

du

)
1

σ 3
s

ds,

where

C = ν2

2

(
κθ

2
− ν2

8

)
≤ ν2 κθ

4
.

As in the proof of Proposition 4.1 and Corollary 4.1, it similarly follows that∣∣∣∣exp

(
−2

(
κθ

2
− ν2

8

) ∫ s

τ

1

σ 2
u

du

)∣∣∣∣ ≤ 1,

and, therefore, the first statement of Proposition 4.2 easily follows from Lemma 4.2 with n = 3.
The second statement can now be derived as follows. Applying the Cauchy–Schwarz inequality,
we obtain

|DτDrσt |2 ≤ ν2 κθ

4
(t − τ)

∫ t

τ

1

σ 6
s

ds,

and, therefore, using Lemma 4.2 with n = 6, taking into account the fact that L(t) ≥ κte−κt ,
we obtain

E |DτDrσt |2 ≤ (t − r)

∫ t

τ

E

[
1

σ 6
s

]
ds

≤ C(n)
θν2

4σ 2
0

(t − r)

∫ t

τ

eks

s
(eks)2 ds

≤ C(n, σ0, T )ν2(t − r)(ln t − ln r),

where C(n, σ0, T ) = C(n)(θ/4σ 2
0 )eκT .

5. An approximate option pricing formula for the Heston model

Let us consider the Heston stochastic volatility model with correlation ρ, which consists of
a stock, a money market account with deterministic interest rate r , and the volatility process vt

satisfying (1.1) and (1.2), where we assume that dBt dWt = ρ dt with ρ ∈ (−1, 1). It is well
known that there exists a two-dimensional Brownian motion (Zt , Wt )


 on a filtered probability
space (�, (Ft ), P) satisfying the usual conditions that Bt = ρWt + √

1 − ρ2Zt . It is helpful
in the following to think of the dynamic described by (1.1) and (1.2) as driven by (Zt , Wt )



rather than by (Bt , Wt )


. We also assume that the dynamic is satisfied under the risk neutral
measure chosen by the market and that this risk neutral measure is given by P. This implies
that b = r . In the following we work with the logarithmic price Xt = ln(St ) rather than with

https://doi.org/10.1239/aap/1208358890 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358890


Malliavin differentiability of the Heston volatility 151

the actual price. The price of a contingent claim h(XT ) at time t can then be computed via
the formula Vt = e−r(T −t) E[h(XT ) | Ft ]. In the following we will consider the call payoff
function h(x) = (ex − K)+ for some fixed K , and denote with BS(t, x, σ ) the price at time
t of the corresponding contingent claim in the standard Black–Scholes model with constant
volatility σ , given that the log price at time t is x. Furthermore, we denote by

ϑt :=
√

1

T − t

∫ T

t

σ 2
s ds

the average Heston future volatility starting from time t , and denote by D the Malliavin
derivative operator with respect to the Brownian motion W . Proposition 5.1, below, is in
line with Theorem 3 of [1] and Theorem 3 of [3].

Proposition 5.1. Consider the Heston model, and assume that 2κθ ≥ ν2. Then

Vt = E[BS(t, Xt , ϑt ) | Ft ] + ρ

2
E

[∫ T

t

e−r(s−t)H(s, Xs, ϑs)	s ds

∣∣∣∣ Ft

]
, (5.1)

where

H(s, x, σ ) :=
(

∂3

∂x3 − ∂2

∂x2

)
BS(s, x, σ ) and 	s :=

(∫ T

s

Dsσ
2
r dr

)
σs.

Proof. Follows from Proposition 4.1 in connection with Theorem 3 of [3].

It follows from the classical Hull and White formula (see [9]) that E[BS(t, Xt , ϑt ) | Ft ]
is the price of the contingent claim in the Heston model without correlation. Proposition 5.1
therefore extends the classical Hull and White formula to the Heston model with correlation,
and gives interesting insight into how the correlation effects option prices. It states that this
correlation effect is explicitly given by the second summand in (5.1). This fact is very useful in
order to study price sensitivities with respect to ρ in the Heston stochastic volatility model or for
the purpose of calibration of the model. In the following we propose various approximations
for the correlation effect, which are computationally more accessible, and derive bounds for
the error of these approximations. For this, we consider maturities T − t < 1 and assume that
σ 2

0 < 1. From a financial point of view, both assumptions are reasonable, as market parameters
are all denoted on a yearly scale and maturity times of options are mostly less than one year,
while annual volatility is usually in the range of less than 10%.

