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FINDING THE GROUP STRUCTURE OF ELLIPTIC CURVES
OVER FINITE FIELDS

JOHN B. FRIEDLANDER, CARL POMERANCE AND IGOR E. SHPARLINSKI

We show that an algorithm of V. Miller to compute the group structure of an elliptic
curve over a prime finite field runs in probabilistic polynomial time for almost all
curves over the field. Important to our proof Eire estimates for some divisor sums.

1. INTRODUCTION

Let p > 3 be prime and let Fp denote the field of p elements. Let E be an elliptic
curve over Fp given by an affine Weierstrass equation of the form

(1) y2 = x3 + ax + b,

with coefficients a, b € Fp, such that 4a3 + 2762 ^ 0. In particular, there are p2 + O(p)

distinct elliptic curves over Fp.

We recall that the set E(FP) of Fp-rational points on any elliptic curve E forms an
Abelian group (with a point at infinity as the neutral element) and the cardinality of this
group satisfies the Hasse- Weil bound

(2)

see [4, 6, 22] for this and some other general properties of elliptic curves.

It is also well known, see [4, 6, 22], that the group of Fp-rational points E(FP) is
isomorphic to

(3) E(FP) S ZM x ZL

for unique integers M and L with

(4) L\M and L \ p - \ .
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In particular, L \ DP(E) where

J D p (E)=gcd(#E(F p ) ,p- l ) .

The algorithm of Schoof [19] computes #E(FP) in deterministic polynomial time,
see also [2, 6] for more recent improvements (both theoretical and practical). However,
computing the group structure (3) seems to be harder.

We recall that the exponent of a finite Abelian group is the largest possible order of

an element. In view of (3) and (4) the exponent of E(FP) is just M. Since #E(FP) = ML,

once #E(FP) is known finding the group structure is equivalent to finding M o r i .

The deterministic algorithm of [9] for computing the group structure runs in expo-

nential time pVz+ofi). We are concerned here mainly with the probabilistic algorithm

of Miller [16]. This algorithm uses the Weil pairing to produce a pair of generators of

E(FP).

Miller's algorithm runs in expected polynomial time plus the time needed to factor

£>P(E). So an interesting task is to analyse how likely it is for .DP(E) to be small enough

to guarantee that it can be factored in polynomial time.

Here we show that even rather slow deterministic factoring algorithms are already

good enough to factor -DP(E) in deterministic polynomial time "on average" over all curves

E over Fp. Then we use more advanced, but probabilistic, factoring algorithms and obtain

better bounds. In fact these bounds show that seemingly the most time-consuming part

of the whole algorithm, that is factoring DP(E), is "on average" easier than the other

parts, for example the computation of #E(FP). We also consider still faster heuristic

algorithms and analyse the average complexity of computing DP(E) under the standard

assumptions about the complexity of these algorithms. Under those assumptions we

prove even tighter bounds.

In the opposite direction we show that there are infinitely many pairs p, E for which

DP(E) is a product of two large primes and hence is probably hard to factor. Thus, our

results concerning average complexity cannot be extended to the worst case complexity

unless a polynomial time factoring algorithm is found.

Our estimates are based on bounds for certain divisor sums. As usual we use r(k)

and ui(k) to denote the number of of positive integer divisors and the number of prime

divisors of an integer k ^ 1. We use the well-known bounds

(5) r{k)

see [18, Theorem 5.2 of Chapter 1], and

which follows, for example, from the inequality uj{k)\ ^ k and Stirling's formula.
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Throughout the paper we use p and I to denote prime numbers. All implied constants
in the symbols 'O ' and '«C' are absolute (recall that A <C B is equivalent to A = 0(B)),

and log 2 denotes the natural logarithm of z > 0.

2. P R E L I M I N A R I E S

We start with the observation that the Miller algorithm [16], whether it uses a

deterministic factoring algorithm or a probabilistic factoring algorithm complemented

by the polynomial time primality test [1, 13], is of Las Vegas type. Tha t is, it may

occasionally run in exponential time (or never terminate), but it never gives a wrong

answer. Moreover, for any elliptic curve E given by the Weierstrass equation (1) over F p ,

if it terminates the algorithm returns the exponent of the group E(FP) plus a deterministic

polynomial time certificate for this exponent. In fact, it also produces a set of generators

ofE(Fp).

As usual we say that an integer d is Q-smooth if all prime divisors I \ d satisfy I ^ Q.

We also say that an integer d is Q-rough if all prime divisors I \ d satisfy I > Q.

We now outline our approach to the factorisation of D P (E) . In fact, we follow the

standard three-stage strategy:

STAGE 1. Set a certain smoothness bound Q, find all prime divisors I \ DP(E) with
I ^ Q together with the exact powers in which they divide DP(E) and compute the
largest Q-rough divisor Z ) Q I P ( E ) | DP(E).

