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1. Introduction

Let V' denote a complete discrete valuation ring with a fraction field K of charac-
teristic 0 and a perfect residue field k of characteristic p. Let X be a smooth and
proper scheme over V.

Recall [3] that crystalline p-adic smooth sheaves are Q,-adic étale smooth sheaves
on X characterized by associating to them certain filtered convergent F-isocrystals
on the special fiber X;: O~ ® K — vector bundles equipped with a convergent in
the open unit disc connection, a filtration, Griffiths transversal to the above con-
nection, and an action of the Frobenius on the corresponding convergent isocrystal.
Etale cohomology tends to form such sheaves.

In various arithmetic applications (for example, in [11]) the need for ‘arithmetic’
cohomology theory over X with values in crystalline p-adic smooth sheaves arises.
We define and study in this paper a candidate for such a cohomology theory.
The construction is similar to that of the generalized syntomic cohomology of
crystalline local systems on Xk from [10].

It has turned out (cf., [11]) to be important to understand the relation between our
cohomology and the étale one. We show here that the cohomology we define maps to
the arithmetic étale cohomology of X and that this map is injective defining a sub-
space of étale cohomology classes ‘coming from the integral model’. We prove this
injectivity by a detailed study of the behaving of the descent (from the geometric
to the arithmetic cohomologies) spectral sequence over X with the corresponding
one over Xx — a study which was also important in our proof of the f-ness of
K-theory classes in [11].
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Finally, we prove that, in the case k is finite, our cohomology satisfies a duality.
This generalizes the results of Bloch and Kato [1] for X = V' to higher dimensions
and agrees with thinking about the cohomology introduced in this paper as a ‘good’
arithmetic p-adic cohomology of X.

Throughout the paper p will be a fixed prime, for a field K, K will denote a fixed
algebraic closure of K, and, for a scheme X, X will denote the associated formal
scheme.

2. Preliminaries

We gather in this section all the basic properties of rings of periods and crystalline
smooth sheaves we will need.

2.1. RINGS OF PERIODS
2.1.1. Definitions

Let V' denote a complete discrete valuation ring with a fraction field K of charac-
teristic 0 and a perfect residue field k of characteristic p. Choose a uniformizer n
of V. Let Vy = W(k) be the ring of Witt vectors with coefficients in k and K its
fraction ﬁeld Let R be a smooth V-algebra such that R/pR # 0. Consider the p-adic
completion R. For simplicity, we will assume that Spec(R/pR) is connected, which
implies that R is a normal domain. In general, R is a product of normal domains
and what follows applies to each factor. We will also require R to be small, i.e.,
that there is_an étale map V[TF!, ..., Tf!]— R. It implies that Frobenius is
surjective on R/p.

We will now briefly recall the construction and properties of the rings B* (ﬁ), B(ﬁ),
and BdR(ﬁ) defined by Faltings in [3]. Denote by R the normalization of R in the
maximal étale extension of ﬁ[l /p]. Let S(ﬁ) = proj limﬁ/pﬁ, where the maps in
the projective system are the pth power maps. With addition and multiplication
defined coordinatewise S(R) is a ring of characteristic p. There is a homomorphlsm
0 from the rmg of Witt vectors W(S(R)) to R 6 maps (xg, X1,...) € W(S(R))

= (Xum) € S(R)L to the limit over m of xﬁm x” + -+ p"Xm, where means

a hft from R/pR to R*. The map 0 is surjective. Its kernel is generated by
= [(»] + pl(=1)], where (p), (1) € S(R) are the reductions mod p of sequences
of p-roots of p and —1, respectively (if p # 2 we may and will choose (—1) = —1).

The ring B+(/1§) is defined as the completion of the divided power envelope
D:(W(S(R))) of the ideal W (S(R)) in W (S(R)) with respect to the topology defined
by the ideals (1" + p” W(S(ﬁ))), where [ is the PD ideal of Dg(W(S(ﬁ))). It is
an algebra over B (V). The Frobenius automorphism on S(’IQ) induces an auto-
morphisms ¢ on W (S (ﬁ)) and B*(ﬁ). B+(/1§) is equipped with a decreasing separated
filtration F" B (R) such that ¢(F"B+(R)) C p"B*(R) and grl(B(R)) = R” (in fact, if
we denote by Fil' B*(R) the filtration by the closures of 7, then F"B*(R) is the ideal
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consisting of those elements of Fil"B*(E) whose ¢-image is divisible by p”). The
Galois group Gal(ﬁ/ﬁ) acts on B+(/R). The action is continuous, commutes with
¢ and preserves the filtration. There exists an element ¢ € F 1BJF(/IQ) such that
¢(t) = pt and Gal(ﬁ/ﬁ) acts on ¢ via the cyclotomic character: if we fix ¢ € S(ﬁ)
— a sequence of nontrivial p-roots of unity, then ¢ = log([¢]).

The ring B(ﬁ) is defined as the ring B+(/1§)[p_1, =11 with the induced topology,
filtration, Frobenius and the Galois action. Its associated graded is isomorphic to

Dz (BT (R)[1/p)(n) = ®uez R [1/p)(n).

Remark 1. The reader will notice that the ring B(}') we use here differs slightly
from the one introduced by Fontaine [5] and the one used in [10]. It is easy to check
though that the results and constructions from [10] hold if we replace the ring
of periods used there with the ring B(V') used in this article.

_ To construct the ring BdR(ﬁ), consider again the homomorphism 6: W(S(ﬁ)) —
R As a Vy-linear map 0 extends to a V-linear homomorphism 0: VQ®y,
W(S(/Ii)) — R". The kernel of this homomorphism is a principal ideal in V®y,
W(S(R)) generated by &, = [(n)] + n[(—1)]. Set Wy (S(R)) = V ®y, W(S(R)). Then

Bip(R) = proj im Wi (S(R))/(E, Wi (S(R))'[1/p].

It is equipped with the projective limit topology, where every quotient WV(S(’IQ))/
(&x WV(S(ﬁ)))"[l /p] has the p-adic topology. B:jR(ﬁ) has a natural filtration defined
by the closures of the powers of the ideal (&, Wy (S(R))[1/p] = W (S(R)1/p]
and a continuous Galois action.

The ring BdR(ﬁ) is defined as the fraction field of BjR(ﬁ) with induced structures.
The associated graded is isomorphic to the one associated to B(ﬁ).

2.1.2. Fundamental Exact Sequences

LEMMA 2.1. Let k = 0. Fixn = 0. There exists an arbitrarily large number m mak-
ing the following sequence of Galois modules

-~ —_ 7" -~
0— 2/p" > F*B*(R),,, — B*(R),,, — 0
exact. Here, if we set 0 < r(k) < p — 1 and q(k) by the equality k = (p — 1)q(k) + r(k),
then t% = ¢ ®y (=1 /p) and B*(R), ,, = BT (R)/(p"B*(R) + Fil" B*(R)).