Lemma 5.1. Assume that 2κθ ≥ ν2, then

E

[(∫ T

t

σ 2
s ds

)−1/2 ∣∣∣∣ Ft

]
≤ C(σt )

(T − t)
,

where C(σt ) is a constant depending on the current level of volatility but not on t explicitly.

Proof. Since we are in a Markovian framework, without loss of generality, we can assume
that t = 0 and we can replace all the conditional expectations by their unconditional counter-
parts. Using the identity

1

xα
= 1

�(α)

∫ ∞

0
uα−1e−ux du,
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while choosing x = ∫ T

0 σ 2
s ds and α = 1

2 , we conclude that

E

[(∫ T

0
σ 2

s ds

)−1/2]
= 1

�(1/2)

∫ ∞

0
u−1/2 E

[
exp

(
−u

(∫ T

0
σ 2

s ds

))]
du. (5.2)

Since the Heston volatility is in fact a time transformed and scaled squared Bessel process, we
can write

E

[
exp

(
−u

(∫ T

0
σ 2

s ds

))]
≤ E

[
exp

(
−u

(∫ T

0
e−κsη

(
ν2

4κ
(eκs − 1)

)
ds

))]

≤ E

[
exp

(
−u

(
4

ν2

∫ (ν2/4κ)(eκT −1)

0
η(m) dm

))]
,

where η is a squared Bessel process of dimension δ = 4κθ/ν2.
It follows from the scaling property of Bessel processes, similarly as in [4, p. 377] or

Proposition 5.5.3 of [10], that, for every constant b and for every t > 0,

E

[
exp

(
−b2

2

(∫ t

0
η(α) dα

))]
= (cosh(bt))−δ/2 exp

(
−bx

2
tanh(bt)

)
.

By substitution, it follows that

E

[
exp

(
−u

(
4

ν2

∫ (ν2/4κ)(eκT −1)

0
η(α) dα

))]

≤
(

cosh

(
ν

2κ
(eκT − 1)

√
2u

))−δ/2

exp

(
−

√
2u

ν
σ 2

0 tanh

(
ν

2κ
(eκT − 1)

√
2u

))
.

Using the latter together with (5.2), we conclude that

E

[(∫ T

0
σ 2

s ds

)−1/2]
≤ 1

�(1/2)

∫ ∞

0
u−1/2

(
cosh

(
ν

2κ
(eκT − 1)

√
2u

))−δ/2

× exp

(
−

√
2u

ν
σ 2

0 tanh

(
ν

2κ
(eκT − 1)

√
2u

))
du.

Now by substitution of m̃ := (ν/2κ)(eκT − 1)
√

2u we obtain

E

[(∫ T

0
σ 2

s ds

)−1/2]
≤ C1

eκT − 1

∫ ∞

0
(cosh(m̃))−δ/2 exp

(
− m̃

√
2κ

ν2(eκT − 1)
σ 2

0 tanh(m̃)

)
dm̃,

where C1 := 2
√

2κ/ν is a constant. It is not difficult to see that, since δ ≥ 2, the integral on
the right-hand side is finite and the last inequality can be written as

E

[(∫ T

0
σ 2

s ds

)−1/2]
≤ C1I (σ0)

eκT − 1
,

where I (σ0) denotes the value of the integral. Now we can use the fact that, for positive κ , we
have (eκT − 1) ≥ κT and obtain

E

[(∫ T

0
σ 2

s ds

)−1/2]
≤ C1I (σ0)

eκT − 1
≤ C1I (σ0)

κT
= C(σ0)

T
,

where C(σ0) = C1I (σ0)/κ .
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Proposition 5.2. Consider the Heston model, and assume that 2κθ ≥ 3ν2. For t ∈ [0, T ],
there exists a constant C(σt ) which does not depend on t , ν, and ρ explicitly, such that

∣∣∣∣Vt − E

[
BS(t, Xt ; ϑt ) + ρ

2
H(t, Xt , ϑt )

(∫ T

t

	s ds

) ∣∣∣∣ Ft

]∣∣∣∣ ≤ C(σt )ν
2ρ2(T − t).

