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The purpose of this erratum is to use the results of [BMS15, BMS18] to fill in a
serious conceptual gap in the appendix to [KM16], which contained a purported
proof of the Tate conjecture for K3 surfaces in characteristic 2. This gap was
pointed out by Koshikawa, to whom I am very grateful. The suggestion that the
results of Bhatt–Morrow–Scholze can be used to fill this gap is also due to him.
Koshikawa also communicated to me his paper in progress with Ito and Ito [IIK],
where a somewhat different fix is given, also using the compatibility of Kisin’s
functor in [Kis06] with crystalline cohomology. As such, the first complete proof
of the Tate conjecture for K3 surfaces in characteristic 2 should be credited to
Ito–Ito–Koshikawa.

The gap lies in the proof of [KM16, Proposition A.12]. In the paragraph
below (A.12.1), it is claimed that the proof of [Mad16, Lemma 6.16(4)]
applies to show that the map ιKS in (A.12.1) factors through the open substack
Zpr(2d)(p), the so-called ‘primitive locus’, where the de Rham realization f dR of
the tautological special endomorphism f generates a direct summand of L�dR.

This, however, is not true when p = 2. In [Mad16] and [Mad15], the proof
of the relevant result uses the smoothness of M̃sm

2d,Z(p) to reduce to showing the
following assertion: If k is a perfect field of characteristic p > 0, W = W (k) is
its ring of Witt vectors, and s is a W -valued point of M̃sm

2d,Z(p) , then the de Rham
realization f dR,ιKS(s) generates a direct summand of L�dR,ιKS(s).

To show this assertion, the proof appeals to [Mad16, Lemma 6.14]. However—
and this is the key error—this lemma is misstated there and is invalid if p = 2 and
the abelian scheme As0 does not have connected 2-divisible group. More precisely,
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suppose that p = 2 and that A is an abelian scheme over W with reduction A0

over k. Then the natural map

End(A)⊗ Z2 → End(A0)⊗ Z2

need not have saturated image (unlike when p > 2). This happens for instance
when A0 is ordinary, and A is not the canonical lift, but is isogenous to it. (Such
lifts do not exist when p > 2: they correspond to nontrivial torsion points on the
deformation space of A0 equipped with its Serre–Tate formal group structure, and
when p > 2, the fields of definition of such points are always ramified.) Therefore,
one cannot deduce that the de Rham realization of a special endomorphism of A is
primitive simply by knowing that it generates a direct summand of End(A)⊗ Z2.

To correct this, one must make use of the fact that the quasipolarized K3 surface
(X s, ξ s) is primitive. When p > 2, this point was not directly relevant, except
in ensuring that the moduli stack in question is smooth, and one was able to
get away somewhat cheaply by appealing to the very general result of [Mad16,
Lemma 6.14]. When p = 2, it appears essential to appeal to the integral p-adic
Hodge theory of [BMS18] to relate the two notions of primitiveness at a smooth
point: that of the polarization of ξ s and of the special endomorphism fιKS(s).

There is one further issue, also pointed out by Koshikawa: at the end of
the proof of [KM16, Proposition A.12], an appeal is made to a comparison
isomorphism of Bloch and Kato [BK86] for ordinary varieties. This is done
so that, for every ordinary point s, one obtains a canonical identification of
F-crystals

LdR,ιKS(s)(−1)
'

−→ P2
dR,s,

which underlies an identification of F-isocrystals obtained from the crystalline
comparison isomorphism; see [Mad15, Lemma 5.9]

However, for this to be valid, one must also know that the Bloch–Kato
isomorphism is compatible with the crystalline comparison isomorphism. While
this should be true, it is not obvious or available in the literature. When p > 2, this
can be alleviated by a direct appeal to the properties of the crystalline comparison
isomorphism instead, but it is less clear that is immediately possible when p = 2.
However, in the course of filling in the first gap, one in any case finds an alternate
proof that appeals to the results of [BMS18]. This observation is due to Ito–Ito–
Koshikawa [IIK].