Proof. By [10, prop. 5.1] we have an exact sequence

0= 7,i% — FD. SR 2L DA (SR — 0,
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Since

FEDAW(SR))" /(p" De(W(S(R))" + 1) 0 FED(W (S(R)))"
= F*B*(R)/(p"B*(R) + Fil" B*(R)) N F*B*(R),
it suffices to show that the map

1—p~*¢: "D:(W(SR))" + 1" N F*D«(W(S(R)))"
— (P"DAW(SR)))" + 11"

is surjective and that Z,/™ N @p"DAW(SR))" + 1) = p"Z, M. If we take
m =k + 1, the last fact easily follows since #/£ goes under the map into R to a
product of p'/?=D and a unit.

Concerning the surjection, note that ¢(Z"l)  pllD.(W(S(R))). For p # 2, this
immediately gives that, for m big enough, ¢p(/") p”*kDi(W(S(/R))). Making sure
that m > k, we get a surjection. For p = 2, we can not do as well. The problem arises
because ord>,(2") =3 a; if m =Y a;2". Still, we can make it bigger than n + k for
arbitrarily large m, as wanted. O

PROPOSITION 2.1. There are exact sequences of Gal(ﬁ/ﬁ)-modules
o~ _pk o~
@) 0— Q,(k) — F*BY(R)[1/p] uﬁ BT(R)[1/p] = 0, for k=0,
o~ —pk o~
(i)) 0— Q,(k) = F*B(R) —% BR)—> 0, for keZ.

Moreover, the surjections admit Qp-linear continuous sections.

Proof. Fix k = 0. For every n choose m(n) as in Lemma 2.1 such that there are
inclusions (p"B*(R) + Fil"™ B+(R)) > (p"*'B*(R) + Fil""*VB+(R)). Passing to
the limit with the exact sequences from Lemma 2.1 over the pairs (n, m(n)) one gets
an exact sequence

~ 1-p7k ~
0 7,/ - F'pr®R) L B*®R) - 0.

The existence of a Z,-linear continuous section follows now from the fact that
B*(R),, ) is Z/p"-free. The proposition easily follows from that. ]

The map
D:(W(S(R))) - Wi (SR)I1/p] = Bip(R)

can be extended to a continuous Galois equivariant map from B" (E) to B;R(/Ii). This
map is injective. Indeed, every element of B;,"R(’IE) can be written as an infinite sum
Y a,&"/nl, for a, € Wy(S(R)[1/p). It belongs to F"BI(R) if and only if
0(a,) = 0 for n < m. On the other hand, every element of D¢( W(S(/ﬁ))) can be written
as a finite sum ) a,&"/n!, for a, € W(S(ﬁ)). One can also assume that if @, # 0, then

0(a,) #0. One computes now easily that the injection DdW(S(ﬁ)))f—)B;R(/ﬁ)
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extends to the completion. The filtration induced on B*(/Ii) via the above embedding
into B}'R(R) is by the closures of 17, hence induces the correct filtration on B+(R)[l /p]
and F'B(R).

PROPOSITION 2.2. The following sequence of Gal(ﬁ/ﬁ)-modules is exact
0 Q, > BR) ® F'Bur(R) > B(R) & Bar(R) — 0,

where a(x) = (x, x) and p(x, y) = (x — ¢(x), x — y). Moreover, the morphism [ admits
a Q,-linear continuous right inverse.

Proof. Since B(R)‘f) ! ﬂFOBdR(R) Q,. we get the exactness on the left. Con-
cerning the surjectivity of f5, by Proposition 2.1 it suffices to show that
B(R)"=" + F'Bx(R) = Bsr(R) or that t"F'Bs(R) C BR)*=" + F'B(R) for
n > 0. Since grl(Bsz(R)) = gr%(BT(R)[1/p]), this last fact follows from the inclusion

B*(R)[1/p] € F'BY*(R)[1/p] + {a € B R)[1/plip(a) = p'a} forr> 1,

which could be proved paraphrasing [1, 1.17.3]. The key points are the surjection of
the projection projlimR* — R", (u,) — uo, onto the units of R, which follows
from Lemma 2.2 below; and the fact that ng(B+(R)[1/p]) = RA[l/p] One gets in
fact somewhat more, namely that ¢™"F OBL[R(R) is already contained in
("B (R)"=" + F'Bur(R).

To show that f§ has a continuous section it suffices to show the same for the
surjections

B R1/p) & F'Bur(R) &> 17 *B*(R)[1/p] ® 1 *F*Br(R). k > 0.

That, in turn, follows from the fact that the surjections

F*B*(R)[1/p] 22 B*(R)[l/p]
(*B*R)1/p)*~" @ FBar(R) > ™ F*Bir(R),  (x,) > x -y,

admit continuous sections by Proposition 2.1 and the argument of [1, 1.18] (here one
uses Lemma 2.2 again and the fact that grp(Bsr(R)) = ®uezR"(0)[1/p)]). O

LEMMA 2.2. Let y be a unit in_ R™. There exists a unit x € R" _such that X = y.
Proof. We can find a unit )’ € R such that y/ = y mod p!+>®~DR" and then, from

the definition of R, a unit x; € R such that x5 = ’. Thus we get a solution of the

congruence x” = y mod p' /¢~ DR". Now we apply Newton’s method: having a sol-

ution x, € R" of the above congruence mod pHP-DRA 3 > 2, we can lift it to a
solution x,41 € R mod p!*+D/¢-DRA guch that x,.i = x, mod p”/?~DR". In
the limit we get x € R” such that x’ = y. It is cleary a unit. O
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2.2. CRYSTALLINE SMOOTH SHEAVES

2.2.1. Convergent F-Isocrystals

Let X be a k-scheme of finite type. An affine enlargement of X/V is a triple (4, I, z),
where A is a flat V-algebra, [ is an ideal of A, nilpotent modulo p, A4 is I-adically
complete and z: Spec(A4/1) — X is a V-morphism. Endowing the category of affine
enlargements of X/ with the Zariski topology and taking sheaves on this category
one obtains the convergent topos (X/ V)., Of Ogus [13]. In particular, we get a
sheaf Kx,p in (X/V)eony by setting Ky,p(4):=A®K for any enlargement
(4,1,z2) of X/V. Now, a convergent isocrystal £ is a crystal of Ky,y-modules in
(X/V)eonv» 1.€., a Kyp-sheaf such that each morphism of enlargements
(A,1,z4) — (B, J, zp) gives rise to an isomorphism &(B) < &(4) ®,4 B satisfying
expected compatibilities. A convergent isocrystal £ is called of finite type if all
E(A)y’s are finite 4 ® K-modules. This yields that each £(A4) is a projective
A ® K-module. Also, in this case £(A4) has a natural p-adic topology. A convergent
F-isocrystal on X/Vj is a convergent isocrystal £ on X/Vj, together with an
isomorphism ¢*(€) — &, where ¢ is the Frobenius on X.

It is convenient to consider more general objects than enlargements, namely
widenings, where the p-nilpotency condition on the ideal / is dropped. One advan-
tage is that while products do not exist for general enlargements, they do exist
for widenings. Every widening T gives rise to a sheaf ir in (X/V),,,,» Which associ-
ates to an enlargement 77 of X/V the set of morphisms 77 — T of widenings of
X/V. It is canonically a direct limit of »n’th level enlargements /47 >~ injlim7,. If
T=(A4,1,z), then T, is given by the p-adic completion of the algebra
A[I"/=]/(p — torsion).

