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Abstract. In this paper we give a new bound for the solutions x of the title
equation, provided that k � 8. This bound is polynomial in d. Moreover, under the
same condition, a similar bound for the number of solutions in (x; k; y; l) is given.
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1. Introduction. It is an old problem to describe those ®nite arithmetic pro-
gressions for which the product of the terms yields a perfect power or an `almost'
perfect power. The ®rst result in this direction is due to ErdoÂ Â s [4] and Rigge [12].
They independently proved that the equation

x�x� 1� . . . �x� kÿ 1� � yl �I�

for l � 2 has no solutions with k � 2 and x � 1; that is the product of two or more
consecutive positive integers is never a perfect square. Later, ErdoÂ Â s and Selfridge in
1975 (cf. [6]) obtained a deep generalization of this: namely that equation (I) for
l � 2 has no solutions with k � 2 and x > 1 or, in other words, the product of two or
more consecutive positive integers is never a perfect power.

Another, closely related problem is to determine those binomial coe�cients
which are perfect powers. This problem was studied by ErdoÂ Â s (see [5]). He showed
that the equation

x� kÿ 1
k

� �
� yl �II�

in positive integers x; k; y; l with x � k� 1; l � 2 has no solutions if k � 4. GyoÂ Â ry [8]
proved that the only solution of equation (II) with k � 2; �l; k� 6� �2; 2� is
(x; k; y; l)=(48, 3, 140, 2). He settled the case k � 3 and pointed out that the case
k � 2 is a consequence of a recent result of Darmon and Merel [3]. k � l � 2 must be
excluded because in this case equation (II) clearly has in®nitely many solutions.
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For a positive integer n denote by P�n� the greatest prime divisor of n. (We set
P(1)=1.) A common generalization of equations (I) and (II) is

x�x� 1� . . . �x� kÿ 1� � byl with l; k � 2;P�b� � k: �III�

Using a result of Sylvester [23], it turns out that if P�y� � k for a given k, then (III)
has only `small' solutions, and these solutions can be easily determined (cf. [9]). On
the other hand, if P�y� > k then, apart from the case k � l � 2, equation (III) has
only the solution (x; k; b; y; l) = (48, 3, 6, 140, 2). This result is due to GyoÂ Â ry [9]
(case k � 3) and Saradha [14] (case k � 4).

For further related results on the previous equations and on the more general
equation

x�x� d� . . . �x� �kÿ 1�d� � byl with l � 2; k � 3; �x; d� � 1;P�b� � k �IV�

in positive integers x; d; k; b; y; l; we refer to the works of Beukers, Shorey and Tij-
deman [2], GyoÂ Â ry [10], Marszalek [11], Saradha [14] and [15], Shorey [16] and [17],
Shorey and Nesterenko [18] and [19], Shorey and Tijdeman [20], [21] and [22], and
Tijdeman [24] and [25], and the references given there.

In the present paper we deal with the equation

x�x� d� . . . �x� �kÿ 1�d� � by2 with k � 3; �x; d� � 1;P�b� � k; �1�

where x; d; k; b; y are unknown. If d � 1, then suppose that P�y� > k in (1). Among
several other inequalities, Shorey and Tijdeman [20] proved that if k � C1, where C1

is an e�ectively computable absolute constant, then (1) implies that

x� �kÿ 1�d � 17d 2k�log k�4;
see [20, Theorem 3]. Combining this result with the inequality

2!�d� > C2
k

log k

(cf. [20, Theorem 1.(a)]), where C2 is an e�ective computable absolute positive con-
stant and !�d� is the number of distinct prime divisors of d, one can see that x is
bounded by c"d

2�", where c" is a constant depending only on ", provided that k is
large enough.

2. Results.

Theorem 1. If �x; d; k; b; y� is a solution of �1� with k � 8 and d > 1, then
x < 4d 4�log d�4.

Remarks. 1. We may assume that d � 23, as (1) in the case 1 < d � 22 was
solved by Saradha [15], and the only solutions are (x; d; k; b; y)=(2, 7, 3, 2, 12),
(18, 7, 3, 1, 120) and (64, 17, 3, 2, 504).

2. ErdoÂ Â s conjectured that relation (IV) implies that k is bounded by an absolute
constant. In the case l � 2, under the further assumption x � 4d 4�log d�4, our Theorem
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gives an answer to this problem, with a good bound for k. For other results and
references concerning this and related conjectures of ErdoÂ Â s see [16], [17] and [10].