STAGE 2. Test £>Q I P (E) for primality.

STAGE 3. If JDQ I P (E) is not prime, factor DQiP(E).

Because we are mainly interested in asymptotic results we always assume that fast

arithmetic is used, thus any arithmetic operation with two 6-bit integer operands can be

performed in bl+0^ bit operations (which is also the measure of the algorithm run time).

Accordingly, for Stage 1 we consider the following algorithms to find Q-smooth and

Q-rough parts of an integer n ^ 1:

1. Deterministic Pollard-Strassen smoothness test which runs in time S(Q, n)

= Q 1 / 2 ( l o g n ) 1 + o ^ , see pages 107-108 of [17].

2. Probabilistic Lenstra-Pila-Pomerance hyperelliptic smoothness test which

runs in expected time S(Q, n) = exp ( ^ ( l o g Q J ^ ^ l o g l o g Q ) 1 / 3 ) (logn)l+°W

for some positive constant Co, see [11].

3. Lenstra elliptic curve smoothness test which is conjectured to run in

expected time S(Q,n) = exp (^ / (2 -I- o( l ) ) log Q log log Q ) (log n)1"1"^1),

see [10].

For Stage 2 we always apply the deterministic polynomial time algorithm of [13]

which tests an integer n ^ 1 as to whether it is a prime (or prime power) in time
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V{n) — (log n)6+°W. There are faster probabilistic algorithms but they do not lead to
any substantial improvement of our result (although certainly they could be of great
practical value).

It is useful to remark that the above smoothness tests can also be used as factoring
algorithms whose running time becomes S(min{P(n),n1/'2},n) where P(n) is the largest
prime factor of n.

Accordingly, for Stage 3 we consider the following algorithms to factor an integer
n ^ 1:

1. Deterministic Pollard-Strassen factorisation algorithm which runs in time

2. Probabilistic Lenstra-Pomerance factorisation algorithm which runs in ex-
pected time !F{n) = expn l + o(l)) %/log n log log n 1, see [12];

3. Heuristic number field factorisation algorithm which is predicted to run in
time ?{n) = exp((64/9+o(l))(logn)V3(lOglogn)2''3), see [6, Section 6.2].
(The algorithm of Coppersmith [5] replaces "64/9" with a slightly smaller
number.)

So, setting the smoothness bound Q and using a smoothness algorithm whose run
time is S(Q, n) together with a factorisation algorithm whose run time is T{n), we see
that DP{E) can be factored in time

S(Q,DP(E)) +V(DQ,P(E)) + T(DQ<P(E))

^ S(Q,p - 1) + P(DQtP(E)) + ^(DQ,P(E)).

Therefore, to estimate the average time for a given choice of Q and the corresponding
algorithms and then optimise the choice of Q, we need some results about the distribution
of A?,P(E).

From [10, Proposition 1.9] (and the counting of isomorphisms and automorphisms
of elliptic curves summarised in [10, Section 1]) we have the following result.

LEMMA 1 . For any N, the number of elliptic curves E given by (1) with a, b € Fp

and such that #Ea,6(Fp) = N is at most O (p3/2 logp(loglogp)2).

We are now ready to establish a general upper bound on the average time complexity
of factoring DP(E).

LEMMA 2 . Given a smoothness bound Q and a choice of a smoothness algorithm
whose run time is S(Q, n), a primality test whose run time is V(n) and a factorisation
algorithm whose run time is T{n), the average time complexity of factorisation ofDp(E)
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over all elliptic curves E given fay (1) with a, 6 € F p is

T{p) « S(Q,p - 1) + logp(loglogp)2 £ V(d) (d-1 +p~1'2)
d\p-l

l

+ logp(loglogp)2 ^
dlp-1

PROOF: Using (2) and Lemma 1 we obtain

T(p) <£ S(Q,p- 1) +p-1/2logp(loglogp)2

t

+ p-1/2logp(loglogp)2 Y
d\p-\

d\p-l \ p \ ^
d\N

d\N

d\p-\

p~1/2logp(loglogp)2

which finishes the proof. D

Thus, to get specific upper bounds for concrete smoothness and factoring algorithms
with an optimally chosen smoothness bound Q, we need to estimate certain sums over
divisors.

Clearly, if the average time to factor DP(E) is polynomial, say (logp)A+o('1'1 then
it remains polynomial for almost all elliptic curves E over Fp. Namely it may exceed
(\ogp)A+l for at most p2(logp)~1+o(^ curves.

Finally, it is also interesting to study, for a given smoothness bound Q, the number
of elliptic curves E over Fp, for which the second stage is needed at all, that is, for how
many curves DQIP(E) > 1.

