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ANALYTIC ISOMORPHISMS OF 
TRANSFORMATION GROUP C*-ALGEBRAS 

MICHAEL P. LAMOUREUX 

ABSTRACT. An analytic isomorphism of C*-algebras is a ^ - i so ­
morphism which maps one distinguished subalgebra, the analytic sub-
algebra, onto another. A strict partial order of a topological group acting 
on a topological space determines the analytic subalgebra of the transfor­
mation group C*-algebra as a certain non-self-adjoint subalgebra of the 
C*-algebra. When the group action is free and locally parallel, this ana­
lytic subalgebra is locally a subfield of compact operators contained in a 
reflexive algebra whose subspace lattice is determined by the group or­
der. If in addition the group has the dominated convergence property, an 
analytic isomorphism of such transformation group C*-algebras induces a 
homeomorphism of the transformation spaces which maps orbits to orbits. 
In particular, the C*-algebras for two regular foliations of the plane are 
analytically isomorphic only if the foliations are topologically conjugate. 
In the case of parallel actions, a quotient of the group of analytic auto­
morphisms is isomorphic to the second Cech cohomology of a transversal 
for the action. 

In [2], W. B. Arveson describes a certain non-self-adjoint algebra of operators 
which characterizes an ergodic transformation of a measure space in the sense 
that two ergodic transformations are conjugate if and only if the corresponding 
algebras are unitarily equivalent. This algebra is concisely described as the norm-
closed subalgebra of the C*-crossed product L°°(M) xa Z generated by L°°(M) 
and a single unitary u which implements the transformation a on the measure 
space M and is denoted by L°°(M) xa Z+. The current work is motivated 
by an attempt to produce an analogous result for transformation groups; that 
is, the measure space is replaced by a topological space, the single ergodic 
transformation is replaced by a topological group of homeomorphisms of that 
space, and the C*-algebra in question is the crossed product Co(M) xa G. 

That two actions of a group on a space should be topologically conjugate is 
a very strong condition, as even examples with the real line acting will show. A 
more reasonable equivalence is to require their orbits be topologically conjugate. 
That is, the action of a group on a topological space decomposes that space into 
a disjoint union of orbits; two such decompositions are topologically conjugate 
if there is a homeomorphism of the two spaces mapping orbits to orbits. The 
transformation group C*-algebra of the action is known not to characterize 
this orbit structure; for instance, two actions of the real line on the plane may 
give isomorphic C*-algebras, although there is no homeomorphism of the plane 
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mapping one set of orbits onto the other. However, by using an order on the 
group of transformations to define an analytic subalgebra of the crossed product, 
it turns out that a C*-isomorphism of the transformation group C*-algebras 
which maps one analytic subalgebra onto the other determines a topological 
conjugacy of the corresponding orbit structures, given certain assumptions on 
the order and action. 

To this end, in §2 a free, transitive action of a strictly ordered group is 
considered; this is essentially the case of the group acting on itself by left 
translation. Here, the analytic subalgebra of the transformation group C*-algebra 
is the subalgebra of compact operators contained in a reflexive algebra whose 
subspace lattice is determined by the order on the group. The multiplier algebra 
of the analytic subalgebra is the reflexive algebra itself, and the diagonal algebra 
is a m.a.s.a. of functions defined on the group. In §3 the case of a free, parallel 
action on a locally compact space is examined; the analytic subalgebra is then 
a norm-continuous field of compacts in the reflexive algebra, the multiplier 
algebra is a strong* continuous field of operators in the reflexive algebra, and 
the diagonal algebra is a strong* continuous field of operators in the m.a.s.a. 
and is represented as an algebra of functions on the transformation space. 

To go further, additional structure on the group is required. The model is 
the real line, where the two important properties are that the intervals generate 
the topology for the group and that the group has the dominated convergence 
property. In the case of parallel actions, then, an analytic isomorphism induces a 
homeomorphism of the transformation spaces which maps orbits to orbits; thus 
the orbit structures are topologically conjugate. Near the end of §3, the more 
general case of a locally parallel action is considered; the situation is locally 
as in the parallel case and so analytic isomorphism again implies topological 
conjugacy of the orbits structures. These results apply to the case of regular foli­
ations of the plane, implying that C*-algebras for two foliations are analytically 
isomorphic only if the foliations are topologically conjugate. 

In §4 the cohomology arising from these algebras is studied, where it is shown 
that in the case of free, parallel actions, a certain quotient of the group of analytic 
automorphisms recovers the second cohomology group of the transverse space 
for the action. Finally, in §5, a number of examples are presented, to illustrate 
some applications of the theory. 

This paper is based on part of the author's doctoral dissertation at the Uni­
versity of California at Berkeley. I would like to take this opportunity to thank 
Professor Bill Arveson for his supervision and helpful suggestions during the 
writing of this dissertation. 

1. Preliminaries. For a Hilbert space 9{, let ^{9-C) denote the algebra of 
bounded operators on 9-t and %{0i) the algebra of compact operators; Hilbert 
spaces in this paper are assumed separable. A field of operators will mean one 
of two things: either Cb(X, A), the family of norm-continuous maps from locally 
compact space X into Banach algebra A which vanish at infinity, or C*(X,A), 
the family of bounded strong* continuous maps from X into A. 
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The multiplier algebra of a Banach algebra A is denoted by M (A); the strict 
topology on M (A) is the topology of pointwise-norm convergence for the action 
of M (A) on A. When A is a C*-algebra, so is M (A); if in addition A is a non-
degenerate subalgebra of $ ( ^ 0 , then so is M {A), consisting of the algebra 
of two-sided multipliers of A. A surjective homomorphism of separable C*-
algebras extends to a surjective homomorphism of the multiplier algebras; we 
denote a homomorphism and its unique extension to the multiplier by the same 
symbol. Note that a norm-continuous action of a group on a C*-algebra extends 
to strictly-continuous action on the multiplier algebra. 

A C*-dynamical system is a triple (A, G, a) consisting of a C*-algebra A, a 
topological group G and an action a which is a continuous group homomor­
phism from G into the automorphisms of A. We assume G is a locally compact, 
Hausdorff, second countable group with left Haar measure dt. In this paper, we 
only consider the case of a separable, abelian algebra A which is the algebra 
of continuous functions on a locally compact, separable space and so the action 
arises from a group of topological transformations of the topological space. 

An isomorphism of C*-dynamical systems (A, G, a) and (A', G', a1) is a pair 
of isomorphisms (p, 7) where p is a C*-isomorphism of A onto A' and 7 is a 
group isomorphism of G onto G' such that a^(f)(p(«)) = p(at(a)) for all a in A 
and t in G. A covariant representation of the C*-dynamical system is a triple 
(7T, w, 9( ) consisting of a representation n of A on Hilbert space 9( and a unitary 
representation « of G on rf such that 7r(a,(tf)) = ut7r(a)u* for all <2 in A and r 
in G. Given a C*-dynamical system (A, G, a), the C*-crossed product A xa G 
is defined as the enveloping C*-algebra of the Banach *-algebra Ll(G,A) of 
Bochner integrable A-valued functions on G with multiplication, involution and 
Z^-norm defined by 

(i) ( / * g)t = JG fsas(gs-it)ds 

(ii) (/*), = dtoto-WrO* 
(iii) WfWv = JoUWAds 

for a l l / , g in Ll(G,A) and f in G, where 3ta denotes the modular function 
on G. In general, A is not a subalgebra of the crossed product, but it embeds 
naturally into the multiplier algebra fW (A x a G) by considering A as a family of 
point masses at the identity of G; that is, an element a of A acts by left and right 
multiplication on function/ in LX(G,A) via (a*f)t = a(ft) and (f*a)t — (ft)at(a) 
for all t in G. This extends to an embedding of M {A) into M (A xa G). 