Proof. From Proposition 5.1, it follows that

∣∣∣∣Vt − E

[
BS(t, Xt , ϑt ) + ρ

2
H(t, Xt , ϑt )

(∫ T

t

	s ds

) ∣∣∣∣ Ft

]∣∣∣∣
=

∣∣∣∣E
[
ρ

2

∫ T

t

e−r(s−t)H(s, Xs, ϑs)	s ds − ρ

2
H(t, Xt , ϑt )

(∫ T

t

	s ds

) ∣∣∣∣ Ft

]∣∣∣∣.
Let us now consider the process (ρ/2)e−rtH(t, Xt , ϑt )(

∫ T

t
	u du). Obviously, this process

vanishes at t = T and it follows from Proposition 3.1, as in the proof of Proposition 7 of [1],
that

E

[
ρ

2

∫ T

t

e−r(s−t)H(s, Xs, ϑs)	s ds − ρ

2
H(t, Xt , ϑt )

(∫ T

t

	u du

) ∣∣∣∣ Ft

]

= E

[
ρ2

8

∫ T

t

e−r(s−t)G(s, Xs, ϑs)

(∫ T

s

	r dr

)
	s ds

+ ρ2

4

∫ T

t

e−r(s−t) ∂H

∂x
(s, Xs, ϑs)

(∫ T

s

Ds	r dr

)
σs ds

∣∣∣∣ Ft

]
=: A1 + A2,

where

G(s, Xs, ϑs) =
(

∂3

∂x3 − ∂2

∂x2

)
H(s, Xs, ϑs),

and A1 and A2 respectively correspond to the first and second summands above. Let Gt denote
the σ -algebra generated by the Brownian motion, Wt , which drives the Heston volatility. Now
the proof will be decomposed into two steps.

Step 1. Let us study the A1 term. From Lemma 2 of [3] we conclude that, for 0 ≤ t ≤ s ≤ T ,
we have

∣∣∣∣E
[

∂n

∂xn

(
∂2

∂x2 − ∂

∂x

)
BS(s, Xs, ϑs)

∣∣∣∣ Gt

]∣∣∣∣ ≤ C(σt )ρ

(∫ T

t

σ 2
s ds

)−(n+1)/2

. (5.3)

Here C(σt ) is a constant whose value depends on the current value of σt . Hölder’s inequality
and the fact that Drσ

2
θ = 2σθDrσθ allow us to write

∫ T

t

(∫ T

s

	r dr

)
	s ds ≤

(∫ T

t

σ 2
s ds

)2(∫ T

t

(∫ T

r

(Drσθ )
2 dθ

)
dr

)
. (5.4)
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Then, (5.3) and (5.4) yield

A1 ≤ C
ρ2

8
E

[((∫ T

t

σ 2
s ds

)−5/2

+
(∫ T

t

σ 2
s ds

)−2

+
(∫ T

t

σ 2
s ds

)−3/2) ∫ T

t

(∫ T

s

	r dr

)
	s ds

∣∣∣∣ Ft

]

≤ C
ρ2

8
E

[(
1 +

(∫ T

t

σ 2
s ds

)−1/2

+
(∫ T

t

σ 2
s ds

)1/2)

×
(∫ T

t

(∫ T

r

(Drσθ )
2 dθ

)
dr

) ∣∣∣∣ Ft

]
,

and now, using the fact that (Drσθ )
2 is bounded by ν2, it follows that

A1 ≤ Cν2ρ2(T − t)2 E

[(
1 +

(∫ T

t

σ 2
s ds

)−1/2

+
(∫ T

t

σ 2
s ds

)1/2) ∣∣∣∣ Ft

]
.

Lemma 5.1 and the fact that E[∫ T

t
σ 2

s ds]1/2 is finite, as well as assuming that T − t < 1, now
imply that A1 ≤ C(σt )ν

2ρ2(T − t).
Step 2. Let us study the A2 term. Again using Hölder’s inequality, we can write

∫ T

t

(∫ T

s

Ds	r dr

)
σs ds ≤

(∫ T

t

σ 2
s ds

) ∫ T

t

∫ T

r

(Drσα)2 dα dr

+
(∫ T

t

σ 2
s ds

)3/2(∫ T

t

(∫ T

s

(∫ T

r

(DsDrσα)2 dα

)
dr

)
ds

)1/2

.

