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ON THE EQUATION x(x +d)...(x + (k — 1)d) = by?
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Abstract. In this paper we give a new bound for the solutions x of the title
equation, provided that k& > 8. This bound is polynomial in d. Moreover, under the
same condition, a similar bound for the number of solutions in (x, &, y, /) is given.
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1. Introduction. It is an old problem to describe those finite arithmetic pro-
gressions for which the product of the terms yields a perfect power or an ‘almost’
perfect power. The first result in this direction is due to Erdds [4] and Rigge [12].
They independently proved that the equation

x4+ (x+k—1)=) 1)

for / = 2 has no solutions with £ > 2 and x > 1; that is the product of two or more
consecutive positive integers is never a perfect square. Later, Erdds and Selfridge in
1975 (cf. [6]) obtained a deep generalization of this: namely that equation (I) for
[ > 2 has no solutions with k > 2 and x > 1 or, in other words, the product of two or
more consecutive positive integers is never a perfect power.

Another, closely related problem is to determine those binomial coefficients
which are perfect powers. This problem was studied by Erdds (see [5]). He showed

that the equation
x+k—1
( A ) = (ID)

in positive integers x, k, y, / with x > k + 1,/ > 2 has no solutions if k > 4. Gydry [8]
proved that the only solution of equation (II) with k> 2,(,k)#(2,2) is
(x, k,y,[)=(48, 3, 140, 2). He settled the case k = 3 and pointed out that the case
k = 2 1s a consequence of a recent result of Darmon and Merel [3]. Kk = [ = 2 must be
excluded because in this case equation (II) clearly has infinitely many solutions.
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For a positive integer n denote by P(n) the greatest prime divisor of n. (We set
P(1)=1.) A common generalization of equations (I) and (II) is

x(x+1)...(x+k—1)=by with I,k > 2, P(b) < k. (I10)

Using a result of Sylvester [23], it turns out that if P(y) < k for a given k, then (III)
has only ‘small’ solutions, and these solutions can be easily determined (cf. [9]). On
the other hand, if P(y) > k then, apart from the case k =/ =2, equation (III) has
only the solution (x, k, b, y,[) = (48, 3, 6, 140, 2). This result is due to GyOry [9]
(case k < 3) and Saradha [14] (case k > 4).

For further related results on the previous equations and on the more general
equation

xx+d) .. . (x+Gk—Dd)=by withi>2,k>3,(x.d)=1,P(b) <k  (IV)

in positive integers x, d, k, b, y, [, we refer to the works of Beukers, Shorey and Tij-
deman [2], Gy&ry [10], Marszalek [11], Saradha [14] and [15], Shorey [16] and [17],
Shorey and Nesterenko [18] and [19], Shorey and Tijdeman [20], [21] and [22], and
Tijdeman [24] and [25], and the references given there.

In the present paper we deal with the equation

x(x+d)...(x+ (k= Dd) = by withk > 3, (x,d) = 1, P(b) < k, (1)

where x, d, k, b, y are unknown. If d = 1, then suppose that P(y) > k in (1). Among
several other inequalities, Shorey and Tijdeman [20] proved that if k > C;, where C,
is an effectively computable absolute constant, then (1) implies that

x + (k — 1)d < 17d*k(log k)*;
see [20, Theorem 3]. Combining this result with the inequality

k

2a)(d)
= logk

(cf. [20, Theorem 1.(a)]), where C; is an effective computable absolute positive con-
stant and w(d) is the number of distinct prime divisors of d, one can see that x is
bounded by c,d>*?, where ¢, is a constant depending only on &, provided that k is
large enough.

2. Results.

THEOREM 1. If (x,d, k,b,y) is a solution of (1) with k> 8 and d > 1, then
x < 4d*(logd)*.

REMARKS. 1. We may assume that d > 23, as (1) in the case 1 < d <22 was
solved by Saradha [15], and the only solutions are (x,d, k, b, y)=(2, 7, 3, 2, 12),
(18,7, 3, 1, 120) and (64, 17, 3, 2, 504).