Given a covariant representation (7r, W, #") of the C*-dynamical system 
(A, G, a), a representation of the cross product is obtained by extending to the 
enveloping C*-algebra the bounded representation TT X U of Ll(G,A) defined by 
the integral 

7T X U(f) = / 7T(fs)us ds 
JG 

for a l l / in L^GjA). Indeed, there is a one-to-one correspondence between co-
variant representation of the C*-dynamical system and representations of the 
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crossed product. For a representation (TT,?{) of A, there is an induced represen­
tation Ind7r of the crossed product on L2(G, H ) given by 

(Ind7r(/)O(0 = [ 7r(at-,(fM(s-lt)ds 
JG 

for a l l / in LX(G,A), £ in l}(G,9i) and t in G. 

2. Ordered Groups and Compact Operators. Let G be a locally compact, 
second countable group with left Haar measure dt and fix X a closed subsemi-
group of G. I induces a closed partial order on G by the relation a ^ b iff 
bcC1 G X. We also assume ZPlX -1 = {e}, hence the order is strict. The graph 
of the partial order T is the closed set of pairs (x,y) in G x G with y ^ x. Thus 
by Theorem 1.1.12 of [1], (G,^,df) is a standard partially ordered measure 
space; that is, G is a standard Borel space, dt is a-finite measure, and the or­
der ^ is tractable in a certain well-defined sense; here it is enough to say the 
graph of the order is closed. Following Arveson in [1], we say that two partially 
ordered measure spaces (G, ^,dt) and (G', ='^dr1) are Borel order isomorphic 
if there exists an a.e. defined Borel isomorphism from G onto almost all of G' 
taking null sets to null sets such that s ^ t iff (j)(s) ^ (j)(t) for all s and t in the 
domain of <j>. The map <j> is called a Borel order isomorphism. Associated with 
the partially ordered measure space (G, ^,dt) is a certain lattice of projections 
acting on L2(G). Specifically, given a Borel subset E of G, let PE denote the 
projection in L°°(G) acting on L2(G) which is given by multiplication by the 
characteristic function on E; the set E is said to be increasing if x G E and 
x ^ y implies y G E. The strongly closed lattice of projections for the partial 
order is denoted by X(G, ^,dt) and consists of all projection PE for increas­
ing, Borel subsets E of G. As the order is strict, by Theorem 1.2.3 of [1] this 
lattice generates L°°(G) as a von Neumann algebra. In fact, it characterizes the 
ordered space up to isomorphism: by Theorem 1.2.4 of [1], the two strictly or­
dered spaces (G, ^,dt) and (G', ^*,dl!) are Borel order isomorphic if and only 
if the corresponding subspace lattices L(G1 ^,dt) and £(G', t^',dtf) are unitar-
ily equivalent. Indeed, from the proof in Theorem 1.2.4 of [1], the unitary U 
implementing the equivalence of lattices determines a Borel order isomorphism 
0 by the relation UPEU~l = P^E) for every Borel set E of G. Since the lattice 
generates L°°(G), <j> determines U up to a factor in L°°(G). 

Along a different tack, consider the C*-dynamical system (A, G, a) with a the 
action of locally compact, second countable group G on separable C*-algebra A 
and let A xa G denote the C*-crossed product. Following M. J. McAsey and P. 
S. Muhly in [9], let A x a Z denote the norm-closed subspace of A xaG generated 
by elements of LX{G,A) with support in Z, the semigroup of positive elements 
in G. Assuming further that X is the closure of its interior and generates G as a 
group, then A x^E is a closed subalgebra of the crossed product which generates 
the whole crossed product as a C*-algebra. By Lemma 3.1 of [9], the subalgebra 
A x a S contains a (non-self-adjoint) bounded approximate identity for A xa G 
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and thus by Corollary 2.5.1 of [9] the natural embedding of A x a Z into A xa G 
extends to a unital isometric embedding of the multiplier algebra <M (A x a Z) 
into M (A xa G). Any closed subalgebra of a C*-algebra which generates the 
C*-algebra and contains a bounded approximate identity for the C*-algebra is 
called an analytic subalgebra; we distinguish A x a Z as the analytic subalgebra of 
A xa G. If B is an analytic subalgebra of a C*-algebra, the diagonal D is the C*-
algebra M\B)C\M (B)*. An analytic isomorphism is a C*-isomorphism taking 
one analytic algebra onto another; note the extension of an analytic isomorphism 
takes the multiplier algebra of the first analytic subalgebra onto the multiplier 
algebra of the second, and thus takes the first diagonal onto the second diagonal. 

In this section we consider only the action r of left translation of the locally 
compact, second countable group G on the C*-algebra Co(G), with an order on 
G given by the semigroup Z, where X is the closure of its interior, Z generates 
G, and Z H Z - 1 = {e}. With pe the character on Co(G) given by evaluation at 
the identity e, let lndpe be the induced representation of the crossed product on 
L2(G); thus, for an L1 map t »—•/, in Cb(G) we have 

Indp,(/)£(J) = [ ft(s)Z(rls)dt 
JG 

for all £ in L2(G, dt) and s in G. By [11] or [16], Indpe is a faithful representation 
of Co(G) x r G onto the compact operators 3C(L2(G)). Moreover, the above 
integral is non-zero only if there is some t in the support of/ with t~ls in the 
support of £; thus if 1i—->/, has support in Z, £ has support in Zr, and the integral 
is non-zero, then s is in Zr. In particular, lndpe(f) leaves invariant the subspace 
of functions £ supported on the increasing set Zr, for all / supported in Z, and 
all r G G. By completion, we have that each element of lndpe(Co(G) xTZ) leaves 
invariant each subspace of the lattice L (G, ^ , dt). In the case where G is abelian, 
McAsey and Muhly in [9] showed this property characterizes Co(G) x r Z; the 
first goal of this section is to show this result for the non-abelian case. 

We begin with some technical lemmas. Z is the semigroup of positive elements 
of G, and T the graph of the order relation for G, the set of pairs ( j c j ) i n G x G 
with y è x. The measure on T is the restriction of Haar measure on G x G. 

LEMMA 2.1. (i) The boundary o/Z has measure zero in G; 
(ii) The boundary of T has measure zero in G x G; 

(Hi) Continuous functions of compact support in the interior of T are dense 
in L2(T). 

Proof If 3Z is not null, then (3Z)(3Z)_1 contains a neighbourhood of the 
identity and so intersects the interior of Z. Fix g in the interior of Z with 
g = ab~x for some a, b G 3Z. Let an —> a be a convergent sequence with each 
an 0 Z, thus g — X\manb~x and eventually anb~x G Z, since g is in the interior. 
Hence eventually an G Z& Ç Z, a contradiction. 

The graph Y can be written as the set of pairs (x,y) in G x G with x G Zy 
so by building sequences (xniyn) £ T converging to the boundary, its easy to 
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check that the boundary dT is set of pairs (x,y) with x E 3Zy. Since 3Z has 
measure zero in G, so does each cross-section of dT\ by Fubini's theorem dT 
has measure zero in G x G. The restriction of Haar measure on G x G to the 
interior of T is regular so the continuous functions with compact support in the 
interior r° are dense in L2(V°) and so also dense in L2(T), since the boundary 
of r is a null set. D 

The next lemma shows there are lots of Hilbert-Schmidt operators in the 
analytic subalgebra. 

LEMMA 2.2. lndpe(Co(G) xTX) has a bounded approximate identity for the 
algebra of compacts, consisting of Hilbert-Schmidt operators. 