1. A (correct) proof of [KM16, Proposition A.12]

The main thing to be shown is Lemma 1.11 below.
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1.1. We will need to recall the notation and results stated in [KM16, Section 1].
We will take K = K0 = W [1/p], ΓK to be the absolute Galois group, $ = p,
and E(u) = −u+ p ∈ W [u]. We then have the category of Breuil–Kisin modules
over W (with respect to p), consisting of pairs (M, ϕM), where M is a finite-free
S-module equipped with an isomorphism

ϕ∗M[E(u)−1
]
'

−→M[E(u)−1
].

We also have the fully faithful tensor functor M of Kisin [Kis10] described
in [KM16, Section 1.3], which goes from the category Repcris

ΓK
(Zp) of ΓK -stable

Zp-lattices in crystalline ΓK -representations to the category of Breuil–Kisin
modules over W (with respect to p). It is not exact, but the induced functor
to vector bundles over SpecS\{(u, p)} is exact. That is, for every short exact
sequence

0→ L1 → L2 → L3 → 0

in Repcris
ΓK
(Zp), the complex

0→M(L1)→M(L2)→M(L3)→ 0

has its cohomology supported at the maximal ideal of S.

1.2. We will actually need a bit more. Let OE be the p-adic completion of the
localization S(p). Let Modϕ/OE

be the category of pairs (M , ϕM ) consisting of
finitely generated OE -modules equipped with an isomorphism

ϕM : ϕ
∗M

'

−→M .

Let K∞ ⊂ K alg
0 be the extension of K0 generated by a compatible sequence of

p-power roots of p, and let ΓK∞ ⊂ ΓK be the corresponding closed subgroup.
Then it is shown in [Fon90, A.1.2.4] that there is an exact, faithful tensor

functor M from the category of continuous representations of ΓK∞ on finitely
generated Zp-modules to Modϕ/OE

. Moreover, if L belongs to Repcris
ΓK
(Zp), then,

by the very construction of M(L), we have a canonical identification

OE ⊗S M(L)
'

−→M (L|ΓK∞
)

in Modϕ/OE
; see the proof of [Kis10, Theorem (1.2.1)].

LEMMA 1.3. Suppose that we have inclusions

M1,M2 ⊂M
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of Breuil–Kisin modules, and let

M1,M2 ⊂M

be the embeddings in Modϕ/OE
obtained via change of scalars. Then M1 =M2 if

and only if M1 =M2.

Proof. This is essentially a special case of [Kis06, Lemma (2.1.12)].
Only one direction requires proof. Assume therefore that M1 = M2. After

twisting the Breuil–Kisin module (this amounts to multiplying the ϕ-semilinear
endomorphism by powers of E(u)) M if necessary, we can assume that all the
objects involved are effective, so that for N =M,M1,M2, we have

ϕN : ϕ
∗N→ N.

Now, set
M′
= (M1 +M2)[1/p] ∩ (M1 +M2) ⊂M.

This is finite-free over S (for instance, since M′/pM′ is torsion-free and hence
free over kJuK)), and is therefore itself a Breuil–Kisin submodule of M.

To finish, we appeal to [Kis06, Lemma (2.1.9)], which shows that the inclusions

M1 ↪→M′
; M2 ↪→M′

are both bijections.

1.4. Let s be the K alg
0 -valued point induced by s. Denote the induced points of

Z(2d)(p) by s and s, as well. Then, from the characteristic 0 theory, one finds a
canonical isometry of crystalline ΓK -representations

αp,s : Lp,s(−1)
'

−→ P2
p,s .

There is also an isometric inclusion

Lp,s ↪→ L�p,s .

That is, Lp,s (respectively L�p,s) is the homological realization associated with a
quadratic space Ld (respectively L�) over Z, and the above isometric inclusion
arises from a choice of isometric embedding Ld ↪→ L�.

Let Λp,s ⊂ L�p,s be the subspace generated by the p-adic realization of
the special endomorphism fs : it is a direct summand and is trivial as a
ΓK -representation.
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By construction, L�p,s is the homological realization associated with the self-
dual quadratic space L�(p) over Z(p), and is thus equipped with a nondegenerate
symmetric pairing. The direct summands Lp,s and Λp,s are orthogonal
complements to each other under this pairing. Therefore, we obtain a canonical
isomorphism of (trivial) ΓK -modules

λ : Λ∨p,s/Λp,s
'

←− L�p,s/
(
Lp,s ⊕Λp,s)

'

−→ L∨p,s/Lp,s .