(5.5)

Then, using (5.3) and (5.5) in a similar way as in step 1, we obtain

A2 ≤ ρ2

4
E

[(
1 +

(∫ T

t

σ 2
s ds

)−1/2)(∫ T

t

∫ T

r

(Drσα)2 dα dr

) ∣∣∣∣ Ft

]

+ C(σt )
ρ2

4
E

[∫ T

t

(∫ T

s

(∫ T

r

(DsDrσα)2 dα

)
dr

)
ds

∣∣∣∣ Ft

]
.

Now Proposition 4.1, Proposition 4.2, and our assumption that T − t < 1 enable us to deduce
that A2 ≤ C(σt )ν

2ρ2(T − t).

Remark 5.1. Let us briefly illustrate how the result in Proposition 5.2 should be interpreted
in a dynamic framework. As one can obviously see, the approximation is getting better with a
quadratic rate, as the factor ν decreases. The situation is similar for ρ. As the constant C(σt ),
however, depends implicitly on t through σt , we cannot say that, as time to maturity decreases,
our approximation is getting better in general. In fact, a large change in the volatility during a
trading day may lead to the result that our approximation tomorrow is in fact worse than today.
This effect, however, is entirely caused by the random volatility. Putting aside this effect and
fixing the volatility artificially in time, the accuracy of the approximation then increases at least
linearly with decreasing time to maturity.

https://doi.org/10.1239/aap/1208358890 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1208358890


Malliavin differentiability of the Heston volatility 155

Let us now consider the following approximation for the correlation effect:

ρ

2
H(t, Xt , ϑ

∗
t ) E

[∫ T

t

	s ds

∣∣∣∣ Ft

]
, (5.6)

where

ϑ∗
t =

√
1

T − t

∫ T

t

E[σ 2
s | Ft ] ds.

Let us consider the following as an approximation of the option price:

BS(t, Xt ; ϑ∗
t ) + ρ

2
H(t, Xt , ϑ

∗
t ) E

[(∫ T

t

	s ds

) ∣∣∣∣ Ft

]
. (5.7)

Later, we will need Lemma 5.2, below, which is related to (5.3) but, for the specific case
considered here, gives a slightly better approximation.

Lemma 5.2. Let BS(t, x, σ ) denote the Black–Scholes price in the log-stock price x. Then
there exists a constant such that, for all times to maturity T − t < 1, we have∣∣∣∣

(
∂2

∂x2 − ∂

∂x

)2

BS(t, x, σ )

∣∣∣∣ ≤ Cσ−2(T − t)−3/2.

Proof. Applying the chain rule of differential calculus with S = ex , we obtain

∂

∂x
BS(t, x, σ ) = N(d1)e

x,

∂2

∂x2 BS(t, x, σ ) =
(

∂

∂x
(N(d1)) + N(d1)

)
ex =

(
N ′(d1)

σ
√

T − t
+ N(d1)

)
ex,

where d1 denotes the classical Black–Scholes parameter

d1 = x − ln K + (r + σ 2/2)(T − t)

σ
√

T − t

and N(·) is the standard normal distribution function. Therefore,(
∂2

∂x2 − ∂

∂x

)
BS(t, x, σ ) = N ′(d1)

σ
√

T − t
ex.

Furthermore, differentiation now shows that(
∂2

∂x2 − ∂

∂x

)2

BS(t, x, σ ) =
(

∂2

∂x2 − ∂

∂x

)(
N ′(d1)

σ
√

T − t
ex

)

=
(

N ′′′(d1)

σ 2(T − t)3/2 + N ′′(d1)

σ (T − t)

)
ex.

The result then follows, since all the derivatives of the normal distribution function N(x) are
bounded and, furthermore, (T − t)3/2 dominates (T − t) for T − t < 1.

Proposition 5.3, below, represents an analytic result on the quality of approximation (5.7).
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Proposition 5.3. Assume that 2κθ ≥ 3ν2, and define ϑ∗
t as before for t ∈ [0, T ]. Then there

exists a constant C(σt ) which does not depend explicitly on t and ν such that∣∣∣∣Vt − BS(t, Xt ; ϑ∗
t ) − ρ

2
H(t, Xt , ϑ

∗
t ) E

[(∫ T

t

	s ds

) ∣∣∣∣ Ft

]∣∣∣∣ ≤ C(σt )ν
2(T − t).