Proof It suffices to show that Cb(G) xTX has a bounded approximate identity 
whose image under lr\dpe is a sequence of Hilbert-Schmidt operators. Following 
Lemma 3.1 of [9], let {Un} be a decreasing sequence of relatively compact 
neighborhoods of the identity in I , intersecting to the identity. Let (fn denote the 
normalized characteristic function on Un, thus {(fn} is an approximate identity 
for Ll(G). Let {en} be a bounded approximate identity for Co(G) consisting of 
positive continuous functions on G with compact support. Then {fn — ipnen} 
is a bounded approximate identity for Cb(G) x r G, and contained in Co(G) x rX 
since ft

n = tpn(t)en vanishes for t £ Z. To see that lndpe(f
n) is Hilbert-Schmidt, 

note that its kernel kn is given by 

kn(s,t) =fs
n

t-i(s) = ifn(srl)en(s) 

which is a bounded measurable function supported on a compact set in G x G, 
hence is an L2 kernel. D 

PROPOSITION 2.3. Co(G) xTZ is the set of x in CQ(G) x r G such that Indp^(jc) 
leaves invariant L2(Lt) for every t G G. 

Proof From the remarks above Lemma 2.1, we have that every x in the 
analytic subalgebra leaves invariant L2(Lt). For the converse, by the approximate 
identity constructed in the last lemma, it suffices to consider those x in Co(G)xrG 
whose image is Hilbert-Schmidt. With such an x whose image leaves invariant 
each L2ÇLt) we have that lndpe(x) lies in algX(G, è,gt) so by Prop. 3.1 of [7], 
its Hilbert-Schmidt kernel k lives a.e. on the graph T. By Lemma 2.1, A: can 
be approximated in L2 norm by continuous kernels kn of compact support in 
the interior of T, so the corresponding Hilbert-Schmidt operators converge in 
norm. Defining/" in C{G1 Co(G)) by/,nO) = kn(s,t~ls) it is easy to check that 
fn is in L*(G, Co(G)) and thus represents an element of the analytic subalgebra 
Co(G)xTZ. Moreover, Indpe(/n) is Hilbert-Schmidt with kernel kn and converges 
to Indpe(x), so x is the limit of the/", and thus x is in Co(G) xTZ. • 

lndpe thus describes the analytic subalgebra as isomorphic to a certain subal­
gebra of the compacts determined by the group order; in the next proposition, 

https://doi.org/10.4153/CJM-1990-037-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-037-9


ANALYTIC ISOMORPHISMS 715 

it is also shown to describe the multiplier algebra and diagonal in terms of a 
certain reflexive algebra. Recall from [1] that alg£(G, ^,dt) is the closed, non-
self-adjoint algebra of operators in L2(G,dt) which leave invariant the lattice of 
projections L (G, ^ , dt). 

PROPOSITION 2.4. Extending \nàpe to the multiplier algebras gives the follow­
ing isomorphisms: 

(i) C0(G) x r S ^ ^ n algX (G, ^ dt); 
(ii) M (Co(G) x r E) ^ algX (G, ^ , dt); 

(Hi) M (C0(G) xT Z) n fW (C0(G) xT I)* ^ L°°(G, A). 

Proof. The first statement is just a restatement of the last proposition, as 
algX(G, ^ , dt) is the reflexive algebra determined by L(G, ?S-,dt). The second 
statement is a consequence of strict topology on the multiplier of 2C coincid­
ing with the strong* operator topology #(L2(G)). The third statement is the 
observation that alg£(G, t^,dt) Pi alg£(G, ^,dt)* is the von Neumann algebra 
generated by £(G, ^,dt), which, by the strict order on G, is just L°°(G, JO- O 

It is now apparent that an analytic isomorphism will be closely connected to 
a Borel order isomorphism. 

PROPOSITION 2.5. Two ordered groups G and G' are Borel order isomorphic 
if and only if the analytic subalgebras algebras Co(G) xTX and Co(Gf) xTl! are 
analytically isomorphic. Moreover, the Borel order isomorphism (j> and analytic 
isomorphism xjj may be chosen to agree on the diagonal; that is 

Indp'eW(x)) = (lndpe(x))o<j> 

for all x in M (Co(G) xT Z) D fW (Cb(G) xT £)*, with \ndpe(x) considered as a 
function in L°°(G). 

Proof. When G and G' are Borel order isomorphic, their lattices £(G, ^ , dt) 
and L(Gr, ^'',dt') are unitarily equivalent, and hence the compact subalgebras 
% n a l g £ ( G , ^ , A ) and %! H alg£(G', ^',dt') are also unitarily equivalent. 
Lifting via the isomorphisms Indpe and Indp^ gives an analytic isomorphism of 
the analytic subalgebras Co(G) x r 2) and Co(G') xT If. 

Conversely, an analytic isomorphism induces an isomorphism of % D 
algX(G,^,J0 and %' H alg£(G', û\dtr) which is the restriction of a C*-
isomorphism from % to *Kj. Hence it is unitarily implemented and gives a 
unitary equivalence of the lattices. 

That the order isomorphism of spaces and analytic isomorphism of algebras 
correspond on the diagonal follows from the observation that the unitary U 
implementing the lattice equivalence and the Borel order isomorphism <j> are 
related by the equality UMfU~l — M/O<Ê, for all multiplication operator My, 
with/ G L°°(G), as indicated at the beginning of this section. • 

For a topological result, we desire that analytic isomorphisms induce homeo-
morphisms of the base spaces G and G' and not just Borel maps; in particular, we 
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want order isomorphisms to be homeomorphisms. Thus, it is convenient to as­
sume the collection of interiors of closed intervals [a, b] = {g G G : a ^ g = b} 
forms a basis for the topology of G. For instance, if G is totally ordered, or if 
the intervals are all compact, then it is easy to show that the intervals generate 
the topology. When the intervals generate the topology, G will be called a topo­
logical ordered group. For ordered groups with regularly closed subsemigroup 
of positive elements as above, we know of no examples where this is not the 
case; however, we are unable to prove it in general. 

When the group is not discrete, an a.e. defined Borel order isomorphism may 
not be everywhere defined and need not be related to a homeomorphism in any 
way. For instance, two Borel order isomorphic groups are the real line R with the 
usual order and the direct product Z x R of the integers with the real line, with 
the lexicographical order; a Borel order isomorphism is obtained by mapping 
each interval («, n + 1) in R onto the subset n x R in Z x R, yet clearly these 
are not homeomorphic spaces. By the last proposition, the crossed products 
are also analytically isomorphic yet with non-homeomorphic base spaces. To 
overcome this difficulty, it is sufficient to require that the ordered groups have 
the dominated convergence property, or DCP for short: that is, every increasing 
sequence with upper bound in G has a limit point. Note that DCP groups include 
those groups wherein each closed interval is compact. 

LEMMA 2.6. An a.e. defined Borel order isomorphism of two ordered groups 
with the DCP extends uniquely to an everywhere defined order isomorphism. 
For topological ordered groups, the order isomorphism is a homeomorphism. 

Proof. Let cj> : G —> G' be the a.e. defined order isomorphism of groups G 
and G' with Z and Z' their positive subsets, and let PE G L(G1 ^ , dt) denote the 
projection supported on the increasing Borel set E C G, with P' the analogous 
projection map for G'. Observe that the map g »—• P^g is a faithful, strongly 
continuous representation of G as a family of projections acting on L2(G), which 
inverts the partial order. With U a unitary implementing the lattice equivalence, 
we have UP^gU~l = P'^JA^) for all g in the domain of (/>. 

