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ABSTRACT 

The constitution of stationary single sunspots of circular shape is considered. 
Account is taken of the mechanical effects of the magnetic field, including those 
which arise from the curvature of the lines of force. To make the system of 
magneto-hydrostatic equations manageable, it is assumed that the relative 
distribution of the vertical component of the magnetic field is the same across 
the flux-tube of the spot in all depths. Preliminary results indicate that sup­
pression of convective energy transport by the magnetic field in those depths in 
which ionization of hydrogen takes place, will give the essential observable 
properties of sunspots, relatively independent on the asumptions about the 
physical processes in greater depths. There the physical properties of matter can 
deviate but very little from those of the indisturbed hydrogen convection zone. 

I. ASSUMPTIONS 

The assumptions made in this attempt to determine the relation between 
the constitution of sunspots and their magnetic field divide into two groups; 
those which seem obvious, if we deal with a simple picture of a sunspot 
(group A), and those which determine the particular model to be con­
sidered (group B). The latter are not necessarily true, but are suggested 
for a first attempt by their simplicity. 

A 1. We consider a circularly shaped single spot (H 1 in the Zurich 
classification). Therefore cylindrical symmetry around the z-axis of a 
co-ordinate system r, 0, z is assumed, the z-axis being perpendicular to 
the sun's surface, which is taken to be plane, the positive direction of z 
pointing toward the centre of the sun. On the axis (i.e. for r = o) the electric 
current and the r-component of the field Hr vanish, and the vertical com­
ponent Hz has there a maximum. 

A 2. The spot is assumed to be in a quasi-static equilibrium, that means, 
all derivatives with respect to time are put equal to zero. This seems a fair 
approximation for relatively long-living single spots. 
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A 3 . The magnetic field strength and its derivatives vanish for z = — 00 
(infinite distance above the sun) and for r = 00. 

B 1. All material motions in the spot are neglected. 
B2. The magnetic field has no torsion, that means H$ vanishes every­

where, each line of force lying in a plane perpendicular to the sun's surface. 
B 3 . We assume that the relative distributon of magnetic flux through 

a horizontal cross-section of the sunspot is everywhere geometrically 
similar. 

2 . FORMULATION OF THE SIMILARITY-ASSUMPTION 

The ratio of the vertical component Hz(z> r) to the central intensity H{z) 
at the same depth z is assumed to depend on z only by a scale factor £(z), or 

Hz{z,r)=H{z).D{a)ID{6); a = £(z).r. (i) 

Then i/£(z) describes the dependence on depth of the diameter of a flux-
tube constituting the magnetic field of the sunspot, and the function D(a) 
determines the shape. Due to the continuity of the lines of force (i.e. 
div H = o) Hz at homologous points (i.e. a fixed) and H(z) =Hz(z, o) in 
particular, have to be larger where the tube is more constricted and vice 
versa, they vary in fact like £2(z), so that with a suitable normalization of 
D we may write for the field on the axis 

H(z)=?(z).D(o) (2) 

and generally for the vertical component 

H,(z,r) = ?(z).D(a); oc = ̂ (z).r. (3) 

Using once more the equation div H = o, we find the component of the 
field perpendicular to the axis of the field-tube to be given by: 

Hr(z,r)=-(d£ldz).ctD(a). (4) 

The condition of similarity of flux-distribution therefore implies that the 
ratio of the field components increases linearly with the distance from the 

The quantity a introduced so far as the distance from the axis scaled down 
by £, has a simple meaning: The equation 

a(£, r) = const 
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determines the lines offeree, i.e. a is constant along the lines of force. For 
the magnetic flux through a horizontal circle of radius r we obtain 

27r Hzrdr = 2n D(a) da. (6) 
Jo Jo 

The magnetic flux between a given line of force and the axis is therefore 
independent of depth, as it has to be. 