Fundamental enlargements are gotten by taking local embeddings X D U =
Spec(4/I) C Spf(A) into formally smooth V-algebras 4 and forming 7,’s of the
widenings 7' = (4, I, U — X). If X is smooth over k, it is even sufficient to consider
only local liftings. In that case, a convergent isocrystal of finite type corresponds
to locally free finite modules on these liftings with integrable, convergent in the open
unit disk connections. More generally, any sheaf £ in (X/V),,,, can be evaluated on
awidening T = (4, I, z): set £ =~ Mor(hr, £) =~ projlim{Mor(7,, £)} =~ projlim&r,,
and in the case £ is a convergent isocrystal and 4/V is formally smooth, 7 is
equipped with an integrable connection as an A-module. This connection comes
from finite level connections V:&r, — &7, ®4Q, . Note that in the case
Spf(A4) is a lifting of Spec(A4/1), £, ~ Er, for every n.

2.2.2. Filtered Convergent F-Isocrystals

Assume now X to be a smooth, separated scheme of finite type over V. Let X; denote
the special fiber of X. Let £ be a convergent F-isocrystal on X/ V), which is filtered
on the formal completion X of X along Xj, i.e., for enlargements coming from open
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subschemes Spf(A4) of X, £(A) has a filtration compatible with open immersions and
Griffiths transversal to the connection. We will assume from now on all isocrystals to
be of finite type.

Griffiths transversality allows this filtration to be lifted to certain widenings.

PROPOSITION 2.3. Let Spf(A) — Spf(B) be a closed immersion of noetherian for-
mally smooth p-adic formal finite type V-schemes and let £ be a filtered convergent
isocrystal of finite type on (A/n)/ V. Then the value Eg of £ on the formal completion
of Spf(B) along Spec(A/n) is canonically endowed with a Griffiths transversal
filtration.

Proof. Recall [12, 2.8], that £4 has a canonical structure of a crystal of
K ® O, y-modules, i.e., there is a crystal £5' of K ® O,,-modules on the nilpotent
site of Spf(4) such that (&%), >~ E4. Set B = projlim(K ® B/K ® J"), where
J C Bis the ideal defining 4. Equip it with the projective limit topology, where every
quotient K ® B/K ® J" has the p-adic topology. The crystal %' gives rise to a
topological B-module é%“ = projlim&p/;» endowed with a continuous isomorph-
ism P15dn — pzc‘,’%“, where pf are the projections B™ — (B®B™)™, satisfying
the usual cocycle condition. 5 can be filtered: set

Fké‘%n _ Z(jan)iF}/f—iéan’

where, for a continuous retraction 4: 4 — B" (B" is the J-adic completion of B
equipped with the projective limit topology, where every quotient has the p-adic
topology) and the induced map 7: K ® 4 — B, F) Ed“ =Im(i*FE — 8"“) That
this definition is independent of the choice of / follows, just as in the case of usual
crystals [14, 3.1.2], from Griffiths transversality of the connection.

Write B, for the p-adic completion of the algebra B[J"/=]/(p — torsion). By defi-
nition £p = projlim&p,. We filter £, via the canonical continuous embedding
Ep, <> & and let F'€5 = projlimFi€,. That this is independent of the chosen
retraction & follows from the convergent isocrystal structure on £.

It remains to show that this filtration is Griffiths transversal to the connection on
Ep. Again it is simplest to do the computations first on the nilpotent site of
Spf(A4). Think about Sa“ as commg from &4 via the retraction 4. Then the integrable
connection E“‘“ — <‘Zan ®5 Q) /i provided by the structure of crystal of K ® O4,y-
modules is induced from the one on £ 4 and compatible with the canonical connection
on B*. Since the last two connections are Griffiths transversal, so is the connection
é’an é'an Qg QL BV Fmally, since the connection £p, — €5, , ®p Q}g /1 1s compatible

n—1

with the connection &3 — £ @5 Qb /> We are done. O
2.2.3. Crystalline Smooth Sheaves

Let £ be a filtered convergent F- isocrystal on X/ Vo and let Spec(R) be a small open
of X. We can evaluate £ on B(R) B}, (R) and BdR(R) First, consider the
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Vo- enlargement B,(/Ii) (with the ideal (&, [(n)])) of R/m equal to the p-adic completion
of W(S(R))[é” /p]- It maps into B(R) B, (R) and BdR(R) We evaluate £ on B,(R) and

then pullback itto get £ ~, £ , ndé’ ~ . & ~ inherits Frobenius action. To
BRY 7 B (R) Bir(R)" "~ B(R) R

filter £ . ® and £ > first note that Bjp(R) = Wy(S(R)),, = projlim(K®
dR

WV(S(R))/K ® J"), where J is the ideal deﬁmng R in WV(S(R)) Next, choose

a continuous retraction /A: R—>BdR(R) over R”. Then 5 (’15 ’\’h*cc‘/\ and

~PE~AR  ~ BdR(R) Endow them with the tensor product ﬁltratlons

Bir(R) R " BL(R)

Griffiths transversality yields that these definitions are independent of the choice
of the retraction / (use the usual diagonal argument and the fact that £ induces
a crystal of K ® OE/V-modules on the nilpotent site of Spf (/R)). In particular, we

get that EB(R) 6%&), and 531,1{(13) inherit m(ﬁ[l /p]) action compatible with all

the other structures.
Recall that a filtered convergent F-isocrystal £ on X}/ V) is associated to a smooth
Q,-adic ¢tale sheaf L on Xk if there is an isomorphism (functorial in R’s as above)

EB(A) ~L; ®B(R) preserving Galois action, Frobenius, and, after extension to

BdR(R) filtration. Associated isocrystals form an abelian category. There exists a
functor from this category to the category of smooth Q,-adic étale sheaves on
Xk: an associated isocrystal £ is sent to a smooth sheaf L(€) on Xx such that

o . . . R 0 _\¢=1 : H
L(&); is functorially isomorphic to L(&IE) (€B(R) NF é'BdR(R)) . This functor is

fully faithful, exact, preserves tensor products and internal Hom’s. Its image is called
the category of crystalline smooth sheaves.

3. Cohomology of Crystalline Smooth Sheaves

Let X be a smooth, separated scheme of finite type over V" and let £ be an associated
isocrystal. Choose a covering of X by small affine open sets Spec(R), i € I. The
special fiber X is then covered by U; = Spec(R}/nR!). Choose close embeddings
of every U; into a smooth Vj-scheme Spf(R)) and of every Spec(R/) into a smooth
V-scheme Spf(R;), and a Vy-morphism o;: R; — R; over the identity on U;. Fix also
a Frobenius lift ¢; on /I?; We also require there to be étale maps from Spec(R))
and Spec(R;) into affine spaces over V|, and V respectively.
For every subset J of the index set, set

R; = QjesR;, RJ—®jejR/, UJ:ﬂUj’ ¢J:®j61¢j-
jeJ

Let R be the algebra of ﬂje 7 Spec(RY). Consider the widenings
T =Ry, I}, Uy Xy), T, =R}, I}, Uy Xp),

where I; is the ideal of Uy in Spf(ﬁj) and R} denotes the /;-adic completion of R;.
Similarly for T7.
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We can evaluate £ on the widenings 77, 7y getting, by the Proposition 2.3,
/Iéf,[l/p]-modules &y Equipped with an integrable connection and a parallel
Frobenius action, and R;[1/p]-modules £, equipped with an integrable connection
and a filtration satisfying Griffiths transversality.