Proof. We can write∣∣∣∣Vt − BS(t, Xt ; ϑ∗
t ) − ρ

2
H(t, Xt , ϑ

∗
t ) E

[(∫ T

t

	s ds

) ∣∣∣∣ Ft

]∣∣∣∣
≤

∣∣∣∣Vt − E

[
BS(t, Xt ; ϑt ) + ρ

2
H(t, Xt , ϑt )

(∫ T

t

	s ds

) ∣∣∣∣ Ft

]∣∣∣∣
+ | E[BS(t, Xt ; ϑt ) | Ft ] − BS(t, Xt ; ϑ∗

t )|

+ ρ

2

∣∣∣∣E
[
(H(t, Xt , ϑt ) − H(t, Xt , ϑ

∗
t ))

(∫ T

t

	s ds

) ∣∣∣∣ Ft

]∣∣∣∣
= B1 + B2 + B3,

where B1, B2, and B3 respectively correspond to the first, second, and third summands above.
We conclude from Proposition 5.2 that B1 ≤ C(σt )ν

2ρ2(T −t), and we are left with expressions
B2 and B3. Let us study expression B2 first. Note that

ϑ∗
t =

√
1

T − t

(
Mt −

∫ t

0
σ 2

s ds

)
, ϑt =

√
1

T − t

(
MT −

∫ t

0
σ 2

s ds

)
,

where Mt := ∫ T

0 E[σ 2
s | Ft ] ds. It is not difficult to verify the following:

Mt =
∫ T

t

(σ 2
t e−κ(s−t) + θ(1 − e−κ(s−t))) ds +

∫ t

0
σ 2

s ds, (5.8)

dMt =
∫ T

t

(κσ 2
t e−κ(s−t) dt + e−κ(s−t) dσ 2

t − κθe−κ(s−t)) ds = νσt

(∫ T

t

e−κ(s−t) ds

)
dWt.

Using the classical Itô formula and the relationship between the Greeks,

∂BS

∂σ
(s, x, σ )

1

σ(T − s)
=

(
∂2

∂x2 − ∂

∂x

)
BS(s, x, σ ), (5.9)

we deduce that

B2 = E[BS(t, Xt ; ϑt ) | Ft ] − BS(t, Xt ; ϑ∗
t )

= E

[
BS

(
t, Xt ;

√
1

T − t

(
MT −

∫ t

0
σ 2

s ds

)) ∣∣∣∣ Ft

]

− E

[
BS

(
t, Xt ;

√
1

T − t

(
Mt −

∫ t

0
σ 2

s ds

)) ∣∣∣∣ Ft

]

= ν2

8
E

[∫ T

t

(
∂2

∂x2 − ∂

∂x

)2

BS

(
t, Xt ;

√
1

T − t

(
Mu −

∫ t

0
σ 2

s ds

))

×
(∫ T

u

e−k(s−u) ds

)2

σ 2
u du

∣∣∣∣ Ft

]
.
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We can now conclude from Lemma 5.2 that there exists a constant C > 0 such that

B2 ≤ ν2 E

[∫ T

t

C(T − t)−3/2
(

1

T − t

(
Mu −

∫ t

0
σ 2

s ds

))−1(∫ T

u

e−κ(s−u) ds

)2

σ 2
u du

∣∣∣∣ Ft

]

= Cν2(T − t)−1/2 E

[∫ T

t

(∫ T

t

E[σ 2
s | Fu] ds

)−1(∫ T

u

e−κ(s−u) ds

)2

σ 2
u du

∣∣∣∣ Ft

]
.

Now, using the fact that t < u, the definition of Mt , and (5.8), we obtain

(∫ T

t

E[σ 2
s | Fu] ds

)−1

≤
(∫ T

u

E[σ 2
s | Fu] ds

)−1

=
(∫ T

u

(σ 2
u e−κ(s−u) + θ(1 − e−κ(s−u))) ds

)−1

≤ σ−2
u

(∫ T

u

e−κ(s−u) ds

)−1

as θ(1 − e−κ(s−u)) ≥ 0 for all s ≥ u. Back substitution gives

B2 ≤ Cν2(T − t)−1/2 E

[∫ T

t

σ−2
u

(∫ T

u

e−κ(s−u) ds

)−1(∫ T

u

e−κ(s−u) ds

)2

σ 2
u du

∣∣∣∣ Ft

]