This is characterized by the property that an element of L∨p,s ⊕ Λ∨p,s belongs to
L�p,s if and only if its image in

L∨p,s/Lp,s ⊕Λ∨p,s/Λp,s

is of the form (λ(x), x).

1.5. Let H2
p,s(1) be the (twisted) degree 2 p-adic cohomology of the K3 surface

X s : This is also a Galois stable lattice in a crystalline representation, equipped
with the ΓK -submodule ∆p,s = 〈chp(ξ s)〉 generated by the Chern class of the
quasipolarization ξ s . By definition, we have

P2
p,s(1) = ∆⊥p,s ⊂ H2

p,s,

where the orthogonal complement is taken with respect to the Poincaré pairing.
Just as above, we now obtain a canonical isomorphism of trivial ΓK -modules

δ : ∆∨p,s/∆p,s
'

−→ (P2
p,s(1))

∨/P2
p,s(1)

α−1
p,s (1)
−−−→
'

L∨p,s/Lp,s .

1.6. Applying the functor M to the maps of Galois representations above now
gives us maps of Breuil–Kisin modules

M(P2
p,s)

M(αp,s )
−1

−−−−−→
'

M(Lp,s(−1)) ↪→M(L�p,s(−1)). (1.6.1)

For simplicity, set

L =M(Lp,s); L� =M(L�p,s); L0 =M(Λp,s);

H0 =M(∆p,s); H =M(Hp,s(1)).

Note that, by the triviality of the ΓK -representations Λp,s and ∆p,s , we have
canonical identifications of Breuil–Kisin modules

L0
'

−→ 1⊗Zp Λp,s; H0
'

−→ 1⊗Zp ∆p,s,

where 1 is the trivial Breuil–Kisin module.
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The ΓK -equivariant pairings on the Galois representations considered above
induce symmetric pairings on all Breuil–Kisin modules. These pairings are
nondegenerate on L� and H, and give us injective maps:

L ↪→ L∨; L0 ↪→ L∨0 ; H0 ↪→ H∨0 .

Set
d(L) = L∨/L; d(L0) = L∨0 /L0; d(H0) = H∨0 /H0.

The module d(L) is equipped with an isomorphism

ϕd(L) : ϕ
∗d(L)[E(u)−1

]
'

−→ d(L)[E(u)−1
].

And, since L0 and H0 are trivial as Breuil–Kisin modules, we actually obtain
canonical identifications

S⊗Zp Λ∨p,s/Λp,s
'

−→ d(L0); S⊗Zp ∆∨p,s/∆p,s
'

−→ d(H0) (1.6.2)

compatible with the natural ϕ-module structure on either side.
Consider the associated objects

D(L) = OE ⊗S d(L); D(L0) = OE ⊗S d(L0); D(H0) = OE ⊗S d(H0)

in Modϕ/OE
. By the exactness of Fontaine’s functor and its compatibility with

Kisin’s, we actually have

D(L)=M (L∨p,s/Lp,s); D(L0)=M (Λ∨p,s/Λp,s); D(H0)=M (∆∨p,s/∆p,s).

Therefore, we obtain canonical isomorphisms

M (λ) : D(L0)
'

−→ D(L); M (δ) : D(H0)
'

−→ D(L)

in Modϕ/OE
.

The next result is the heart of the matter, and crucially uses the results
of [BMS18].

LEMMA 1.7. The map M (λ) induces an isomorphism of S-modules

M(λ) : d(L0)
'

−→ d(L). (1.7.1)

Proof. This is equivalent to showing that M (δ) induces an isomorphism

M(δ) : d(H0)
'

−→ d(L).
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Indeed, the composition

M (δ)−1
◦M (λ) : D(L0)

'

−→ D(H0)

is compatible with the ϕ-module structures on both sides, and therefore we find
from equation (1.6.2) that it must necessarily carry d(L0) onto d(H0).