Define

Q(EJ)‘ = ET} ®R’J Qk}/VU’ Q(‘E‘J)AV = ST, ®R, ij/y-

Filter the modules €7, ®g, Qg by submodules F¥(Er, ®, Qg p): = F*'E7,®
R, v~ By Griffiths transversality, for fixed &, the submodules
FYEr, ®r, Qf, ) form a subcomplex FXQ(E); of QE))y.

Concerning the Frobenius, the maps

i. i i
by €1, ®r, Uy, = €17 @R, Qe v,

q’)} = ¢, ®d¢p; glue to a Frobenius ¢;: Q&) — Q&)
Set

S(Es):= Cone(QEy) & FQUENy Laeye QENy) =11,

where f(x,y) = (x — ¢,(x), x —») and the map Q(E;) — Q&) is induced by the
Vo-morphisms o;: R; — R; we have chosen.

Varying J we get from the complexes S(€,) a double complex. Denote by S(€) the
associated simple complex. One easily checks that up to quasi-isomorphism nothing
depends on the choices made. Set

H} (X, E):= H*(S(€)).

The groups Hj(X, ) clearly yield functors on the category of crystalline smooth
sheaves. The following lemma shows that they give us a cohomology theory on this
category.

LEMMA 3.1. If 0> & — & — & — 0 is an exact sequence of associated
isocrystals, then for every closed immersion Spf(ﬁ)f—) Spf(A4), Spec(R) C X, into
a noetherian formally smooth p-adic formal finite type V-scheme, the sequence
0— E1(A) = E3(A) — E3(A) — 0 is exact in the filtered sense.

Proof. An exact sequence of associated isocrystals 0 — & — & — &3 — 0Oyields,
for every widening T and every n > 0, an exact sequence 0 — &1, = &1, —
&1, > 0. Since &~ is locally free of finite type, we get an exact sequence
0— &7 — &1 — &1 — 0. Remains to show that, for widenings of the type
appearing in the statement of the lemma, this sequence is exact in the filtered sense
as well. In the notation of the proof of Proposition 2.3, set J% = (K ® 4,)N
(J*y" and JO = projlimJ®. Since, for an associated isocrystal £, the associated
graded is locally free, we get

Fre) =) JORTE),
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where the map ER— projlim4, is induced by a continuous retraction hR—
projlimA4/J". The lemma follows now easily from the fact that any homomorphism
between associated isocrystals is strict for the filtration. O

Remark 2. In the case of Tate twists £ = Ky, {n} one can give a definition of
H;(X, £) avoiding making any of the above choices of coverings of X (cf., [11]).

4. Map to Etale Cohomology

We will now define a map of cohomology theories
I HF(X. ) — H*(Xg.L()

on the category of associated isocrystals.

4.1. ETALE AND GALOIS COHOMOLOGIES

Recall ([3], [10]) that one can associate with X a topos of locally constant sheaves X.
A sheaf in X associates to every open Spf(A) of X a locally constant étale sheaf on
Spec(Ak). This association behaves well with respect to the restriction maps and
satisfies certain sheaf condition. In particular, every locally constant sheaf L on
Xk defines a sheaf in 5(, and one proves [10] that, for X proper and smooth over
V, the étale cohomology H*(Xk, L) is isomorphic to H*()NK, L). There is also the
geometric cohomology H*(X=, -), which, for a proper and smooth X/} and a locally
constant sheaf on Xk, computes H*(X%, L).

The cohomology H*(Xk, L) is thus given by certain canonical complexes. Assume
that X is connected. First, one fixes an algebraic closure of the p-adic completion of
the function field of X. Next, for every open Spec(R) of X and a locally constant
sheaf F on Spec(Ry), one takes the standard resolution S'(F) of F, i.e., the standard
resolution of the discrete Galois module induced by F via the above choice of the
base point. It is a complex of discrete representations of the fundamental group,
acyclic for the group cohomology. For a sheaf F in X , the cohomology
H *(:\? , J) can be computed by the inductive limit, over affine Zariski hypercoverings
V. of X, of the cohomology of complexes C(Fy) = S(Fy)(AV)k.).

Using continuous Galois cohomology one can extend the above construction to
smooth, Q,-adic sheaves on Xk or, more generally, to any well behaved system
(F4), Spf(A) — an open of X, of continuous representations of the funda-
mental groups of Spec(Ag). Concerning the geometric cohomology, we set
H*(X, F): = inj limH*(;\,’Tx, Fr), where the limit is over the rings of integers of finite
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field extensions of K in K. For a smooth, Q,-adic sheaf L on Xk, we get
H*(Xg, L) ~ H*(X L) and H*(X%, L) >~ H*(XK,L)

4.2. POINCARE LEMMAS

To construct the map / to étale cohomology we will need the existence of various
resolutions.

4.2.1. Rigid Poincaré Lemma

Let B(R ), be the algebra of the nth enlargement associated to the widening given by
the algebra B,(RJ)® vo R} completed along Bt(RZ)/(é [(m)]). We equip it with the
Frobenlus induced by that on Bt(R”) and R, and with an action of the fundamental
group of Rf}[l/p] We have the following rigid Poincaré lemma.

LEMMA 4.1. The complex

0 — B(R))[1/p] ~ (proj imB(R)),[1/p]) ®r; Ui RI/ Vo

is a Frobenius equivariant resolution of B,(R )N1/pl.

Proof. We will exhibit a continuous B,(R})[l /p]-linear homotopy contracting the
above complex. Choose a p- adically complete formally smooth V- algebra Ry lifting
Rj/m, a retract1on h:R; — B, R}) lifting the obvious map R;/n — B,(R})/(i [(m)])
(note that B,(R )/ (&, [(m)]) ~ Aj/n[X]) and a Vy-map w: R’ — Ry lifting the map

R}/p — R/n, and consider the algebras B,(R/)®A R,(l)n, where R’ and

R/J(l) are the algebras of the nth enlargements associated to the wrdenrngs given
respectively by R’J and R J®VOR} completed along U,. For n = p(e + 1), where e
is the ramification index of V' over V), the retraction 4 and the map w give a
map B,(R )®A R (1), — B(R ),- Set ' =n—p(e+1) for n = p(e + 1). We claim
that there ijs'” also a map B(R ), — B,(R )®A R‘,(l)n Indeed, since
B,(R})®A R’J(l)n, is p-torsion free (by [12] R’J(l) /18 ﬂat Sver RJ ), by the universal
property “of B(R n» it suffices to check that the map B,(R J)®V0R ’

BI(R§)®A R’J(l), induced by the second projection R, — RJ®V0R maps the
nth power “of the ideal of B,(R})/(g, [(7)]) into the ideal generated by p. If we write
Bt(RJ)®V0R as B,(R )®A (R} ®V0R/) then this ideal is equal to the image of the
ideal  B(R))®y Tu, + @ [(OD&; (Ry&n k). But in BAR). (1)

th(R”) hence we are done. Smce the composition of the maps B,(R )®A

https://doi.org/10.1023/A:1014577828651 Published online by Cambridge University Press


https://doi.org/10.1023/A:1014577828651

134 WIESEAWA NIZIOL

RJ(l)n — B(R ), and B(R ), — B,(R )®A R "(1),, either way is the obvious trans-
ition morphism, we get an 1som0rphlsm of projective limits

proj im(B(R)&~ R (1),)1/p] = proj imB(R)),[1/p].