To extend <j> to some g not in the domain of </>, first fix go = g in the domain 
of </>: for instance, take any go G Zg P\Dom((f)), a non-empty set as Z has interior 
and the domain of <\> is dense. Similarly, take an increasing sequence in the 
domain of <j> such that gn /* g, hence (t>(gn) is an increasing sequence in G' 
with upper bound <j>(go)', by DCP, this sequence has a limit point g' in G' and 
by the strict order, the sequence converges to g'. Extend <\> by setting <\>(g) — g'. 
By continuity of U, we have UP^gU~l — P L , which shows the extension is 
order-preserving, and by faithfulness of the P's, the extension is independent of 
the choice of sequence. 

To show uniqueness, note by convergence of the increasing sequence above 
that another order extension p will satisfy 0(g) ^ p(g) for all g in the (extended) 
domain of </>; choosing a decreasing sequence gives the reverse inequality, and 
strict order gives equality. 
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For topological ordered groups, note that an order isomorphism maps intervals 
to intervals, and interiors of intervals to interiors, because the boundary can 
be approached by either increasing or decreasing convergent sequences, which 
therefore map to convergent sequences. As the interiors are a basis for the 
topology, the map is a homeomorphism. • 

To put this in context of transformation groups C*-algebra, we state one 
essential result in the form that will appear later in a more general context. 

PROPOSITION 2.7. Let G and G' be topological ordered groups with a strict 
order and DCP such that the positive semigroups X and U are regularly closed 
and generate their groups. Let G and G' act freely and transitively on locally 
compact spaces M and M'. Then the C*-crossed products Co(M) x a G and 
CQ(M') Xtf G' are analytically isomorphic if and only if there is a homeomor­
phism from M to M' which is a Borel order isomorphism along the single orbit 
for the order induced by the action. Moreover, the analytic map and the home­
omorphism can be chosen to agree on Cb(M), which is mapped onto CQ{M'). 

Proof. Fix x in M. Since the action is transitive, the map n—• t • x mapping 
G onto on M gives an isomorphism of the C*-dynamical systems (Cb(G), G, r) 
and (Cb(Af), G, a). This map also lifts the order of G onto M by the relation 
M ^ m' iff m = t-x and m' — t' x for some t ^ t' in G, and in a similar manner 
lifts the Haar measure of G onto M. Thus the statement of the proposition is 
simply Proposition 2.5 translated from Cb(G) to CQ{M). D 

3. Parallel Actions. Throughout this section, G is a locally compact, second 
countable Hausdorff group acting on a locally compact, second countable space 
M, where we assume in addition that G is a topological ordered group with the 
dominated convergence property and a strict order given by the regularly closed 
semigroup £ which generates G, as in §2. With t,m\-^t-m denoting an action 
of G on a topological space M, note that a free action lifts the partial order of 
G onto M. That is, two points m and m! in M are ordered as m û m! iff there 
is some x in M and t ^ f in G with m = t • x and m! — t* • x. Indeed, along 
each orbit in M, this is just the order of G lifted via the action a; the order 
on an orbit is independent of the choice of the point x since the order on G is 
invariant under right translation. Similarly, the free action of G on M lifts Haar 
measure on G to a measure on each orbit in M; although the measure depends 
on the choice of basepoint x, the measure class on the orbit is independent of 
the choice of x. 

The action of G on M is parallel if there is a closed subset X in M such that 
the map (x, t) \—*t-x is a homeomorphism of X x G onto M. That is, M is 
essentially a crossed product of the transversal X with G, with the action of left 
translation along each copy of G. It is known in this case that the C*-crossed 
product is isomorphic to a continuous field of compact operators over X; it 
turns out that the analytic subalgebra is simply a continuous field of analytic 
subalgebras of the compacts. 
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Let 3C = yi(L2(G)) denote the algebra of compact operators on L2(G), and 
d\(L) = % PialgX (G, ^ , dt) the analytic subalgebra of the compacts determined 
by the order on G. Given a transversal X of the space M, one obtains a represen­
tation px of the crossed product as a field of operators over X by inducing up the 
obvious representation of CQ{M) into Co(X); that is, for any/ in Ll(G, Cb(M)), 
Px(/) is a m a P from X into Ĉ given by 

(PX(/)(*)0(*) = [ Ms • ^ ( r 1 * ) * 

for all x in X, £ in L2(G), and 5 in G. 

PROPOSITION 3.1. Lef a be a parallel action of G on space M with transversal 
X. Then the representation px of the crossed product as afield of operators over 
X extends to an isomorphism of the multiplier algebra onto its image. Moreover, 

(i) px(Co(M) xa G) = C0(X, 3C(L2(G))); 

(ii) px(M(Co(M) xa G)) = C*(X,2(L2(G))); 

(Hi) px(Co(M) xa I ) = C0(X, MÇL)); 

(iv) px(M(Co(M) xa 1)) = C*(X,alg£(G,S,*)); 

(vj Px(fW (Co(M) x a 1) n ftf (C0(M) x a I)*) = C*(X, L°°(G)); 

(vi) px(C0(M)) = Co(X,Co(G)). 

Proof That px is an isomorphism of the crossed product and Co(X, 3C ) fol­
lows immediately from Corollary 2.9 of [5], thus the extension to the multipliers 
is also an isomorphism. The image of multiplier of the crossed product thus is 
the multiplier of C0(X, 3C), which is precisely C*(X, #(L2(G))), the algebra 
of bounded, strong* continuous maps from X into #(L2(G)), since the strict 
topology on the multiplier of % is just the strong* topology on #(L2(G)). 

In (iii), it is easy to see that the image of the analytic crossed product sits 
inside Co(X, di(L)) by the integral form for px. To show the image is all of 
C0(X, JH®), take any function F : X —• 9t(2L) in C0(X, 9t(2)). F is approximated 
by a finite sum of functions of the form x »—> g(x)V for some g in Co(X) and 
V in 9t(X) (cf [6] pp. 809-811). V is the limit of Hilbert-Schmidt operators 
on L2(G) with support in the graph of the partial order; in fact, V may be 
approximated by operators of the form lndpe(h) for functions h in Cc(£, Co(G)). 
Build an element/ in CC(S, Co(Af)) by f(s - x) = g(x)ht(s) for all x in X and 
s in G. Then px(f)(x) = g(Jt)Indpe(/z) so px(/) is in the image of the analytic 
crossed product and is close to the function x »—> g(jc)V used to approximate 
the given F. Thus the image is all of Co(X, 9t(E)). 

The remaining images are now clear by taking adjoints and intersections. • 

It is interesting to observe that the diagonal algebra of the crossed product is 
thus characterized as the *-algebra of complex-valued functions on the space M 
which are "L°°" along the orbits, yet "continuous" in the transverse direction. In 
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the interesting cases it is an inseparable C*-algebra, larger than the multiplier 
algebra Ci(Af ), yet not a von Neumann algebra. 

For the remainder of this section, Cb(X, 9t(X)) is distinguished as the ana­
lytic subalgebra of Co(X, 3C) and so Co(X, 3C) is analytically isomorphic to 
Co(M) x a G. It will be convenient to find the analytic isomorphisms for al­
gebras of the form Cb(X, 1<i) and then translate the results back to the crossed 
product form. 

An isomorphism ij) of two fields of operators Co(X, 9£) and Co(X', %') is 
described by a homeomorphism 6 of X onto X' and a path of unitaries x \—• £/* 
from X into ?i (L2(G), L2(G% the space of unitaries mapping L2(G) onto L2(G'), 
such that x »—+ Ad(L^) is a continuous path into the space of isomorphisms 
of 9C onto %'\ V is given by ^(F)(6(x)) = UxF(x)U~l for all JC in X and 
F in Cb(X, ^C) (cf [10] or [14]). It is easy to determine what the analytic 
isomorphisms must be: 

PROPOSITION 3.2. Let xjj be an isomorphism of Co(X, 3C) onto Co(X', 3C') 
determined by an isomorphism OofX onto X' and a path of unitaries x \—> Ux. 
Then t/> w analytic if and only if 

UxL(G^dt)U~x = L(G',l!,dt') 

for all x in X. 