≤ Cν2(T − t)−1/2
∫ T

t

∫ T

u

e−κ(s−u) ds du

≤ C

κ
ν2(T − t)3/2,

where we used the facts that t ≤ u ≤ s and 0 < e−κ(s−u) ≤ 1. The last expression above
is bounded by (C/κ)ν2(T − t) for all T − t < 1. Let us finally consider expression B3.
Proposition 3.1 and (5.9) imply that

B3 = E

[
(H(t, Xt , ϑt ) − H(t, Xt , ϑ

∗
t ))

(∫ T

t

	s ds

) ∣∣∣∣ Ft

]

= ν

2
E

[∫ T

t

(
∂2

∂x2 − ∂

∂x

)
H

(
t, Xt ,

√
1

T − t

(
Mu −

∫ t

0
σ 2

s ds

))

×
(

Du

∫ T

u

	s ds

)
σu

(∫ T

u

e−κ(s−u) ds

)
du

∣∣∣∣ Ft

]

+ ν2

8
E

[∫ T

t

(
∂2

∂x2 − ∂

∂x

)2

H

(
t, Xt ,

√
1

T − t

(
Mu −

∫ t

0
σ 2

s ds

))

×
(∫ T

u

	s ds

)
σ 2

u

(∫ T

u

e−κ(s−u) ds

)2

du

∣∣∣∣ Ft

]

+
∫ T

t

H

(
t, Xt ,

√
1

T − t

(
Mu −

∫ t

0
σ 2

s ds

))
	u du.

Now, arguments similar to those used for B2 give us B3 ≤ C(σt )ν
2(T − t).
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Let us now make things more transparent by evaluating the expression

1

2
H(t, Xt , ϑ

∗
t ) E

[∫ T

t

	s ds

∣∣∣∣ Ft

]
,

which determines the effect of correlation on option prices in the Heston model. We have to
evaluate

ϑ∗
t and E

[∫ T

t

	s ds

∣∣∣∣ Ft

]
.

Since the framework is a Markovian one, we can assume, without loss of generality, that t = 0.
In this case we have to evaluate the quantities

ϑ∗
0 =

√(
1

T

) ∫ T

0
E[σ 2

s ] ds and E

[∫ T

0
	s ds

]
.

Let us start with the computation of ϑ∗
t . It follows, from σs = √

vs and the dynamics of
vs by taking expectations and solving the corresponding ordinary differential equation for the
expectation, that

E[σ 2
s ] = E[vs] = θ + (v0 − θ)e−κs .

From this, it follows that

(ϑ∗
0 )2 = 1

T

∫ T

0
E[σ 2

s ] ds = θ + (v0 − θ)

T

∫ T

0
e−κs ds = θ + (v0 − θ)(1 − e−κT )

κT
.

Now consider the expression E[∫ T

0 	s ds]. By definition of 	s we have

E

[∫ T

0
	s ds

]
= E

[∫ T

0

(∫ T

s

E[Dsσ
2
r | Fs] dr

)
σs ds

]
.

Lemma 5.3. Assume that 2κθ ≥ ν2, then

E[Dsσ
2
r | Fs] = νe−κ(r−s)√vs.

Proof. Note that it follows, from Corollary 4.2 and the Clark–Ocone formula [12, Proposi-
tion 1.5.3], that

vr = σ 2
r = E[σ 2

r ] +
∫ r

0
E[Dsσ

2
r | Fs] dWs.

On the other hand, consider the process defined by the stochastic integral equation

ṽr = θ + (v0 − θ)e−κr + ν

∫ r

0
e−κ(r−s)

√
ṽs dWs.

Taking differentials of ṽr leads to

dṽr = −κ

(
(v0 − θ)e−κr + ν

∫ r

0
e−κ(r−s)

√
ṽs dWs

)
dr + ν

√
ṽr dWr

= κ(θ − ṽr ) + ν
√

ṽr dWr.

Therefore, we see that ṽr has the same differential as vr and since E[ṽr ] = E[vr ], we have
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ṽr = vr . This leads to

E[σ 2
r ] +

∫ r

0
E[Dsσ

2
r | Fs] dWs = E[vr ] + ν

∫ r

0
e−κ(r−s)√vs dWs,

and since E[σ 2
r ] = E[vr ], Lemma 5.3 follows from the uniqueness of this representation.