J.n

Let now the ideal (x,...,x;) C ﬁ/J be the kernel of w and let &;,...,¢&, in
/Iéf,( 1) = R,®y, R, be the standard generators of the ideal of the diagonal correspond-
ing to the chosen coordinates of R),. We have RJn = C},, where C;,=
/I§/J[T1]/((pT1 — x7) +p —torsion), for |I|=n, and R/J(l)n = Cy(1);, where
(), = ﬁ}(l)[SIRI 1/((pS1Ry — x;&p) + p — torsion), for |I| 4+ |I'] = n. Since under
the map R/ — Bt(Rf;) x; goes to 0, S;Ry, |I| > 0, becomes p-torsion in the tensor
product (B(R] )®A Ry(1),)M1/p].

Hence Ko

(BUR@, Ry (1,)1/p] = (B(R)& RIS/ pS1 = <1 /p)
~ (B(R)S RliEr. - &ulllS1/(pS1 — €)1 /p)

~ (B(R)IEL, - -, ELIISA/ ST — EN[1/p]
~ B(R)E, - Enllims -} /(o — EDIL/p).

Our complex is thus isomorphic to the complex

0 — B(R))[1/p] >
proj imB(R)Er - -, Enlliny, -« 1}/ (o — EDIL/PI®

® ~ Q
B’(R;) BI(R )] (<SS Cm]/Bz(R )-

Since the standard integration (say with respect to ;) preserves the convergence
condition encoded in the above projective limit, we can use it to construct the
required homotopy. O

COROLLARY 4.1. Let &€ be an associated isocrystal on X. The complex

0— 53(1@) — 53@) ®B,(R”)[l/ (proj hmB(R )L1/p) Qr, QR,/VO

is a Frobenius equivariant resolution of £ f)
Proof. Tensor the Poincaré resolution of B(R})[l/p] from Lemma 4.1 with £ By
J
Remark 3. Later on we will need to compute continuous cochain (Galois)
cohomology of Q(& ;) It is thus necessary to know that Q(& (;) resolves
£ ~ in the strong sense (cf., [2]). That follows here from the existence of a con-

B(R))
tinuous contracting homotopy, which we have shown in the proof of Lemma 4.1.
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4.2.2. Filtered Rigid Poincarée Lemmas

Let £ be an associated isocrystal on X. To treat the filtrations, consider the algebra
E(R)) = (Wy(S(R)&y Ry)y, = proj imK @ (Wi (S(R))&v R))/K @ 1",

where 7 is the ideal of R”A in WV(S(R )&y Ry, equipped with the projective limit
topology with every quotient having the p-adic topology. It is filtered with the clos-
ures of the ideals K ® I". The fundamental group of R”[l /p] acts continuously
on E(R}) via its actlon on WV(S(R})) We can evaluate £ on E(R}) choose a con-
tlnuous retraction /i R” — proj lim( WV(S(R NS VR /1" _over the natural map
R” R}A, take the induced retraction /i R K® R” — E(R}) and set

SE(;) —/i*EA. Define the filtration on & s the tensor product filtration.
J J

Griffiths transversahty yields that this definition is independent of the choice of
h (look at the crystal induced by £ on the nilpotent site of Spf (R )). Think now

about & ER) as coming from 5 = proj hm& e where 7 is the ideal defining
—_ J

R7 in R ;. Equip it with the 1ntegrable K®R J- connectlon induced from the one

on 5 and compatible with the canonical K ® R,- connection on E(R ).
J

LEMMA 4.2. The complex

0—¢& ~ =& ~ Qp Q
B (R)) ER) TRV

is a filtered, Galois equivariant resolution of €B+ I~
dR "

Proof. The argument follows the one in the integral case [10]: we only need to
substitute the infinitisimal site of Spf(R]) for the crystalline site appearing there.

First, we write £€ ~ ~& ~ ® (R) Then the above complex is
E(R}) Br(R)) m(R”

isomorphic (preserving the filtration and the Galois action) to the complex
0 — Bip(R)) — E(R)) ®r, Qv

tensored with & . ® . Next, choosing a continuous retraction R” — B}, (R”) over
the natural mapARI/i’{ — RT}A, we have a filtered, continuous, Galois equivariant
and horizontal isomorphism E(R 1)~ BjR(R )® ~ R;(l)dn, where R;(1)}, is the
rigid analytic completion of R; ® R, along the dlagonal and ® refers to the
completion of B R(R )® ~ Rj(l) with respect to the ideal K defining R”A (the
quotients (B R(R )® ~ R,(l)d“)/IC" have natural p-adic topology coming from

that of B R(Rf;) they are complete in this topology). It suffices now to show that
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the complex

0= Bip(R) = Bi(R)®, ~ Ry, ®r, U,yv

tensored with 53* & is exact in the filtered sense. Consider the complex
dR\T

0~ Bip(R)/1" — BRp(R) ®, ~ Ri(1))/K" —
— BiR) @~ R()L)/K"™ @, Qp,/V — ...
®R;y

That it is a filtered resolution of BZ{R(@)/I” is standard: write R,(1);, as
(K ®R IEr, - -, &l and use integration to construct a contracting continuous
filtered homotopy. The homotopies for various #n glue and contract continuously
the complex

0~ Bip(R)) = Bp(RD®, ~ Ry(1)3, ®r, Qg v

The same homotopy contracts this complex tensored with & = ~ (also in the filtered
sense) Pax( ) O

Consider now E*(I/QTJ’) =U,>o0 t’"F"E(I/i\’i) asa BJR(@)-Slﬁalgebra QEE(I/%\})[I*I]
with the induced structures. Define B/z(R}) = projlimE*(R)/"E*(R}) with the
projective limit topology. Filter it by powers of ¢ Finally, set BdR(I/@) =
Bix ﬁf})[l‘l] with the induced structures (put ~!' in degree —1).

Set £ ® 2 BdR(I/@). Endow it with the tensor product filtration.

=& ~
E(R)) ~ E(R,

Bur(R))
LEMMA 4.3. The complex

0—¢& — £ ®RJQkJ/V

Byr(R}) Bar(R})

is a filtered, Galois equivariant resolution of £  ~

Bar(R})
Proof. Folows from the fact that the homotopy we have constructed in the proof of
the above lemma was Bjj,(R))-linear. O

Remark 4. As before, the contracting homotopy is continuous.

Remark 5. A reader familiar with the proof of the de Rham conjecture will
recognize these resolutions as the good reduction incarnations of the resolutions
of Bygr appearing there ([3, 15]).