Proof ip is analytic if and only if the operator ip(F)(6(x)) = UxF{x)U~x lies 
in the analytic subalgebra 9t(E') for all F G Cb(X, 9t(£) and x in X, with a 
similar condition for \p~l. For fixed JC, the set of operators F(x) spans 9i(X), 
while a consideration of I/J"1 shows the ili(F)(6(x)) must generate 3t(L') in the 
analytic case. Thus, i/; is analytic if and only if Uxdi(L)U~l = di(Lf) for all x in 
X, which by Proposition 2.5 occurs if and only if Ux gives a unitary equivalence 
of the above lattices. • 

Since the order is strict, the unitary Ux determines uniquely a Borel order 
isomorphism <f>x from G onto G1 by the equation UxMfU~l = Mf0^ for all 
/ in L°°(G), with Mf multiplication by / . Define a unitary Vx mapping L2(G) 
onto L2(G') by Vx£(t) = ^(r)C(^_1(0) for all £ in L2(G) and f in G, where UJX 

is the positive square root of the Radon-Nikodym derivative for <f>~1. Clearly, 
Ad(Ux) = Ad(Vx) when restricted to L2(G), so Ux and Vx differ by at most a 
factor in L°°(G). 

Although the map x i—-* £/x need not be strongly continuous or even measur­
able, the interesting fact is that JC I—+ Vx is. 

LEMMA 3.3. Let ijj : Co(X, 9C) —* Cb(X', ^C') &£ arc analytic isomorphism, 
with Vx the path of unitaries defined above. Then x »—• V* w strongly continuous. 

Proof Notice first that given any two complex number a, b of modulus 1, and 
non-negative real numbers c, d, we have \c—d\ ^ \ac — bd\. Writing Ux = VXWX 

for the path of unitaries determined by t/;, with Wx in L°°(G)y let £ in L2(G) be 
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a non-negative real function of L2 norm 1, and a a complex number of modulus 
1. Considering Wx as an L°° unitary function, Wx(t) is a complex number of 
modulus 1 for almost all t in G, as with the complex conjugate W*(t), thus for 
almost all t in G and all a of modulus 1, 

\vxm - vy&)\ = MOCO^M) - wyW^;1 (0)1 
^ l ^ t t M O ^ ' C O ) - w;(t)uy(tm;\t))\ 
= \aUxm - Uyti(t)\. 

Squaring and integrating over G' yields ||Vx£ — Vy^\\2 ^ \\aUx£ — Uy^W2 for all 
a of modulus 1. Letting Q^ denote the rank one projection onto the span of £, 
we have 

| | V ^ - V ^ | | 2 ^ inf \\aUxÇ-UySf 

M I G ^ - C M I 2 

û2\\UxQtUrl-UyQtU-l\\2. 

As x \—• Ad(Ux) is continuous in the point-norm topology for Iso{(K^1 *Kf), the 
last term in the inequality goes to zero as x goes to y, hence x \—» Vx^ is norm 
continuous. Now, the set of non-negative functions £ of norm one spans L2(G), 
so x i—> Vx is strongly continuous. D 

The above lemma thus gives a recipe for constructing analytic isomorphisms; 
for each x in X, choose a Borel order isomorphism of G onto G' such that the 
corresponding "change of variables" unitaries Vx gives a strongly continuous 
path of unitaries from X into (U{L2{G)^L2{G')). Modifying by a path of uni­
taries Wx in L°°(G) such that x i—• Ad(W^) is continuous gives another analytic 
isomorphism. It turns out that this strong continuity condition on the unitaries is 
very significant: it forces the order isomorphisms to glue together into a home-
omorphism of X x G. First we need another technical lemma. 

LEMMA 3.4. Fix space X and topological ordered groups G and G' with DCP 
and strict orders. Let x \—• <j>x be a path on X of Borel order isomorphisms from 
G to G' such that x »—• Vx is a strongly continuous path of unitaries, where 
Vx : L2(G) —• L2(G') is the change-of-variable s unitary for cj)x. Then 

(i) x \—• (f>x(t) is continuous for each t in G. 
(//) jc,n—• <t>x(t) is jointly continuous. 

Proof, (i): Fix t in G and x in X; we show <j>y{t) goes to <j)x(G) as y goes 
to x. Recall that as topological ordered groups, the topologies of G and G' are 
generated by the interiors of intervals. Thus, let [a, b] be a compact interval 
containing t! = <j>x(t) in its interior. Then |V,Z?] is a compact interval with non­
empty interior and £ = l[r>], the characteristic function on [/,&], is a non-zero 
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element of L2(G'). With P(Lt) denoting the projection in L°°(G) supported on 
the increasing set Jit and P' the analogous projection in L°°(Gf), we have 

P'{H<t>y(t)) = V;XPCLt)Vy - V-xPÇLt)Vx = P'&Mt)) strongly 

as y tends to JC. Thus for y sufficiently close to JC, the support of £ intersects 
U(j)y(t), so (j)y(t) ^ b. By a similar arguments with decreasing sets, y sufficiently 
close to x implies that a ^ <j>y(t) so <j>y{t) lies in [a, b\. By choice of [a, b], this 
is true for any compact interval containing </>x(t) in the interior, so 

4>y(t)-+(f)x(t) asv—>x 

as desired. 
(ii) Fix t in G and JC in X. To show joint continuity, it suffices to find for each 

neighbourhood interval [a, b] of <f>x{i), a neighbourhood of (x, f) so that each pair 
(y,s) in the neighbourhood maps to <t>y(s) in [a,b]. Let [c, J ] , contained in the 
interior of [a, b], be a smaller neighbourhood interval of <j>x(t). By continuity of 
the map s \—• (/>*(» at s = f, there is a neighbourhood interval [fo, fi] of t such 
that Jo = s ^ fi implies c ^ </>*(» = d. By continuity of the map y »—• <j>y{t\) at 
y = x, there is a neighbourhood U\ of JC such that a ^ ^(f i) for all y in U\. 
Similarly, there is a neighbourhood U2 of JC such that (f>y(t2) = 6 for all y in 6/2-
Thus for any y in Uid U2 and s in [fi, ̂ L we have 

a £ 4>y(h) £ 0,(5) £ ^(r2) ^ ft. 

That is, any element (y,s) of the neighbourhood (U\ D U2) x [^1,^] maps to 
^(5) in [«,&], as required. • 

PROPOSITION 3.5. Let G and G' be topological ordered groups with DCP and 
strict orders, and let X and X' be locally compact, second countable spaces. If 
ip is an analytic isomorphism of CQ{X1 3Q onto Co(X', %!\ then its extension 
to the multiplier satisfies 

i>(C0(X, Co(G))) - C0(X', Co(G')). 

In particular, the spectrum map 6 and the family of Borel order isomorphisms 
(j)x of G onto G' determined by ijj yield a homeomorphism ofX x G onto X' x G'. 