2. Erdéds conjectured that relation (IV) implies that & is bounded by an absolute
constant. In the case / = 2, under the further assumption x > 4d*(log d)*, our Theorem
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gives an answer to this problem, with a good bound for k. For other results and
references concerning this and related conjectures of Erdds see [16], [17] and [10].

3. Our argument makes it possible to assume only that P(b) < ck, where c is
“around” 1.1. The details are not worked out here.

4. Our theorem provides a method for determining all solutions of equation (1),
with d fixed. The ‘small’ solutions can be found for example by a simple search, and
‘large’ solutions may occur only when k < 7. However, in this case equation (1) can
be reduced either to simultaneous Pell’s equations, or to simple elliptic equations of
the form x”* + &'x’ + b’ = %, and these equations can be resolved easily. Using this
approach, Filakovszky and Hajdu [7] resolved equation (1) for several values of d.

A combination of Theorem 1 with some recent results of Bennett [1] and Sar-
adha [15] yields the following result.

THEOREM 2. Suppose that d > 1. Then equation (1) has at most cd® solutions in
(x, k, b, y), where c is an effectively computable absolute constant.

3. Auxiliary results. Every factor of the left hand side of (1) can be uniquely
written in the form

x+id= a,-xf, a; is square-free, i=0,...,k— 1. 2)

LEmMMA 1. For every solution (x,d, k, b, y) of (1) for which the a;’s in (2) are all
different, we have k < 7.

Proof. First we prove that under the assumptions of the Lemma, k& < 210 holds.
Let p be a prime with p ¢ d, and write

k—1
A =1_[a,-, B:l_[pw"/’ﬂ.
i=0 =<k

If p > k then, foreveryi =0, ...,k — 1, p ta;. On the other hand, if p < k, then only
every p-th number x + id can be divisible by p; thus p has at most [k/p] multiples
among them; hence A|B. For every i =0, ...,k — 1 let &} be the odd part g;, and put

k—1
i=0 3<p<k

Then we get A'|B. Let 1 =hy < hy < ... be the sequence of the odd square-free
numbers. Since every /; may occur as a; at most twice, we obtain

A >hh.. ./’lm/llhz . hmf,
where m = [k/2] and W’ = k — m = [k/2].

Set H(x) = #{i : h; < x}, and let F(x) = [x] — [x/2]; that is F(x) is the number of
the positive odd integers not greater than x. By a sieve formula we have

H(x) =) pF(x/t?) < ) w(OF(x/1?).

241 115
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Indeed, the right hand side expression enumerates those odd integers not exceeding
x that are free of 3% and 5%. The inequality |F(x) — x/2| < 1/2, (x > 0) yields

D H(DF(x/1%) = (32/75)x| < 2,
115

whence
H(x) < (32/75)x + 2.

In particular
H(hj) =j < (32/75)hj + 2,

and we get
Iy = (15/32)( — 2).

Using this estimate for j > 4 together with 4y = 1, hy = 3 and h; = 5, we obtain

By > (75/32)"(m — 2)\.

A similar estimate is valid for 4; ... &,,. By multiplying these inequalities, we have
A > (75/32)" 4+ (m = 2)l(m = 2).
Using

k—4

-1
o 2) > (k—4)127% 9 5 (16/kH27 k!,

(m—2)\(m —2)! = (k — 4)!(
we conclude that
A > (16/k)(75/64) k).

Now we estimate B'. By Legendre’s formula for the prime factorization of k!

> lk/pllogp = logk! - 5. 3)

p=3
where

S=" [k/p'logp with 0 = {2} U {p’ :j = 2}.
P'eQ

Let Qp = Q N[, 500]. Then

S= Y [k/pllogp =k Y logp/p' = ) logp = ak — B, )

P'€Qo P'eQo P'eQo

where o = 1.046874 and 8 = 27.8. The identity
[k/p1 =1+I[(k—1)/p]

B < le_[p[(k—l)/p]'

p=<k

implies that
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For every k we have ]_[pf,cp < e’*, with y = 1.001102 (cf. [13, Theorem 6]). Using
this together with (3) and (4), we obtain

B < efelk=rke 11,
This inequality with 4" < B’ leads to
(16/k*)(75/64) k! < er—ok+atBje _ 1),

and, by a simple computation, we obtain k < 210.
Now suppose that 9 < k <209, and let p td be a prime. It is clear that among
the numbers x +id,i =0, ...,k — 1, there are at most