4.3. MAP TO ETALE COHOMOLOGY

We are now ready to define a functorial map from S(€) to a complex computing the
étale cohomology groups H*(Xk, L(£)). Set
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AE o) =E,n ®,n (PrOjimB(R)),[1/p) ® RYQR)/ Vi

Q€ R)): = Epp(R)) ® RIQR;/ V.

Everything above is equipped with an action of the fundamental group of 17271’[1 /p]
and the resolutions, Frobenius and filtrations behave well with respect to this action.

LEMMA 4.4. There is a Galois equivariant map of complexes Q(E A)

Q&  ~ ) compatible with the natural map € ~ — &
Bur(RY) B(R)) BJR(R)

Proof. 1t suffices to construct a B,(R”) llnear map pI'O_] 11mB(R )1/p] — BdR(R )
compatible with the natural morphism B,(Rf,’) — BdR(Rf;) The map o;: R, — Ry
we have chosen induces a continuous morphism from

proj limB(Rj , = Proj hrn(B,(RJ)QZu/0 R),

to projlim(DAW(SR)NGr,Ry),. Let now T be the ideal of Rj* in
C(W(S(R )))®V0R 7. Since it is a finitely generated ideal, we have a natural map

(DW(SR))®v,Ry), —
projlimK ® Dy (W(S(R )))®VORJ/K ®1" [14,2.6.4].

Since

E(R)) = projlim(K ® Wy (S(R))&v,R;/K & I")
< projlim(K ® D:(W(SR))®v,R; /K & T"),

we are done. O

For each subset J of the index set, we have sequences of morphisms between com-
plexes of sheaves of m;(R)[1/p])-modules

QEN = QUE =) — S(Q(EB(;))) 5(5 - ) S(L(&)®B(R );

()

QENy = AE, ) = SQE, 20— SE, o)

= S(L(E) ® Bar(R))),
J

where, by the above, (1) and (2) are quasi-isomorphisms. The first sequence is com-
patible with the Frobenius, the second one with the filtration. These sequences yield
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a morphism
S(Es) = Cone(C'(L(E) ® BR)) & C(L(E) ® F'Bur(R))
5 CUEL) @ BRY) ® CLEL) © Bar(R)I-11

where fi(x, y) = (x — ¢;(x), x — y). Now, our fundamental exact sequence (Proposi-
tion 2.2) yields a quasi-isomorphism

C(L(E)) — Cone(C (L(E;,) ® BR)) ® C (L&) ® F'Bir(R)))

L cwe,) o BR) @ CLE,) ® BirR)I-11.

Denote by U. — X the hypercovering of X induced by our chosen covering of X.
Assume that U — X is rigid (cf. [6, 4.2]). We find the desired morphism
[:8(&) — injlimy, crygrex) C (L(E)y) into the étale cohomology as the composition

S(€) — Cone(C(L(Ey) ® BU)) & C(L(Ey) ® F*Bar(U))

L C (W) ® BU) @ C(LEY) ® Bar@l)))[~1]
~ Cone(C'(L()y, ® BU)) & C (L), ® F*Bar(U))

L CE)y ® BU) & CLEY ® Bur@U))[-1]
< C(L(E)y) — injlim C(LE)y).
V.eRHR(X)

Here RHR(X) denotes the category of affine Zariski rigid hypercoverings of X. By
[6, 4.3], it is a directed category. Since, for an associated isocrystal &, the associated
graded is locally free, any homomorphism between associated isocrystals is strict
for the filtration, and the passage from hypercoverings to rigid hypercoverings does
not change cohomology (cf.[6, 4.5]), [ defines a natural transformation of
cohomology theories

LHp(X, ) — H*(Xk, ().

Everything above is independent of choices.

5. Comparison of ‘Descent’ Spectral Sequences

Assume that X is proper and smooth over V. Set Gx = Gal(K/K). Recall [3, IV.¢]
that, for every filtered convergent F-isocrystal £ on X, the crystalline cohomology
groups H! (Xy/V,E), ie., the cohomology groups of the convergent topos
(Xk/V)eony With coefficients in £, form filtered F-isocrystals on the base V. Moreover
[3, 5.6], if £ is associated to a smooth Q,-adic ¢tale sheaf L on Xk, then the groups
H{ (X/V,&) are associated to the Gg-representations H'(X%, L). In particular,
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we can apply to H. (Xi/V, €) the results of [1] and [9]. We will need the following two
facts.

LEMMA 5.1. Suppose that £ is an associated isocrystal on X. Then there is a long
exact sequence

— H{(X,€) — HL(Xi/Vo, ) & FPHL (X V. )

L H (X Vo, &) @ HL(X V. €) —,

where fi(x,y) = (x = (x), x = y).
Proof. From the definition of Hy(X, €), we get the long exact sequence

— H{(X, &) > H(Xi/ V0. ) ® Hy(Xy/ V., FE)
Ll (X Vo, €) @ HL(Xi/ V. ) — .

If £ is associated to a smooth Q,-adic etale sheaf L on Xk, it is easy to check that Lis
de Rham in the sense of Tsuzuki [15, 3.1.3], hence [15, 3.1.4] Hodge-Tate in the sense
of Hyodo [7]. In particular [7, 0.3], we have a Hodge-Tate decomposition for the
geometric étale cohomology of L, which yields, by dimension count, the degener-
ation of the Hodge—de Rham spectral sequence for £. From that we can conclude
that the morphism H! (Xy/V,F°€) — H!(X,/V,€) is an injection, i.e.,
H! (X V,F°8) ~ F'H! (X;/V,€), and we are done. O

Recall [9, p.757] that the complex

. ) B ) )
HL(X/ Vo, &) @ FPHL(X,/ V., €) L H, (Xi/ Vo, €) @ He (Xi/ V', E)

computes the cohomology groups H;( V,H. (Xx/V,E)). Hence the above lemma
yields the short exact sequences

0— H}(V, Ho(Xx/V, E) — H{(X,E) — H)(V, H(Xi/V, &) — 0. (1)

This sequence can be thought of as a crystalline ‘descent’ spectral sequence — a
spectral sequence relating the geometric crystalline cohomology to the arithmetic
one. On the level of étale cohomology we have a similar ‘descent’ spectral sequence,
i.e., the Hochschild—Serre spectral sequence

H? Gk, HY(Xg, L(€))) = H"™(Xk, L(E)).

The question arises how the map /: H;(X , &) = H*(Xk, L(£))) behaves with respect
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to these two spectral sequences. Theorems 5.1 and 5.2 below address this question.
As a corollary (Corollary 5.1) we get that the map / is injective.

THEOREM 5.1. Suppose that £ is an associated isocrystal on X. Then there is a
commutative diagram

HYV. Hi(Xi/V.€) —— H(Gx. H'(Xz. L))

T T

HI(X, &) LN Hi(Xg, L(E)).

Proof. The definition of the map / and the above lemma yield the following com-
mutative diagram

HL(Xi/Vo, ) @ FOHL(X/V,E) —— H(X,LE)QBOLE) ® F'Bi) —

Hi(X, ) — HI(X, L(E)—
— Hi(Xp, L) @ BOLE) @ F'Bjr) «—— H(Xz, L(E)) ® (B(V) ® F'Bsr(V))

| i
— H'(X, L&) — Hi(Xz, L(E)),
where B and By stand for the systems of continuous Galois modules B(/R) and
Bir(R), respectively.