3 . THE D I F F E R E N T I A L EQUATION FOR THE 
MAGNETO-HYDROSTATIC EQUILIBRIUM 

According to the assumptions (A 1) and (B 1) we have 

- ^ - H . c u r l H = / > g - g r a d ^ , (7) 
4.7/ 

p being the density, g the gravitational acceleration and p the gas pressure. 
The r-component of (7) is 

(dHr dH,\ dp 

or using a dash to denote the derivative with respect to the depth z 

This gives, integrated over r (that is over a) from the axis to infinity, 

^ r°aZ)"(a) doL-\?D\o)= -^nAp, 

because ocD vanishes for a = o as well as for a = op, with 

Ap=p{oo,z)-p(o,z), 
and the abbreviations 

H=?D(o)=y* and f=^j"«D*(a)d* (8) 

we obtain fyy" - y* + 8TTAp = o; (9) 

the basic differential equation of the magnetic field. 
The z-component of (7) gives for the pressure difference between the 

axis and the undisturbed layers of the same depth: 

(Apy=gAP, (10) 
(where Ayo = />(oo, z) — p(o, 2)) because the magnetic force vanishes for 
r = o and r = oo. Due to our assumption of constancy of shape we need 
only to know the physical state of the matter along the axis of the field-tube 
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and in great distances from this tube and our partial differential equation 
(7) reduces to an ordinary one with the depth as the only independent 
variable. The term y4 in Eq. (9) represents the effect of the magnetic pres­
sure across the lines of force, while the term fyy" expresses the effect of the 
Maxwell-Faraday tension along the lines of force, which comes into play 
only where these lines are curved. The usual neglect of this term is in­
admissible, particularly above the photosphere where Ap certainly becomes 
insignificantly small. Before entering into the more complete discussion 
of the constitution of the field-tube we consider some formal properties 
o fEq. (9). 

y" = o is a solution of this equation, if 

y*l87T = H2l8n = Ap (11) 

and at the same time y' = const = 0, (12) 

say, that gives y = a(z-z0), 

8nAp = a*(z-z0)\ 

2ngAp = a\z-zQ)*J 

0 * 0 . (13) 

It is interesting to note that configurations can exist, where the tension 
along the lines offeree do not contribute to the lateral forces even though 
the lines of force are not straight (i.e. a =f= o) ; the practical importance of 
these configurations must however be quite limited since they possess an 
essential singularity at the point z = z0, where the diameter of the flux-tube 
(a 1 jy) becomes infinite. Yet, the case a — o with Ap = const; Ap = o may be 
a good approximation wherever the flux-tube is sufficiently slender, this 
is, however, at least near the photosphere, certainly no good approximation. 

If y', y 4=0 we may multiply Eq. (9) by y'jy and integrate once to obtain 

fy'z = \y*_ i67r \ Ap - dz -f const 

= £y4 + i6ng Ap In ydz + const. (14) 

This form shows that above the sun's surface (z < o) where to a very good 
approximation Ap = o, the condition of vanishing field strength for infinite 
distance leads to the first-order equation 

fy'*=\y*- (15) 

The solutions of (9) for the interior (z>o) have to be adapted to this 
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condition. The only solutions of (15) which are regular for all z < o are of 
the form r 

where z0 > o is the point in which the field strength would become infinite, 
if the solution were continued into the interior. The equation of the lines 

° f f o r C e i s r = const (z-z0). (17) 

This is the equation of straight lines which intersect the axis r = o at z0. 
The field therefore falls off like that of a monopole, which is an obvious 
consequence of our assumptions. 

4 . P A R T I C U L A R DISTRIBUTIONS OF 
MAGNETIC FLUX 

By the Eqs. (6) and (8) the cons tant / i s related to the total magnetic flux 
F b Y : foo l /-co 

nflF= aD\a) da D{6) aD{a) da. (18) 

We study this relation by considering some examples for the shape-function 
Z)(a). We remark, that this quotient is invariant against the substitution 
CiDfaoL) for D{a)y cx and c2 being constants. 

i . If we assume a gaussian shape for the horizontal distribution of 
magnetic flux, namely ^ =D{Q) g_a% ( i g ) 

we obtain by Eq. (18) F=27rf. (20) 

2. The observations of flux-distribution at the surface of sunspots lead 
to the well-known Broxon formula, which gives 

*--*'(-5)"^rJ' <2I) 

where H0 is the central field strength and r0 the radius of the penumbra, 
and further very closely 

F=2TT[CCHzrdrxH0rl (22) 

Putting a = J r > 

we obtain D(a) = D(o) j 1 — \ a21 cos a for a < - (23) 
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7T 

and Z) (a )=o for a^—. (24) 
So we obtain from Eq. (18) F= i-yonf. (25) 

Considering the uncertainty of the Broxon formula (cf. W. Mattig[i] and 
G. Thiessen[2]) the difference between Eqs. (20) and (25) seems to be 
unimportant. 