Proof ip is described by the spectrum map 6 and a path of unitaries Ux by 
ip(F)(0(x)) = UxF(x)U-1 for all F in C0(X, X) and JC in X. Let \j)x be the 
Borel order map determined by Ux\ by the DCP, ̂  is a homeomorphism and 
the change of variables unitary Vx for \j)x gives a strongly continuous path of 
unitaries on X. By the last lemma, the map 

(*,*)»—(0(*),&(O) 
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is a continuous map of X x G onto X' x G', as is its inverse, hence it is a 
homeomorphism. Now for F in C*(X,L°°(G)), we have \l;(F)(6(x)) o <t>x = F(x) 
for all x in X, and restricting to Cb(X, Cb(G)) gives the required equality. • 

We now restate the above theorem in terms of the crossed product algebras, 
using the analytic isomorphism between crossed product algebras and the func­
tion algebras Co(X, 3Q described in Proposition 3.1. 

PROPOSITION 3.6. Let G and G' be topological ordered groups with DCP and 
strict orders, with parallel actions on locally compact, separable spaces M and 
M!. If ip is an analytic isomorphism of CQ(M) xa G onto Cb(M') x ^ G'y then 
its extension to the multiplier satisfies 

iP(C0(M)) = Co(M'). 

Moreover, the homeomorphism of M onto M' determined by ifr maps orbits to 
orbits and preserves measure class and order on each orbit. 

Proof This follows immediately from the analytic isomorphism of 
C0(M) xa G onto C0(X, 3Q, which maps C0(M) onto C0(X, C0(G)) and maps 
orbits in M onto copies of G. D 

We may now extend this result to an interesting class of free actions. The 
action of a group on a space is locally parallel if each point in the space has 
an open neighbourhood on which the action is parallel; that is, for each m in 
G-space M, there is an open set Q containing m and a relatively closed subset 
X in Q such that the map (JC, t) »—• t x is a homeomorphism of X x G onto Q. It 
is worth noting that a locally parallel action of a Lie group defines a foliation, 
as seen in some of the examples in §5. 

With Q any open, G-invariant subset of M, and CQ(Q) identified as the ideal 
in Cb(M) consisting of functions on M which vanish on the compliment of Q, 
then Co(Q) x a G is an ideal in Co(Af) x a G. The analytic part behaves in a 
straightforward manner: 

LEMMA 3.7. Let Q be an open, G-invariant subset of M. Then 

Co(G) x « I = (C0(G) xa G)H(C0(M) x a X). 

Proof This follows immediately by noting that L^Z, Co(Q)) is the intersec­
tion of L1 (G, Co(Ô)) with L1 (2, C0(M)). • 

PROPOSITION 3.8. Let G and G' be topological ordered groups with DCP and 
strict orders, with locally parallel actions on topological spaces M and Mf. 
If if) is an analytic isomorphism of CQ(M) xa G onto Co(M') x«/ G', then its 
extension to the multiplier satisfies 

xlKCoiM)) = Co(M'). 
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Moreover, the homeomorphism of M onto M' determined by ip maps orbits to 
orbits and preserves measure class and order on each orbit. 

Proof. As each action is locally parallel, it is free and orbits are closed, so 
by Corollary 5.12 of [18], the crossed product is CCR and the spectrum is 
isomorphic to the orbit space. Thus the isomorphism xp gives a homeomorphism 
0 of the orbit spaces M/G and M'/G'. That is, with C0(M\G • m) the ideal in 
Co(M) of functions vanishing on the orbit G • m, \j) maps the primitive ideal 
C0(M\G -m) xa G onto C0(M'\6(G • m)) x«/ G', where 6(G • m) is an orbit in 
M'. 

Fix m in M, Q an open neighbourhood of m on which the action is parallel, 
and a relatively closed subset X in Q with (x,i) »—• t • x a homeomorphism 
of X x G onto 0 . Similarly, for some m! in the corresponding orbit 6(G • m) 
in A/', find analogous Q' and X'. Considering 6~l(Qf) as a union of orbits in 
M, let go be the intersection of Q with 0_1(ô') and similarly, let Qf

0 be the 
intersection of Qf with 0 ( 0 . Then 6(Qo) = Q'0 and since 6 is a homeomorphism 
of the orbit spaces it is easy to check that go is an open neighbourhood of m 
and (JC, f) »—> t • m is a homeomorphism of (X n <2o) x G onto Qo, with the 
similar result for Qf

0. By the correspondence between ideals and open sets in the 
spectra, xfj maps the ideal Co(ôo) x « G onto CO(QQ)

 xa' G'\ moreover, by the 
last lemma, V> maps the analytic subalgebra Co(Qo) x « ^ o n to Co(Qf

0) x«/ X'. 
Thus ^ is an analytic isomorphism of these parallel crossed products, so by 
Proposition 3.6, ip maps CQ(QQ) onto CQ{Q'Q) and the homeomorphism from go 
to go determined by I/J maps orbits to orbits, and preserves order and measure 
class along each orbits. 

Now let m vary over all of M ; the various CQ(QO) and C0(Q'Q) constructed 
above generate all of Co(Af) and Co(M;). Thus ty maps CQ(M) into Co(M'); 
considering ^ _ 1 shows it is an isomorphism. The homeomorphism of M onto 
M' determined by if) is pieced together from the homeomorphisms of the go's 
and Qf

Q, SO it too maps orbits to orbits, preserving order and measure class along 
each orbit. • 

In general, if G and G' act freely on M and M' with closed orbits, the 
arguments above may be extended to show that an analytic isomorphism of 
the crossed products determines a pointwise correspondence between the spaces 
which maps orbits to orbits, and is an order-preserving, measure class-preserving 
homeomorphism along each orbit. However, it is not at all clear how to "glue 
together" these homeomorphisms along the orbits into a homeomorphism of the 
spaces. 

We conclude with an application of the previous proposition, wherein local 
parallel actions arise naturally. We say an action of a Lie group on a differential 
manifold is smooth if the action is smooth in both variables; that is, the map 
(m, t) i—• at(m) is C°° in (m, t). Smooth actions of the real line on the two-
dimensional plane are especially nice. 
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LEMMA 3.9. Let a be a smooth action of the real line on the plane, with no 
fixed points. Then a is locally parallel. 

Proof. By Poincaré-Bendixson theory for solutions of ordinary differential 
equations in the plane, a is a free action, for otherwise it would have a closed 
loop for an orbit, inside which there must be a fixed point. Let (5 be a smooth 
action of the real line on the plane which is normal to a; for instance, solve 
the system of ordinary differential equations for a smooth vector field on the 
plane normal to the vector field given by a. As everything is smooth, for each 
point m in the plane, there is an open interval / in the real line about the origin 
such that the map (s, t) i—> at((3s{m)) is a diffeomorphism of I x I onto an open 
neighbourhood of m. Again by Poincaré-Bendixson, each orbit of a hits this 
neighbourhood at most once, otherwise there is a closed loop consisting of part 
of an a-orbit and part of the /3-orbit passing through m, inside of which would 
lie a fixed point. Thus the map (s, t) »—* ott(fis{m)) extends to a diffeomorphism 
of I x R onto an open set in the plane. That is, m sits inside an open set on 
which a is a parallel action, so a is locally parallel. D 

PROPOSITION 3.10. Let a and a* be smooth actions of the real line on the plane 
with no fixed points. If Co(R2) xa R is analytically isomorphic to Co(R2) x^ R, 
then there is a homeomorphism of R mapping oc-orbits to a1-orbits. 

Proof By the lemma, these actions are locally parallel in R2, so apply Propo­
sition 3.8. • 

In the language of foliations, this says that an analytic isomorphism of the 
C*-algebras for C°° foliations of the plane implies topological conjugacy of the 
foliations. It is interesting to recall that every regular foliation of the plane is 
topologically conjugate to a C°° foliation (cf. [17]); however, the above results 
do not give a description of how to construct an analytic isomorphism from a 
topological conjugacy. Indeed, for general foliations, it is not even clear what is 
the analytic subalgebra of the C*-algebra of the foliation. We leave this question 
aside for future work. 