We claim that the submodule H0 of H is a direct summand.
Assume this for now. Then we also have L = H⊥0 ⊂ H. Indeed, by functoriality

of Kisin’s functor, we have L ⊂ H⊥0 , and so it is sufficient to show that L is also
a direct summand of H; or, equivalently, that the map H → L∨ induced by the
pairing on H is surjective. However, the cohomology of the complex

0→ H0 → H→ L∨→ 0

is supported at the maximal ideal of S. Therefore, the map H/H0 → L∨ of finite-
free S-modules is an isomorphism at all codimension-1 primes, and is therefore
itself an isomorphism.

From the previous paragraph and the nondegenerate pairing on H, we now
obtain canonical isomorphisms

d(L) = L∨/L
'

←− H/(L⊕ H0)
'

−→ H∨0 /H0 = d(H).

Thus, once it is known that H0 is a direct summand of H, we will be done. For
this, since the cokernel of this map is finite-free of rank 21 at all nonmaximal
primes, it is sufficient to see that

W ⊗S,u 7→0 H0 ↪→ W ⊗S,u 7→0 H

maps onto a direct summand. Equivalently, we have to check the same for the
map

W ⊗S,u 7→0 ϕ
∗H0 ↪→ W ⊗S,u 7→0 ϕ

∗H. (1.7.2)

By property [KM16, (1.3.4)] and the compatibility of Chern classes with the
crystalline comparison isomorphism, the map in question can be identified, after
inverting p, with the inclusion

〈chcris(ξ s)〉[1/p] ↪→ H2
cris,s(1)[1/p], (1.7.3)

where 〈chcris(ξ s)〉 ⊂ H2
cris,s(1) is the subspace generated by the crystalline Chern

class of ξ s .
Now, this subspace is a direct summand by the primitivity of the polarization

ξ s . Using the trivialization equation (1.6.2) and compatibility with Chern classes
once again, one sees that the lattice

W ⊗S,u 7→0 ϕ
∗H0 ⊂ 〈chcris(ξ s)〉[1/p]

can be identified with 〈chcris(ξ s)〉.
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To finish, it remains to show that equation (1.7.2) can be identified with the
embedding

〈chcris(ξ s)〉 ↪→ H2
cris,s(1)

of W -modules underlying equation (1.7.3). But this now follows from [BMS18,
Theorem 14.6(iii)].

REMARK 1.8. To see how equation (1.7.1) can fail, it is instructive to consider
the following example, which arises by considering a situation where f dR,s does
not generate a direct summand: Suppose that p = 2, and choose α ∈ uS
such that {2, α} is a system of parameters with α invertible in OE . Let L� be
the nondegenerate quadratic space over S given as the orthogonal sum of two
hyperbolic planes spanned by pairs (e1, f1) and (e2, f2), respectively, where, for
each i , we have

[ei , ei ] = [ fi , fi ] = 0; [ei , fi ] = 1.

Set f = αe1+2(e2+ f2), and L= 〈 f 〉⊥ ⊂ L�. Note that L is not a direct summand
of L�: The quotient L�/L is isomorphic to the ideal (2, α) ⊂ S.

One can now check that

OE ⊗S L∨/L ' OE /8OE ,

while
W ⊗S,u 7→0 L

∨/L ' (W/2W )⊕3.

Therefore, no isomorphism as in equation (1.7.1) can exist in this case.

REMARK 1.9. In the proof above, we have made a reference to ‘the’ p-adic
comparison isomorphism. This should be clarified. At this point, it is best to use
the comparison isomorphism arising from the work of Bhatt–Morrow–Scholze
again [BMS18, Theorem 14.3]. It is checked carefully in [IIK, Section 11] that
this result does give rise to a canonical crystalline comparison isomorphism,
which has all the necessary properties for the arguments needed in the proofs of
[Kis10, KM16], and [Mad15], and that it is also compatible with Chern classes
of line bundles.

LEMMA 1.10. The image of equation (1.6.1) is a direct summand of the target.

Proof. Consider the submodule

L′ ⊂ L∨ ⊕ L∨0

consisting of elements whose image in d(L∨)⊕d(L∨0 ) is of the form (M(λ)(y), y),
where M(λ) is the isomorphism from Lemma 1.11.
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Note that L′ contains L, and that the quotient L′/L is isomorphic to L0.
Moreover, since M(λ) is an isomorphism of ϕ-modules, L′ inherits the structure
of a Breuil–Kisin module from L∨ ⊕ L∨0 .