3. We have assumed Hz to have everywhere the same sign and have 
neglected the returning lines of force, while it is more probable that in 
reality the total magnetic flux must equal zero. To estimate the influence 
of these returning lines of force we assume that we have two concentric 
tubes, both with constant Hg> the outer tube of k-fold radius representing 
the (unobserved) returning lines of force. That means: 

(D(o) for o ^ a < i , 

D(oc)= I -D(o)l(k2-i) for i^a<k, 

[o for i < a . 

The observed flux has then to be taken as the flux F( 1) of the inner tube 
(a < 1) for which we get , * 

The deviation due to the returning lines is expressed by the term with i/k2 

and will be of the order of a few per cent, if A: is of the order 10 or more. 
The examples given show the relation between/and the flux-distribution. 

If we want to apply this to the field of actual sunspots, we have first to test 
the applicability of the underlying assumption of similarity. We recall, 
that we have no a priori reason as to why this similarity should hold, other 
than this being the simplest possibility. We can test this hypothesis only at 
the surface, where both Hz and Hr are observable. According to Eq. (5) 
the ratio of HrjHz should theoretically increase linearly with r. The obser­
vations are usually quoted as showing this ratio to vary like tg(7rrl2r0) 
where r0 = radius of the sunspot. Fig. 1 (adapted from S. Chapman [3]) 
shows, however, that the observations are as well compatible with a linear 
increase as with the quoted relation. Assuming now the linear law to hold 
sufficiently well, also the increase with depth of the field on the axis follows 
from Eq. (5). I t results in 

dHjdz & 4.H/r0 

« o-8 gauss/km (26) 

(with H& 2,000 gauss; r 0 » 10,000 km) in fair agreement with the value 
0-5 gauss/km found previously by Houtgast and van Sluiters[4]. 
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5- THE E N E R G Y T R A N S P O R T IN THE SPOT 

The problem remains of determining the function Ap{z). We obtain a 
necessary condition on Ap by integrating the basic differential Eq. (9) 
over z, between zx and z2, say: 

f* (fy'z + y4) dz +f- {y2'^) -y«'(z8)} = 8n f*Apdz. (27) 

If we choose for zx a sufficiently great height above the sun, then y2'(z^) 
disappears. So does y2'(z2) if we choose such a great depth z2 that the field 

Fig. 1. The ratio between the radial and vertical components of the magnetic field in a sunspot 
plotted as a function of r/r0. Full curves indicate observed values. 

either is constant, or has disappeared there. It then follows that the mean 
value of Ap must be positive and must even be larger than would follow by 
just considering the 'magnetic pressure' H2l8n = y*/87T. 

On the axis, hydrostatic equilibrium is not affected by the magnetic 
field, nor is, of course, the equation of state. Therefore the only possibility 
is that the temperature is different, and since the temperature is con­
trolled by the transport of energy, this transport must be affected by the 
presence of the magnetic field of the spot. This can conceivably be the case 
where the energy is ordinarily transported not by radiation but by con­
vection. So one is lead to the picture first proposed by L. Biermann [5]: 
The convective transport of energy in the hydrogen convection zone is 
hindered by the magnetic field of the sunspot. This causes the temperature 
to drop faster in the outward direction, thereby producing a positive Ap, 
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which then is needed to keep the lines of force together and so to make the 
existence of the sunspot field possible. At the same time the reduction of the 
effective thermal conductivity deflects a part of the energy flow out of the 
sunspot-tube, thus causing the lowering of the effective temperature at the 
surface. 