I:logkil_H
2logp
rp)i= Y (Tk/p™™"1 = [k/p™),

=1

ones, whose factorizations contain p on an odd exponent. However, after fixing k
and calculating the values of r(p), it turns out that it is impossible to construct k
different a;’s from these primes. Indeed, let k be any integer satisfying 9 < k < 209,
and determine the value of r(p) for every prime p td not exceeding k. Among the
primes involved, choose the smallest one p/, for which r(p’) < 27@)=! holds, where
m(x) denotes the number of positive primes not greater than x. Clearly, we can

construct at most
D ()
P'=p=<k

different a@;’s from our primes. However, a computation yields that the number of
these ;s is always less than k in this case, and we obtain k < 8.

Now suppose that k = 8. In this case one can construct eight different a;’s.
However, as it was pointed out by Professor Tijdeman, it is impossible to arrange
them into a ‘valid’ order. This fact can be proved by a simple combinatorial argu-
ment. Hence the Lemma is proved. O

NoTE. As it was pointed out by N. Saradha, the assertion of Lemma 1 could
also be derived by combining some formulas and arguments of [15].

We remark that the bound k < 210 obtained in the first part of the proof of the
Lemma could be made sharper, but in view of the second part of the proof, it was
not necessary.

LEMMA 2. Equation (1) with d > 1 implies that k < 4d(log dy>.

Proof. The case d > 23 is just Theorem 3 in [15]. Furthermore, in [15] all the

solutions of (1) with 1 < d < 22 are determined, and the Lemma follows. OJ

LEMMA 3. Let a and b be positive nonsquare integers and let u, v be nonzero inte-
gers with av # bu. Then the system of simultaneous Pell-equations
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X2 —az? =u, yz—bzzzv
in positive integers (x, y, z) has at most 2™} og(|u| + |v|) solutions, where c is
an eflectively computable absolute constant and w(n) denotes the number of the distinct
prime factors of n.

Proof of Lemma 3. This is the main result in [1]. O

4. Proofs of the theorems.

Proof of Theorem 1. Let (x,d, k,b,y) be any solution of (1) with k> 8. As
mentioned above, we may suppose that d > 23. Using Lemma 1 we obtain that there
exist 0 <j < i < k — 1 such that in (2) a; = a;. This yields

(k= 1)d = (x + id) — (x +jd) = aj(x; — x7) = a/(2x; + 1),

and therefore
(k —1)*d*/4 > x.

The last estimate together with Lemma 2 implies that
x < 4d*(log d)*,
and the Theorem is proved. |

Proof of Theorem 2. First suppose that in (1) kK > 8 holds. Then, by Theorem 1,
we have x < 4d*(logd)*. Furthermore, by Lemma 2, we have k < 4d(log d)*, and in
this case Theorem 2 follows.

Now suppose that in (1) £ < 7 holds. Using (2), for i=0,1,2 we can write
X = apx3, X +d = a;x3, x + 2d = apx3, and we obtain the simultaneous Pell-equations

axt —apxy =d, ayx} — apx} =2d. (5)

Clearly, for the coefficients a;,i =0, 1,2 we have 4;|2-3-5-7. Hence we have to
consider at most 2'2 simultaneous Pell-equations of the form (5). Thus to prove
Theorem 2, it is sufficent to give an appropriate upper bound for the number of
solutions of (5). Multiplying the equations of (5) by a; and a,, respectively, and
putting yo = xo, y1 = a;x; and y, = ayx;, we obtain the system of equations

Vi —aaryy = aid, y3 — apary} = 2axd. (6)

We may suppose that ay # a; and ay # a,. Indeed, otherwise just as in the proof of
Theorem 1, we obtain x < 4d*(logd)*, which yields a much better bound for the
number of solutions of (1) than stated. Now one can check easily that the assump-
tions of Lemma 3 are fulfilled, and we obtain that the number of solutions in
(1, v2, »3) to (6) is less than 29, where c is an effectively computable absolute
constant, and the Theorem is proved. O
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