By Proposition 2.2, the map f is injective. We claim that so is the map g. To see
that write L(£) = L ® Q, for a locally constant sheaf £ = (£,),cN- Set

H*(Xg, L(E) ® B): = (proj limproj lim H*(Xy, £, ® B/I"™)[1/p, 1/1];
H*(Xg. L(€) ® Bjp): = (proj lim H"(Xg. L(€) ® F*Bur/ F" Bap)[1/1].
Recall that Faltings’ theory of almost étale extensions yields isomorphisms

H'(X%, L(E)) ®q, B(V) - H'(Xg, L() ®q, BY):
H'(Xz, L(©) ®q, Bar(V) = H'(Xg, L(E) ®q, Bjp)-

Hence the injectivity of the map g, the map 4, and, consequently, the map f.
Recall now [9, p. 757] that the map

LHXV,H (X V. €)) > H (G, H' (X%, L))
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is induced by the comparison morphisms of Faltings, i.e., by the compositions

H.(Xi/ Vo, &) ®y, BV) — H'(Xg, L(€) ®q, B") < H'(Xz, L(E))®q,B(V).
H.(Xi/V,E) ®y Bar(V)
= H'(X, L(€) ®q, B)y) < H'(Xz, L(€)) ®q, Bar(V).

The statement of the proposition follows now easily from the above diagram. []

THEOREM 5.2. Let € be an associated isocrystal on X. Then there is a commutative

diagram.
. ! .
Hi(X, &), = H'(Xg, L(E))
TZ »lzl’]
HI(V,H\(X/V, ) L HY Gk, H™'(Xg, L(E))
Here

H'(Xk, L(€))y = ker(H'(Xg, L(E)) — H'(Xg, L)),
and
H{(X, )y = ker(H/(X, &) — H)(V, Hi(Xi/ V. ).
and p, comes from the Hochschild—Serre spectral sequence
H?(Gg, H'(X%, L(€))) = H"™(Xk, L(€)).
Proof. Proposition 5.1 and the description of the comparison morphisms given in
its proof together with the long exact sequence (1) and Proposition 2.2 reduce

the proof to the below lemma. ]

LEMMA 5.2. Let L be any smooth Q,-adic étale sheaf on Xg. Then the following
diagram

H/(X,L® (B® Bsr/F'Bir)) —— H'(Xg, L ® (B® Byr/F'Bur))’

] |

H*(Xg, L), — HY(Gg, H' (X%, L))

commutes, where the connecting morphisms  are induced by the exact sequence from
Proposition 2.2.
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Remark 6. The fact that the left morphism & factors through H*!(Xx, L), follows
from the commutative diagram

H/(X,L® (B® Bir/F'Bir)) —> H'(X%, L& (B® Bir/F'Bur))
H*(Xg, L) R H*(Xg, L),

where the right 0 is zero by the theory of almost étale extensions (see the proof of
Theorem 5.1).

Proof. Since B(R) = injlim/*B*(R)[1/p] and Byr(R) = injlimt*FB,x(R), we
can argue on finite levels. Recall (Proposition 2.1 and the proof of Proposition 2.2)
that, for k > 0, we have the following two exact sequences

0— Q, — FKBY(R)[1/p)(—k) L BY(R)[1/p)(=k) — 0, for k >0,
0— Q, = (T*B*R1/p)*~" — " F Bir(R)/F*Bsr(R) — 0, for k > 0.

Since F°Bug(R)/F*Bur(R) < B*(R)[1/p]/F*B*(R)[1/p], the second one can be
written as

0= Q, — (B*(R)1/p)*="" (=k) — B*R)[1/pl/F*B*R)[1/p)(—k) — 0.

We will now pass to the integral setting, where we have at our disposal the topos of
locally constant systems X and all the associated cohomological machinery.

LEMMA 5.3. Letk = 0. Fixn = 0. Let L be a locally constant sheaf on X such that
P"L =0. Then, for an arbitrarily large number m, there exists an exact sequence
of Gg-modules

0— H'(Xg, L® Z,t") - H'(X%, L® F'Bf,) - H'(X%,L® Bf,) — 0,
where F¥B, and By, are the sheaves on X given by FkBJr(’R)n’m and B*(ﬁ)mm.

Proof. The numbers m and the sequence come from Lemma 2.1. It remains to
prove that the morphism H'(X%, L® Z,i'") - H'(Xz, L® F*B],) is injective
for large enough m. Consider the following commutative diagram

Hi(Xg, L® Z,/") ——  projlim, H (Xz, L® F*Bf

i et

Hi(Xg, L) ® Z,M" —— Hi(Xg, L) ® FKBH(V) SN Hi(Xg, L) ® Fil B*(V).

) —— projlim, H'(X¢, L® Fil'B},)

n,m

Since the right vertical map is by Faltings an injection (cf., the proof of Lemma 8.1 in
[10]), it suffices to show that so is the map H'(Xz,L)® Z,(* - H'(Xz, L)®
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Fil*B*(V). This follows from the exact sequence

0 — 7,/ —— FllkB+(R) ’. B*(R). O

LEMMA 5.4. Letk > 0. Fixn = 0. Let L be a locally constant sheaf on X such that
P"L = 0. Then, there exists an exact sequence of Gg-modules

0 — H'(Xg, L®Z,") > H'(Xg, L® (B)?=") > HI(Xg, L® B}) — 0,
where (B*)"’:pk, B;" are the sheaves on X associated to the presheaves
B*R)’*" and B*(R), = Im(B* (R — B"(R)/F*B*(R)).

Proof. Since the ring B+(R)k injects into B*(R)/F*B+(R), itis Z p-flat and we get a
sequence as in the lemma Remains to prove that the map H ’(Xf L® Z,t Ky —
H’(X— L® (BH)” =7 ) is injective. For large enough m, we have a commutative dia-
gram

H(Xz, L®Z, W) ——  H(Xp, Lo (BH)'™) —— projlim,H (X, L® B}

J 1 A

Hi(Xg, L) ® Z,i" —— Hi(Xg, L)® BH(V)* —— Hi(Xg, L) ® BT (V).

Since the right vertical map is by Faltings an mjectlon and B+(V)k is Z -flat, it
suffices to show that so is the map H’(.)c'—, L)® BT (V)? = H’(.)c'—, L)®
B*(V). But that follows from B*(V)*= 7 /BT (V) being Z,-flat. O

The above two lemmas allow us to reduce the proof of the proposition to the question
of showing that, for k = 0, n = 0, any locally constant sheaf L on Xk annihilated by
p", and a well chosen arbitralily large m, the following two diagrams commute.