Since, as yet, a theory of the influence of a magnetic field on convection 
and energy-transport in a zone of great thermal instability does not exist, 
the effect of the sunspot-field in the hydrogen convection zone cannot be 
asserted with sufficient certainty. One may, however, surmise that a 
necessary condition for convection to be effectively suppressed is gained by 
using the scale height as the characteristic length in Walen's stability 
criterion [6], which then reads: 

Stability occurs if 

/din T\ _M^< (d l n T) (28) 
W In p /radiative 4nP \dllip /a ( i labatic * 

6. NUMERICAL INTEGRATIONS 

Lacking safe theoretical guidance, one has now to make an assumption 
about the energy transport below the sunspot, then one has to evaluate Ap 
by numerical integration and to solve the differential Eq. (9) for the mag­
netic field. Since this part of the work is still in progress, we shall give only 
a brief sketch of our attempts. 

1. First we supposed that the suppression of convection inside the spot-
tube is complete and that the energy is there transported by radiation and 
in vertical direction only. With these assumptions the temperature in­
creases with depth much faster inside the tube than outside it, particularly 
so in the hydrogen-ionization zone. With the so determined Ap we tried to 
find solutions for the magnetic field. However, it turned out, that with no 
reasonable assumptions on y and y' at the surface a solution for y(z) existed 
which did not become irregular within a depth of a few scale heights. 
From these numerical attempts it followed that at least in greater depths the 
pressure difference Ap must be very small compared to p for a regular 
solution of Eq. (9) to exist. 

2. To gain an impression what Ap should look like, we then assumed a 
reasonable shape for the vertical dependence of the magnetic field and 
determined by Eq. (9) Ap and thereby Ap and AT. We so circumvented 
the difficulty of determining the energy transport mechanism. Two models 
were considered in particular. 
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(i) H=? = *fdr* [ i n {exp (^ V(*//#c)) + e x P ( ~ V " 0 ) } ] ^ 

f> d> Hv 20 = const. (29) 

For z -> + 00 the field becomes constant (H -> i/c), and for z -> — 00 the 
solution (16) is approached. 

a, z0 = const. (30) 

Here the magnetic field drops off also as z goes to + 00. The pressure 
difference is given by 

**=\*&^w (3I) 

and falls rapidly with increasing distance from the point of maximal field 
strength z = z0, so that the solution (16) is approximated. 

A number of plausible parameters were tried in these models. In every 
case, it turned out that in a depth well within the hydrogen convection 
zone the internal constitution of the flux-tube was almost indistinguishable 
from that of the undisturbed layers. 

3. The first attempts have shown, that some modification has to be 
made in the assumption of pure radiative transport of the observed energy 
flux in the spot-tube. The easiest explanation would be that the suppression 
of convective energy transport is far from being complete. Since, however, 
every detailed assumption on the effectiveness of the convective transport 
mechanism under the conditions prevailing in the spot-tube would be 
completely arbitrary, we considered an alternative solution. In addition, 
the stability criterion (28) showed no reason for instability in the examples 
considered by us. 

If the magnetic field is much stronger in great depths than it is near the 
surface, then the flux-tube is there correspondingly thinner and horizontal 
flow of energy may become appreciable. This might be a mechanism which 
causes the desired similarity in the thermodynamic state of the gas in the 
tube and of the gas outside it. To obtain a model containing the horizontal 
energy transport, we assume that the temperature across the flux-tube is 
given by a gaussian distribution the half-width of which corresponds to 
the diameter of the flux-tube 

T(r, z) = r(oo, z) -AT(z) exp ( - 9 ^ ) . (32) 
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Since we assume radiative equilibrium we have the equations: 

div F = o, F = radiative energy flux, (33) 

F = — c grad T, cr = thermal conductivity (due 
to radiative transport). (34) 

Similar as before we fulfil these equations only on the axis (r = o), taking 
a and the molecular weight fi to depend only on z (not on r). So we arrive at 
the following system: 

fyy"=y*-87rAp, 

(Ap)'=gAp, 

(A 7 7 = 0 - ^ , (35) 

where all quantities (except the constants g a n d / ) depend on depth only. 
F(oo, z) denotes the part of the energy transported vertically by radiation 
in the undisturbed layers. 