By the definition of 	s and application of Lemma 5.3, we now obtain

E

[∫ T

0
	s ds

]
= E

[∫ T

0

(∫ T

s

E[Dsσ
2
r | Fs] dr

)
σs ds

]

= ν E

[∫ T

0

(∫ T

s

e−κ(r−s) dr

)
σ 2

s ds

]

= ν

∫ T

0

(∫ T

s

e−κ(r−s) dr

)
E[σ 2

s ] ds

= ν

∫ T

0

(∫ T

s

e−κ(r−s) dr

)
(θ + (v0 − θ)e−κs) ds.

These integrals can be evaluated easily, and we obtain

E

[∫ T

0
	s ds

]
= ν

κ2 (θ(κ − 2) + v0 + e−κT (κT (θ − v0) + 2θ − v0)).

With these explicit expressions for ϑ∗
0 and E[∫ T

0 	s ds], (5.6), which by the previous discussion
approximates the effect of correlation on option prices, becomes semi-explicit, depending on
the corresponding option valuation formula in the Black–Scholes model. If this value does not
admit an explicit expression, we can use Monte Carlo methods in order to compute it.

6. A numerical example

For a standard European call option, the expression H in (5.6) is given by

1

2
H(0, x, σ ) = ex

2σ
√

2πT
exp

(
−d2

1

2

)(
1 − d1

σ
√

T

)
,

where

d1 = x − ln K + rT

σ
√

T
+ σ

√
T

2
.

The effect of correlation on option prices using our approximation can then be obtained in
explicit form by substituting the corresponding expressions above into (5.6). The following
figures illustrate the accuracy of our approximation.

Figure 1 exemplifies the percentage error of approximation (5.7) relative to the option price
computed using a standard analytic Heston pricer for European calls, such as is available at
http://kluge.in-chemnitz.de/tools/pricer/. The model parameters have been chosen as κ = 8,
θ = 0.04, ν = 0.1, r = 0.0953, σ 2

0 = 0.0225, S0 = 100, T = 0.1, and K = 100. These
parameters satisfy the strong coefficient condition 2κθ ≥ 3ν2 in Proposition 5.3. The figure
shows, in particular, that in percentage terms the larger part of the error is produced by replacing
E[BS(t, Xt , ϑt ) | Ft ] in Proposition 5.1 with BS(t, Xt ; ϑ∗

t ) in Proposition 5.3, while the error
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Figure 1: Error of approximation from Proposition 5.3 as a function of ρ.
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Figure 2: Error of approximation from Proposition 5.3 as a function of T − t .

contributed by our approximation of the correlation effect decreases to 0 as the correlation ρ

decreases to 0.
Figure 2 illuminates the dependence of the accuracy of our approximation on time to maturity

T −t . Displayed is the percentage error of approximation (5.7) as a function of time to maturity.
The parameters in this figure are identical to the ones used for Figure 1. We observe convergence
for small times to maturity, and observe that the percentage error appears to flatten out for large
times to maturity. We note that the maximum percentage error found is around 0.065% and
obtained at around T − t = 0.15.

Finally, Figure 3 is obtained from Figure 2 by changing the key parameters to κ = 2,
θ = 0.015, and ν = 0.2, which correspond to the situation 2κθ < ν2, violating the strong
coefficient condition in Proposition 5.3. It can be observed that in this case the percentage error
is significantly higher, convergence for small times to maturity is still present, and, for large
times to maturity, the flattening is clearly slower. A study of the precise behavior for large times
to maturity is the subject of future research.
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Figure 3: Error of approximation from Proposition 5.3 as a function of T − t with 2κθ < 3ν2.

7. Conclusions

We have proved that under the usual coefficient condition 2κθ ≥ ν2, the Heston stochastic
volatility vt as well as its square root σt are Malliavin differentiable and we have given compact
formulae for their derivatives. Under stricter conditions on the coefficients we have shown that
the second Malliavin derivatives also exist. These two results are key results in so far as they
open the door for applications of Malliavin calculus in the framework of the Heston stochastic
volatility model. We have discussed an explicit application by deriving an approximate option
pricing formula for the Heston model, which is extremely accurate and easy to compute.
Furthermore, we derived analytic expressions which control the error of this approximation.
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