4. Cohomological Results. Even in the case of parallel actions, the ana­
lytic isomorphisms reveal interesting topological information. In this section we 
uncover some cohomology of the underlying spaces. 

When A is an analytic subalgebra of C*-algebra B, denote the group of an­
alytic automorphisms of B by AAut(B). Any analytic automorphism maps the 
diagonal D = M {A) n M (A)* to itself; let AAutD(B) denote the normal sub­
group of analytic automorphisms that fix D pointwise. For any unitary U in 
the diagonal one obtains an analytic automorphism of B simply by conjugation: 
a i—» UaU*; denote this subgroup of inner automorphisms by AInno(B). When 
D is abelian, AInnD(B) is a normal subgroup of AAutD(B). Thus we have a 
decomposition series 

AInnD(B) < AAutD(B) < AAut(B). 
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When B is the crossed product Co(M) xa G for G with a locally parallel 
action on M, with A its analytic subalgebra given by the order on G, then 
by Proposition 3.8, the quotient group AAut(B)/AAuto(B) is identified with a 
subgroup of homeomorphisms of M; indeed, it is contained in the subgroup of 
homeomorphisms mapping orbits to orbits and preserving order and measure 
class along each orbit. It is the other quotient AAuto(B)/AInno(B) which is of 
interest here. 

For parallel actions, Proposition 3.1 identifies the diagonal as the algebra of 
strong* continuous maps from the transversal X into L°°(G). The group of uni-
taries in the diagonal is then the space C(X, Zl (L°°(G))) of continuous functions 
from X into the group of unitaries in L°°{G) endowed with the strong* topol­
ogy. Thus AInno(B) is identified as Ad*C(X, Zl(L°°(G))), where Ad* is the map 
taking a path of unitaries x f—> Ux to a path of automorphisms of the compacts 
x>-+Ad(Ux). 

Also, the crossed product is identified as the algebra Co(X, 3C ) of norm con­
tinuous maps from X into the compact operators on L2(G), so an automor­
phism is given by a path of unitaries x »—> Ux from X into # (L2(G)) such that 
x i—> Ad(Ux) is continuous from X into the group of automorphisms of %. If the 
automorphism is analytic and fixes the diagonal, each Ux must lie in Z1(L°°(G)). 
Thus AAutD(B) is identified with the space CiX.AdiZliL^iG)))) of continuous 
functions from X into the space of automorphisms of the compacts given by 
conjugation with a unitary in Zl (L°°(G)). 

Let Zl denote Z1(L°°(G)). The quotient AAutD(B)/AInnD(B) is thus identified 
with C(X,Ad(11))/Ad*C(X, Zl). Identifying this quotient is a lifting problem: 
when can a continuous map x i—• Ad(Ux) be lifted to a continuous map x »—+ Vx 

with Ad(Vx) = Ad(Ux). There are two extreme cases: one when G is discrete, in 
which case it can always be done, and the other when G is non-discrete, where 
the cohomology presents an obstruction. 

PROPOSITION 4.1. Let G be a discrete group. Then 

C(X,Ad(Zl)) = Ad*C(X, Zl), 

so for parallel actions of G, every analytic automorphism fixing D is inner. 

Proof. Let {g\, g2,g3-> • • •} be the elements of G, {£i, £2* £3?...} the basis for 
L2(G) consisting of characteristic functions on the points {gi,g2>£3?---}» a nd 
€ij the rank one operator that takes £, to £,-. Each element F £ C(X,Ad(Zl)) is 
represented by a map x *—> Ux of X into Zl such that x f—-> Ad(L^) = F(x) in 
AMJ(3C) is continuous, where each Ux can be considered as a function in L°°(G) 
taking complex values of modulus 1. Let Vx in Zl be defined by 

Vx(gi) = Ux(gdUx(gi)* 

for / = 1,2,3,.... Thus Ad(Vx) = Ad(Ux) for all x in X, so V represents the 
same element F in C(X, Ad(Zl)). However, Vx^\ = £1 and an easy calculation 
shows 

AdiV^ej^V^V^VAgj^. 
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Since e/i is compact, the map x »—> Vx(gj) is continuous for each j , thus x i—> Vx 

is strongly continuous. That is, V is in C(X, Zl) and 

F = Ad*V e Ad*C(X, 1/). D 

We do not get a similar result when G is not discrete because there are no 
atoms around and so Z1(L°°(G)) is contractible. 

LEMMA 4.2. Let G be a locally compact, separable, non-discrete group. Then 
the unitary group Zl (L°°(G)) is contractible in the strong operator topology. 

Proof. G is a non-atomic separable a-finite measure space and so the groups 
of unitaries in L°°(G) and L°°[0,1] are topologically isomorphic. Thus it suffices 
to show that Zl = ^/(L0 0^, 1]) is contractible. We define a homotopy ht : 11 —> 
Zl by 

A,(£/)=l[0,,] + £/l[M] 

for all U in Zl and t in [0,1], where 1[V] is the characteristic function on 
the interval [s,t]. It is clear that t i—• ht(JJ) is weakly continuous for any U 
in #(L2([0,1])) and since ht(U) is in Zl for all U in Zl , the path is strongly 
continuous for all U in Zl. Thus ho(U) = U and h\(U) — I so this is a homotopy 
between U and / as desired. • 

PROPOSITION 4.3. Lef X be a compact space, G non-discrete, and Zl = 
Z1(L°°(G)). Then C(X,Ad{Zl))/Ad*C{X, Zl) is isomorphic to H\X\Z), the sec­
ond Cech cohomology ofX with coefficients in the integers. Thus, when G acts in 
parallel on space M with transversal X, the crossed product B = CQ(M) xa G 
gives a quotient of automorphism groups 

AAutD(B)/AInnD(B) ^ H2(X;Z). 

Proof. The results follows from the fact that n , the set of complex scalars of 
modulus one, sits inside Zl as a closed normal subgroup and so the map Ad : 
Zl —> Ad(Zl) Ç Aut{%^) is a principal 11-bundle, where n is homeomorphic to 
the circle Sl, Zl has the strong operator topology, and Aut( %^ ) has the topology 
of pointwise convergence. There is a well-developed theory on principal fiber 
bundles (cf. [15]) and rather than describe them here, note that in Theorem 4.1 
of [14], there is a proof of the result we have here except that in [14], Zl is 
replaced by the full group of unitaries on a Hilbert space 9( in the uniform 
topology, which is a contractible group in that topology. We will summarize the 
proof for our case, noting that only the objects have changed. There is an exact 
homotopy sequence 

> 7rt(S
]) — TTiiZl) - ^ 7Ti(Ad(Zl)) - ^ TTi-itf1) - * • • • . 
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Since 11 is contractible, TTiCU) = 0 for all / and 3 is an isomorphism between 
7r/(Ad(ïi)) and TT^ICS1) for i ^ 1. Thus 

( Z if i = 2 

so Ad(£i) is called an Eilenberg-MacLane space of type (Z, 2) and has the 
property that there is a natural isomorphism of abelian groups 

//2(X;Z)^[X,Ad(<£i)] 

where [X, Ad(*Zi)] denotes the groups of homotopy classes of maps F : X —-• 
AdCH). Now, with C„(X, Ad(£i)) the normal subgroup of C(X, Ad(^i)) consist­
ing of null-homotopic maps, there is a natural isomorphism of discrete groups 

[X, Ad(*/)] ~ C(X,Ad(U))/Cn(X,Ad(U)). 