These equations, together with the equation of state and suitable boun­
dary conditions suffice to determine the magnetic field (i.e. y(z)) and the 
difference in constitution between the flux-tube and the normal layers of 
the sun. If one starts at the surface (at z = o, say), then the values of y and 
y' are provided by the magnetic measurements (together with the value 
o f / ) , while the values of AF and A T a r e determined by the observed defect 
in brightness of the sunspot. The value of Ap is not directly observable 
since it depends essentially on the geometric depression of the spot which is 
very hard to determine. 

For our attempts to solve these equations numerically, we used for the 
constitution of the undisturbed layers a model, the dates of which were 
kindly placed at our disposal by Mrs Bohm-Vitense[7], 

I t turned out, that the solutions of Eq. (35) were unstable to a degree, 
which we had not anticipated, the range of initial conditions for which the 
solution could be continued to a depth of more than a few thousand kilo­
metres, being extremely small. This then means, that the condition that 
the solution should be regular down to a depth where the ionization of 
hydrogen is complete, determines the constitution of the sunspot for all 
higher layers, if o n l y / i s given. (Only at this depth the horizontal flux of 
energy becomes important, if at all.) This means that we can not infer 
anything about the constitution at greater depths, except that we know 
the difference between the spot and the normal layers to be quite small, as 
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we pointed out earlier. These results are to be considered as preliminary, 
since the work described here is still in progress. In particular, we are 
attempting to obtain a consistent model for the constitution of the decisive 
part of the sunspot-tube from the photosphere down to the hydrogen 
ionization zone. 
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Discussion on Papers 28 and 29 
Bostick: One mechanism for the cooling of sunspots is that provided by the 

magnetic evaporation of hot ions and electrons by the presence at the sunspot of 
the divergent magnetic field which acts like a magnetic vacuum pump. It can 
be calculated that a hydrogen ion and electron pair with an energy W± greater 
than 3 eV transverse to the sunspot magnetic field will feel an upward force 
(WJH) grad H which is greater than the gravitation force on the ion. Ac­
cordingly, the hot ion pairs will be evaporated from the sunspot, leaving the 
cooler ones behind. This mechanism is expected to be operating strongly in 
regions where the Larmor frequency of the electrons exceeds the collision 
frequency. This mechanism can also conceivably explain the penumbra of the 
sunspot, because we expect the thickness of the penumbra to be representative of 
the thickness of the current sheet producing the magnetic field of the spot. 
Within this current sheet grad H in the vertical direction is less and we therefore 
expect less evaporation cooling in the penumbra. The sharp boundary of the 
penumbra is presumably produced by the edge of the current sheet where the 
cooling mechanism disappears completely. 

The fact that solar prominences are streamers, frequently from one sunspot to 
another, suggests that the same mechanism is operative here as in the laboratory 
(Bostick, W. H., Phys. Rev. 104, 1191, 1956), where we have produced streamers 
in a geometrically similar magnetic field generated by a horseshoe magnet. The 
important fact brought forward by the laboratory experiments is that for 
streamer formation it is necessary to have not only the magnetic field from north 
to south but to have a current flowing between north and south as well. Hence, 
we infer that the probable distribution of magnetic field, currents, and velocity 
in a whirl ring producing the spot pair is helical, i.e. the field lines form helices 
around the central circle of the ring. This helical distribution of the magnetic 
field in the ring will cause a current to flow from north to south or vice versa when 
the ring intersects the surface of the sun (see also page 113 of this volume). 
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Alfven: This is a very interesting idea you put forward but it is necessary to 
check in detail whether the similarity transformation from your plasmoid to 
the conditions in the sun could be made. I look forward with great interest to 
future results in this field. 

Dungey: There is some circumstantial evidence that the sunspot fields are 
twisted. I wish someone would look for this in the Zeeman effect. 

Biermann: I would like to add here one remark which should have been made 
in my report. A magnetic field of the kind I discussed can be stationary (against 
drifting towards the surface, owing to smaller density) only if it is approximately 
of the type called * force-free' field by Lust and Schluter. Hence, it would seem 
to be worth while to look after screw type geometrical features also of the 
magnetic spot fields on the surface. 
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