3. Our argument makes it possible to assume only that P�b� � ck, where c is
``around'' 1.1. The details are not worked out here.

4. Our theorem provides a method for determining all solutions of equation (1),
with d ®xed. The `small' solutions can be found for example by a simple search, and
`large' solutions may occur only when k � 7. However, in this case equation (1) can
be reduced either to simultaneous Pell's equations, or to simple elliptic equations of
the form x03 � a0x0 � b0 � y02, and these equations can be resolved easily. Using this
approach, Filakovszky and Hajdu [7] resolved equation (1) for several values of d.

A combination of Theorem 1 with some recent results of Bennett [1] and Sar-
adha [15] yields the following result.

Theorem 2. Suppose that d > 1. Then equation �1� has at most cd 6 solutions in
�x; k; b; y�, where c is an e�ectively computable absolute constant.

3. Auxiliary results. Every factor of the left hand side of (1) can be uniquely
written in the form

x� id � aix
2
i ; ai is square-free; i � 0; . . . ; kÿ 1: �2�

Lemma 1. For every solution �x; d; k; b; y� of �1� for which the ai's in �2� are all
di�erent, we have k � 7.

Proof. First we prove that under the assumptions of the Lemma, k < 210 holds.
Let p be a prime with p j-- d, and write

A �
Ykÿ1
i�0

ai; B �
Y
p�k

pdk=pe:

If p > k then, for every i � 0; . . . ; kÿ 1; p j-- ai. On the other hand, if p � k, then only
every p-th number x� id can be divisible by p; thus p has at most dk=pe multiples
among them; hence AjB. For every i � 0; . . . ; kÿ 1 let a0i be the odd part ai, and put

A0 �
Ykÿ1
i�0

a0i; B0 �
Y

3�p�k
pdk=pe:

Then we get A0jB0. Let 1 � h1 < h2 < . . . be the sequence of the odd square-free
numbers. Since every hj may occur as a0i at most twice, we obtain

A0 � h1h2 . . . hmh1h2 . . . hm0 ;

where m � �k=2� and m0 � kÿm � �k=2�.
Set H�x� � #fi : hi � xg, and let F�x� � �x� ÿ �x=2�; that is F�x� is the number of

the positive odd integers not greater than x. By a sieve formula we have

H�x� �
X
2 j--t
��t�F�x=t 2� �

X
tj15

��t�F�x=t 2�:
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Indeed, the right hand side expression enumerates those odd integers not exceeding
x that are free of 32 and 52. The inequality jF�x� ÿ x=2j � 1=2; �x � 0� yields

X
tj15

��t�F�x=t 2� ÿ �32=75�x
�����

����� � 2;

whence
H�x� � �32=75�x� 2:

In particular
H�hj� � j � �32=75�hj � 2;

and we get

hj � �75=32��jÿ 2�:

Using this estimate for j � 4 together with h1 � 1, h2 � 3 and h3 � 5, we obtain

h1 . . . hm � �75=32�m�mÿ 2�!:

A similar estimate is valid for h1 . . . hm0 . By multiplying these inequalities, we have

A0 > �75=32�m�m0 � �mÿ 2�!�m0 ÿ 2�!:
Using

�mÿ 2�!�m0 ÿ 2�! � �kÿ 4�! kÿ 4
mÿ 2

� �ÿ1
> �kÿ 4�!2ÿ�kÿ4� > �16=k4�2ÿkk!;

we conclude that

A0 > �16=k4��75=64�kk!:

Now we estimate B0. By Legendre's formula for the prime factorization of k!X
p�3
�k=p� log p � log k!ÿ S; �3�

where

S �
X
pt2Q
�k=pt� log p with Q � f2g [ fp j : j � 2g:

Let Q0 � Q \ �1; 500�. Then

S �
X
pt2Q0

�k=pt� log p � k
X
pt2Q0

log p=pt ÿ
X
pt2Q0

log p � �kÿ �; �4�

where � � 1:046874 and � � 27:8. The identity

dk=pe � 1� ��kÿ 1�=p�
implies that

B0 �
Y
p�k

p
Y

p��kÿ1�=p�:
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For every k we have
Q

p�k p < e
k, with 
 � 1:001102 (cf. [13, Theorem 6]). Using
this together with (3) and (4), we obtain

B0 < e�ÿ��kÿ1��
k�kÿ 1�!:

This inequality with A0 � B0 leads to

�16=k4��75=64�kk! < e�
ÿ��k�����kÿ 1�!:

and, by a simple computation, we obtain k < 210.
Now suppose that 9 � k � 209, and let p j-- d be a prime. It is clear that among

the numbers x� id; i � 0; . . . ; kÿ 1, there are at most

r�p� :�
Xlog k

2 log p

h i
�1

t�1
�dk=p2tÿ1e ÿ �k=p2t��;

ones, whose factorizations contain p on an odd exponent. However, after ®xing k
and calculating the values of r�p�, it turns out that it is impossible to construct k
di�erent ai's from these primes. Indeed, let k be any integer satisfying 9 � k � 209,
and determine the value of r�p� for every prime p j-- d not exceeding k. Among the
primes involved, choose the smallest one p0, for which r�p0� < 2��p

0�ÿ1 holds, where
��x� denotes the number of positive primes not greater than x. Clearly, we can
construct at most

2��p
0�ÿ1 �

X
p0�p�k

r�p�

di�erent ai's from our primes. However, a computation yields that the number of
these ai's is always less than k in this case, and we obtain k � 8.

Now suppose that k � 8. In this case one can construct eight di�erent ai's.
However, as it was pointed out by Professor Tijdeman, it is impossible to arrange
them into a `valid' order. This fact can be proved by a simple combinatorial argu-
ment. Hence the Lemma is proved. &

Note. As it was pointed out by N. Saradha, the assertion of Lemma 1 could
also be derived by combining some formulas and arguments of [15].

We remark that the bound k < 210 obtained in the ®rst part of the proof of the
Lemma could be made sharper, but in view of the second part of the proof, it was
not necessary.

Lemma 2. Equation �1� with d > 1 implies that k < 4d�log d�2.

Proof. The case d � 23 is just Theorem 3 in [15]. Furthermore, in [15] all the
solutions of (1) with 1 < d � 22 are determined, and the Lemma follows. &

Lemma 3. Let a and b be positive nonsquare integers and let u; v be nonzero inte-
gers with av 6� bu. Then the system of simultaneous Pell-equations
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x2 ÿ az2 � u; y2 ÿ bz2 � v

in positive integers �x; y; z� has at most c2minf!�u�;!�v�g log�juj � jvj� solutions, where c is
an e¯ectively computable absolute constant and !�n� denotes the number of the distinct
prime factors of n.

Proof of Lemma 3. This is the main result in [1]. &

4. Proofs of the theorems.

Proof of Theorem 1. Let (x; d; k; b; y) be any solution of (1) with k � 8. As
mentioned above, we may suppose that d � 23. Using Lemma 1 we obtain that there
exist 0 � j < i � kÿ 1 such that in (2) ai � aj. This yields

�kÿ 1�d � �x� id� ÿ �x� jd� � aj�x2i ÿ x2j � � aj�2xj � 1�;

and therefore

�kÿ 1�2d 2=4 > x:

The last estimate together with Lemma 2 implies that

x < 4d 4�log d�4;

and the Theorem is proved. &

Proof of Theorem 2. First suppose that in (1) k � 8 holds. Then, by Theorem 1,
we have x < 4d 4�log d�4. Furthermore, by Lemma 2, we have k < 4d�log d�2, and in
this case Theorem 2 follows.

Now suppose that in (1) k � 7 holds. Using (2), for i � 0; 1; 2 we can write
x � a0x

2
0, x� d � a1x

2
1, x� 2d � a2x

2
2, and we obtain the simultaneous Pell-equations

a1x
2
1 ÿ a0x

2
0 � d; a2x

2
2 ÿ a0x

2
0 � 2d: �5�

Clearly, for the coe�cients ai; i � 0; 1; 2 we have aij2 � 3 � 5 � 7. Hence we have to
consider at most 212 simultaneous Pell-equations of the form (5). Thus to prove
Theorem 2, it is su�cent to give an appropriate upper bound for the number of
solutions of (5). Multiplying the equations of (5) by a1 and a2, respectively, and
putting y0 � x0; y1 � a1x1 and y2 � a2x2, we obtain the system of equations

y21 ÿ a0a1y
2
0 � a1d; y22 ÿ a0a2y

2
0 � 2a2d: �6�

We may suppose that a0 6� a1 and a0 6� a2. Indeed, otherwise just as in the proof of
Theorem 1, we obtain x < 4d 4�log d�4, which yields a much better bound for the
number of solutions of (1) than stated. Now one can check easily that the assump-
tions of Lemma 3 are ful®lled, and we obtain that the number of solutions in
(y1; y2; y3) to (6) is less than c2!�d�, where c is an e�ectively computable absolute
constant, and the Theorem is proved. &
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