Finally, by the covering homotopy theorem, every null-homotopic map can be 
lifted, which shows that C„(X, Ad(£Z)) C Ad*C(X, U), while the fact that U 
is contractible implies every element of Ad*C(X, Zl) is null-homotopic, so the 
reverse inclusion holds. Thus Cn(X, Ad(£i)) = Ad*C(X, 'Zi) and combining the 
last three equations gives 

H\X\Z) ^ C(X, Ad(^i))/Ad*C(X, ^ ) . 

The final statement of the proposition is just identifying the automorphism 
groups of the crossed product with the maps on X. D 

There is nothing mysterious about these analytic automorphisms coming from 
the cohomology; for example the real line R acting on the space of parallel S2 xR 
for X the two-sphere, such an automorphism is obtained by a map of the crossed 
product in the form 

gtutdt »—• / gtu)tutdt 
JR 

where these integrals are considered as the universal representation of the crossed 
product, with t \—> ujt a non-trivial cocycle from R into the group of unitaries 
in the diagonal. 

5. Examples. The motivating example for topological ordered groups is of 
course the real line with the usual order. More generally, an n-dimensional real 
vector space G with a regularly closed convex cone X such that Xn(—Z) = {0} 
gives an example of a topological ordered group with the dominated convergence 
property, where the order is given by s ^ t if t—s is an element of X. For instance, 
such a group is G — Rn with Z equal to the positive orthant of vectors with 

L 
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Case 1 Case 2 
Figure 1. Two non-conjugate foliations. 

non-negative coordinates, as is Minkowski space R4 with X equal to the forward 
light cone. An example of a topological ordered group without the DCP is the 
direct product of the integers with the real line, under the lexicographic order; 
that is, two pairs in Z x R are ordered («, t) ^ (rc', t1) iff n ^ nf, and t ^ t' 
when n — n'. The ordered group Z x R is order isomorphic to a single copy of 
the real line, with a discrete countable set removed; thus Z x R is Borel order 
isomorphic to the real line, yet not homeomorphic to it. 

A non-abelian example of a topological ordered group is the so-called "ax+ft" 
group; that is, the group of affine transformations of the real line given by pairs 
of real numbers (a, ft), with a positive. Take Z to be the semigroup of elements 
(a, ft) with a ^ 1 and ft ï̂  0. It is easy to check for this group that intervals 
are compact, thus the interiors generate the topology and the group has the 
dominated convergence property. 

For an instance of two isomorphic C*-crossed products which are not an­
alytically isomorphic, consider Wang's example 4.3.3 in [17] of two smooth 
foliations of the unit disk as shown here in Figure 1. It is not hard to see that 
these foliations are not conjugate by observing the difference in the orbits in 
the triangular region on the right half of each disk, or by calculating the Kaplan 
diagram. Thus, no matter what choice of smooth actions one takes for defining 
the C*-crossed product, by Proposition 3.10 the algebras are not analytically 
isomorphic. Nevertheless, by Wang, the C*-algebras of the foliation are isomor­
phic. Following the algorithm developed in [17] for describing the C*-algebra 
of a foliation, it is possible to describe the analytic algebras as the algebra of 
Co-functions from the half-open interval [0,1) into a direct product of lower 
triangular matrix algebras, with a boundary condition at 0. With 3C the algebra 
of compacts on L2(R) and di — 9t(E) the analytic subalgebra of 3C determined 
by the order on the real line, one choice for the orientation of the foliations 
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gives the analytic algebras as functions/ on [0,1] vanishing at 1, and taking 
values in the direct product 

V3C mJ I 

m o o 
ffie( ~ J e I x SH o | e9te9t 

with/(0) of the form 

( T2 0 0 

o T3 o |er 3er 4 

o o T4< 

in the first foliation, and in the second foliation, of the form 

T3 0 T4. 

The C*-crossed products are just the above algebras with the lower triangular 
terms replaced by the full algebras of compacts, including replacing the lower 
triangular algebras ÏH with 3C, and retaining the same conditions on / (0). It is 
easy to see why the C*-algebras are isomorphic: take an isomorphism which 
shuffles the rows and columns in the center 3 by 3 matrix as appropriate to 
transform the first condition on /(0) to the second. This is not an analytic 
isomorphism since it destroys the lower triangular form of the 3 by 3 matrix, so 
it cannot map one analytic algebra onto the other. It is also interesting to note 
that for both of these foliations, there is no automorphism of the crossed product 
Co(£l) xa R taking Co(Q.) xa R+ onto Co(Q) xa R~. Thus, the orientation given 
by the order, as determined by the choice of the action, is significant. 

REFERENCES 

1. William B. Arveson. Operator Algebras and Invariant Subspaces. Ann. of Math., 100 (1974), 
433-532. 

2. Operator Algebras and Measure Preserving Automorphisms. Acta Math., 118 (1967), 
96-109. 

3. J. Glimm. Locally compact transformation groups. Trans. Amer. Math. Soc, 101 (1961), 124-
128. 

4. Elliot C. Gootman and Jonathan Rosenberg. The Structure of Crossed Product C*-Algebras: 
A Proof of the Generalized Effros-Hahn Conjecture. Invent. Math., 53 (1979), 283-298. 

5. Philip Green. The Structure of Imprimitivity Algebras. J. Funct. Anal., 36 (1980), 88-104. 
6. Richard V. Kadison and John R. Ringrose. Fundamentals of the Theory of Operator Albegras, 

I & II. Academic Press, Florida, 1986. 
7. Cecelia Laurie. On Density of Compact Operators in Reflexive Algebras. Indiana Univ. Math. 

J., 30:1 (1981), 1-16. 

https://doi.org/10.4153/CJM-1990-037-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-037-9


730 M. P. LAMOUREUX 

8. Ru-Ying Lee. On the C*-Algebras of Operator Fields. Indiana Univ. Math. J., 25:4 (1976), 
303-314. 

9. Michael J. McAsey and Paul S. Muhly. Representations of Non-self-adjoint Crossed Products. 
Proc. London Math. Soc. (3), 47 (1983), 128-144. 

10. John Phillips and Iain Raeburn. Automorphisms of C*-algebras and Second Cech Cohomology. 
Indiana Univ. Math. J., 29:6 (1980), 799-822. 

11. Marc A. Rieffel. On the uniqueness of the Heisenberg commutation relations. Duke Math. J., 

% 39 (1972) 745-753. 
12. J. R. Ringrose. On Some Algebras of Operators. Proc. London Math. Soc. (3), 15 (1965) 

61-83. 
13. Jean-Luc Sauvageot. Idéaux Primitifs dans les Produits Croisés. J. Funct. Anal., 32 (1979), 

381-392. 
14. Mi-Soo Bae Smith. On Automorphism Groups of C*-Algebras. Trans. Amer. Math. Soc, 152 

(1970), 623-648. 
15. E. Spanier, Algebraic Topology. Springer-Verlag, New York, 1966. 
16. Hiroshi Takai. On a Duality for Crossed Product C*-Algebras. J. Funct. Anal., 19 (1975), 

25-39. 
17. Xiaolu Wang. On the C*-Algebras of Foliations in the Plane. Springer-Verlag Lecture Notes, 

New York, 1257 (1987). 
18. Dana P. Williams. The Topology on the Primitive Ideal Space of Transformation Group C*-

algebras and CCR Transformation Group C*-algebras. Trans. Amer. Math. Soc. (2), 266 
(1981), 335-359. 

Department of Mathematics, 
Statistics, and Computing Science 

Dalhousie University 
Halifax, Nova Scotia 
Canada B3H 3J5 

https://doi.org/10.4153/CJM-1990-037-9 Published online by Cambridge University Press

https://doi.org/10.4153/CJM-1990-037-9