H(X,L® B;,(—k) —_ Hi(X~,L® B (—k))°*

n,m
0 0
+ +

HH (X, L® Z,iM(—k))y — H(Gx, H'(Xz, L® Z,i*/(—k)))
HI(X,L® Bf (k) SN Hi(Xg, L ® B (—k))°x

0 0
+ +

P1

H*' Xk, L® Z,{%(=k))y —— H'(Gk, H(Xz L® Z,t"%(—k)))

Here the connecting morphisms come from the exact sequences in the above lemmas.
We finish by evoking Lemma 5.5 below. O

The following lemma is a variation on a cohomological lemma of Jannsen [8, 9.5].
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LEMMA 5.5. Let A be an abelian category with enough injectives and let
A4 S5B>Cc3 A1), where H(v) is injective, be a distinguished triangle in the
derived category of the bounded below complexes in A. Let f: A — B be a left exact
functor into another abelian category and denote by F' the decreasing filtration
induced on the limit terms by the hypercohomology spectral sequence
RPfHYUK )= RPYIf(K") for a bounded below complex K in A. Then the diagram

Rf(C)  ——  SHY(C)
0 o

P1

FIR™f(4) RH'(4)
commutes, where p, is induced by the hypercohomology spectral sequence.

Proof. We can assume that 4" and B consists of injectives, and C° = Cone(v).
There is a commutative diagram with exact rows

n

0 — H'(A) —> A"Imd}y! —— Imd, ——> 0

T d

0 — H'MA4) —> E — kerdf, —— 0

0 —> HY4) —>  H(B) ——> H(C) — 0,

where E = ker(dj —u) and the map E — H"(B) sending ([d], (¢, b)), a € A",
d e A, b eB (d,b)eckerd!. to b+ v(a). The morphism u:kerd? — A"
factors through Imd”, because of the injectivity of H""!().

We get the following commutative diagram

RfH"(A)
0N
fImdy — fkerd}. — fH"(C)
Since R'f(C') =fkerd}./Imfd%" and F'R™'f(C) < fImd’,/Imf(d"), it suffices
now to show that the diagram

fImd” > RUFH(A)
o\, p;
FIR(O),

where the map w is surjective, commutes. But this was already proved by Jannsen. []

COROLLARY 5.1. For an associated isocrystal £ on X, the morphism [: H}(X, ) —
H'(Xg, L(£))) is an injection.

Proof. Let x € Hy(X, £) map to zero in H'(Xx, L(£))). By Theorem 5.1 the image of
xin H (Xi/ Vo, €) @ FPH(Xy/V, €) is zero. Hence x € H/{(X, £),. By Theorem 5.2,
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x comes from an element in the kernel of the map /: Hfl(V, HIZY XV, ) —
H'(Gg, H™' (X%, L(£)). Since this map is injective, we are done. O

6. Duality

6.1. PRODUCTS

PROPOSITION 6.1. If M and N are associated isocrystals, then there exists a
canonical product

U HY (X, M) ® HI(X, N) — HI™(X, M@ N)

which is anticommutative and associative. Moreover, it commutes with the morphism
I:Hi (X, ) - H*(Xg, L()).

Proof. The de Rham product Q(M,) @ QN ;) — Q((M @ N),) can be used
[9, prop. 3.1] to define a homotopic family of maps of complexes

Uyt M) @ SNy = S(M®N),)), €y,

(x1, X2, X3, X4) Uy (V1, 12, V3, 4)
= (x1 Uy, x2 Uy, x3 U (o1 + (1 =), (y1)+
+ (=D (1 = 0)x1 4 o, (x1)) U ys, x4 U (ap1 + (1 — a)yo)+
+ (=D ((1 = 0)x1 4 0x2) U pg).

The maps Uy, U, are associative and U,, U;_, anticommute. The rest of the proof
follows the one for the integral crystals [10, 7.1]. O

6.2. COHOMOLOGY SUPPORTED ON THE SPECIAL FIBER

For an associated isocrystal £ on X, define the groups with support on the special
fiber X as

JHI(X, €): = H* (Cone(S(E) - injlim C(LE),)~1]).
’ V.eRHR(X)

Since, for an associated isocrystal &, the associated graded is locally free and any
homomorphism between associated isocrystals is strict for the filtration, they form
a cohomology theory. From the definition we get the long exact sequence

— H™ (X, L(€) — ,H{(X. &) - Hi(X.&) > H(Xx, L) >

Assume that X is proper and smooth over . We have shown Corollary 5.1 that
the map /: H}(X, €) - H(Xk,L(€))) is injective. In particular, we have an exact
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sequence

0~ Hi(X, &) > H(Xg, L) ~ JH[™ (X, ) — 0.

6.3. DUALITY

Having all the constructions out of the way, the duality theorem follows now just as
in the integral case [10, Theorem 8.1]. Let X be a proper and smooth scheme over
V, of pure relative dimension d. Assume that the residue field of V is finite. For
an associated isocrystal &£ define 2 := £*{—d — 1}, where £* is the internal Hom
into the trivial filtered convergent F-isocrystal Ky, p.

THEOREM 6.1. For any associated isocrystal £ on X, there is a perfect pairing
JHIUX, &) ® HIPT(X, EP) — (HXMF (X, Kyypi—d — 1) 5 Q,.
Proof. Concerning the trace map, we have
HIX, Ky pp{—d — 1)) < H*(Xg, Q,(d + 1))

< H2 Gy, Y (Xg, Q(d + 1) > H(Gx, Q,(1) — Q,,

where the first isomorphism follows from the fact that H}(X, Kxv{—d —1}) = 0 for
i>2d+1 (cf, [10, Theorem 8.1].
To define the product notice that the commutative diagram

Hi(X, &) @ H}'?7(X,€P)  —— HFP(X, Kyyp{~d — 1) =0
I®!
H'(Xg, L) ® 7 7(Xk, L) ——  H*P(Xk, Qy(d + 1))

shows that H}(X ,€) and H?d“_"(X , EP) annihilate each other. Since the morphism
I H{(X,E) — H'(Xg, L(E)) is injective, this diagram and the products on étale
and f-cohomologies induce a product

HI(X, ) @ HI (X, EP) — (HYV (X, Ky jyl—d — 1)),

Consider the complex

0— H'(X.€) L H (X, LE) > H}*P(X, €P) — 0,

where the map ¢ is induced by the étale product. Using étale duality
(H™Y( Xk, L(E)) ~ H*3~1(Xg, L(EP))") we check that r = /*. Hence, ¢ is surjective.
That reduces checking that we have the perfect pairing we want to showing that
the Q,-rank of H'~!(Xx, L(£)) is equal to the sum of the Q,-ranks of H; (X, £)
and H/%d+3’i(X, EP). This follows exactly like in the integral case [10] from the
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crystalline, étale, and Galois dualities, and the degeneration of the Hochschild—Serre
spectral sequence shown in the Proposition 6.2 below. O

PROPOSITION 6.2. Let € be an associated isocrystal on X. If the residue field of V' is
finite, then the Hochschild-Serre spectral sequence

H'(Gg, H' (Xg, L(E)) = H™Y (Xk, L(E))

degenerates.

Proof. Since H}’(V, H. (X/V, 5)—I>H°(GK,H’7(X?, L(£))) and H({E(X, E)——
H)(V,H(X/V,€), Theorem 5.1 gives that H'(Xg, L())—— H"(Gk, H'(X%,
L(&))). By Poincaré duality this vyields that H?*(Gg, H(X%, L)) —
H™2(Xg, L(E)). The proposition follows now from the fact that the group Gg
has cohomological dimension 2. O
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