Now, by the exactness of Fontaine’s functor, we have a canonical identification

OE ⊗S L′
'

−→M (L�p,s)

in Modϕ/OE
.

It now follows from Lemma 1.3 that we have a canonical identification L� = L′

as submodules of L∨ ⊕ L∨0 . In particular, L is a direct summand of L∨, since it is
clearly one in L′.

LEMMA 1.11. With the notation as above, the de Rham realization fdR,s generates
a direct summand of L�dR,s . Moreover, if

LdR,s = 〈 fdR,s〉
⊥
⊂ L�dR,s

is the orthogonal complement of this direct summand, then there is a canonical
identification of F-crystals

LdR,s(−1)
'

−→ P2
dR,s

characterized by the property that it is compatible with the crystalline comparison
isomorphism and the isometry αp,s .

Proof. Since we have canonical identifications of crystalline and de Rham
realizations, it is sufficient to prove this with dR replaced by cris everywhere.
We now claim that the lattices

W ⊗S,u 7→0 M(P2
p,s) ⊂ W ⊗S,u 7→0 M(P2

p,s)[1/p] ' P2
cris,s[1/p];

W ⊗S,u 7→0 M(L�p,s(−1)) ⊂ W ⊗S,u 7→0 M(L�p,s(−1))[1/p] ' L�cris,s(−1)[1/p]

can be identified with P2
cris,s and L�cris,s(−1), respectively. Given this, everything is

then immediate from Lemma 1.10.
The claim for P2

? was shown in the course of the proof of Lemma 1.11 by using
the results of [BMS18].

The claim for L�? (−1) is essentially due to Kisin. We have the Kuga–Satake
abelian variety A�,KS

s associated with the point s equipped with an action by
the Clifford algebra C(L�). It has a p-adic realization H�p,s and a crystalline
realization H�cris,s . Moreover, we have a canonical identification

H�cris,s = W ⊗u 7→0 ϕ
∗M(H�p,s).
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This certainly follows from [BMS18], but in this special case this was known
earlier; see [KM16, Theorem 1.12] for references.

Now, there is a ΓK -equivariant idempotent projector

π p,s : EndC(L�)(H�p,s)→ EndC(L�)(H�p,s)

whose image is L�p,s .
To finish, it suffices to know that L�cris,s is the image of the projector π cris,s on

EndC(L�)(Hcris,s), defined as the reduction-mod-u of the projector ϕ∗M(π p,s) on
EndC(L�)(ϕ

∗M(H�p,s)).
This follows from the very construction of L�cris as described in [Mad16, (4.14)]

and [KM16, Proposition 3.10].

Proof of Proposition A.12 from [KM16]. Following the original attempt at a
proof, one finds that there are two main points: The first is to show that the
induced map (A.12.1)

M̃sm
2d,Z(p) → Z(2d)(p)

factors through the primitive locus Zpr(2d)(p), where the orthogonal complement

LdR = 〈 f dR〉
⊥
⊂ L�dR|Zpr(m)(p)

restricts to a vector sub-bundle of L�dR. This is now immediate from the first
assertion of Lemma 1.11, which shows that the desired statement is true at every
W -valued point of the smooth Z(p)-stack M̃sm

2d,Z(p) .
The second main point is to show that the isometry

αdR : LdR(−1)|M̃2d,Q
→ P2

dR|M̃2d,Q

extends to an isometry of filtered vector bundles

LdR(−1)|M̃sm
2d,Z(p)

'

−→ P2
dR

over M̃sm
2d,Z(p) . This is now immediate from the second assertion of Lemma 1.11.

Given these two points, the rest of the proof proceeds exactly as in [KM16]:
If we have a k-point s of M̃sm

2d,Z(p) , then its deformations to k[ε]-points of M̃sm
2d,Z(p)

(respectively of Zpr(2d)(p)) are in bijection with lifts to P2
dR,s⊗k k[ε] (respectively

LdR,s(−1) ⊗k k[ε]) of the degree 2 part of the Hodge filtration. Therefore, the
isometry of filtered vector bundles above exhibits a canonical identification
between the tangent spaces at s, thus showing that ιKS is étale at s.
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