The above questions also require bounds of various divisor sums.

3. DIVISOR SUMS

In fact, in this section we estimate sums which are slightly larger than those arising
in our algorithm analysis, though the upper bounds are the same. As before we use P(k)
to denote the largest prime divisor of an integer k > 1 with the usual convention that
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Let us consider the sum

d\n

LEMMA 3 . For all integers n ^ 2,

and hence
R(n) «C (logn)1'2 .

PROOF: We have

f ^ f p ^ ^^^ / J £p f ]fi S J T '

We have

7 < E 7 ^ I I ^ - VP)"1 ^ [ I C1 " VP)-1 « logo;(6n) ,
^ / I n " ' p|n

where we have used a weak version of the Chebyshev bound for the k — th prime together
with the Chebyshev-Mertens formula for the product. Also, by Chebyshev's prime num-
ber bound and partial summation,

r1/2«

giving the first statement of the lemma. The latter statement then follows immediately
from (6). D

For real positive Q and a and an integer n, we define the sum

Ua(Q,n)= £ -L and Va(Q,n) = £ -L.

LEMMA 4 . For any a > 0, integer n ^ 3, and <9 ^ (logn)1/a, we uniformly have

PROOF: We have,

ua(Q,n) = I I E r a i - l = II f1 + *rrr) ~
•>- j=0 l\n ^ '
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By (6) we have w(n) = o(Qa). Therefore

Qa-V

which finishes the proof. Q

LEMMA 5 . For any a > 0, integer n ^ 3, and Q ^ (logn)1/Q, we uniformly have

Va(Q,n)<£Q-2au(n)2.

PROOF: Let

and note that by (6), under the condition Q ̂  (logn)1/0, we have

(7) a = 0(oj(n)Q-a) = o(l).

As in the proof of Lemma 4 we obtain

Furthermore,

Therefore,

Va(Q,n) <e'-l-<j«ff2

by (7). Thus, we finish the proof. D

For a real positive K and Q, and an integer n, we define the sum

LUa(K,Q,n)= £ .

LEMMA 6 . For any integer n ^ 2, and reafc a > 0, # > 1, Q > (u(n) + l ) 1 / a , we

uniformly have

Ua(K,Q,n) <£ /f
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P R O O F : Let

^ = 1 _ Q - . l o g M n H l ) )

so that Qa^~^ - 1 = u){n). As the hypothesis on Q implies that ft > 0, we have
oo

Ua(K, Q,n) ^ K a y ^ m - A " J ^ / ^JQ^
l\n j=0

1 \w(") _a«

which concludes the proof. D

4. AVERAGE COMPLEXITY OF FINDING THE GROUP STRUCTURE OF ELLIPTIC CURVES

We now estimate the average complexity of several "natural" combinations of
smoothness tests and factorisation algorithms described in Section 2 for an optimally
chosen value of Q.

THEOREM 7 . There is a deterministic algorithm which factors DP(E) whose av-
erage run time, taken over all over all elliptic curves E given by (1) with a,b £ Fp,
is

PROOF: We simply start with using the Pollard-Strassen smoothness test as a fac-
toring algorithm (and as a primality test too), see [17]. Thus from Lemma 2 (applied
with Q = 1) we deduce

T(p) ^ logp(loglogp)2 ^ min{P(d)1/2,d1/4}(logd)1+°(1) (d'1 +p~1/2)
d\P-\

(R(p - 1) + p-^rip - 1)).

Thus, by Lemma 3 and the bound (5), we conclude the proof. D

We now show that probabilistic algorithms lead to a better (in fact almost linear)
bound on the average complexity of factoring DP(E).

THEOREM 8 . There is a probabilistic algorithm which factors DP(E) whose aver-
age expected run time, taken over all over all elliptic curves E given by (1) with a,b £ Wp,
is

T{p) ^
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P R O O F : We set Q — exp((loglogp)4/3) and use the Lenstra-Pila-Pomerance hyper-

elliptic smoothness test [11], and then the PoUard-Strassen smoothness test as a factoring

algorithm (and as a primality test too), see [17]. From Lemma 2 we derive

T{p) ^ exp (coOogQ^log logQ) 1 / 3 ) ( l ogp ) 1 ^ 1 '

+ l0gp(l0gl0gp)2

d|P-i

e x p ( O Q ^ l l

Thus by Lemma 4 and the bounds (5) and (6), we obtain

T(p) < exp (coOogQ^CloglogQ)1/3) (logp)1^1

+ (logp)2+o<lMp

For the above choice of Q we have

exp

and

which concludes the proof. D

5. RESULTS FOR ALMOST ALL CURVES

We now estimate the number of curves for which a smoothness test with a given
threshold Q does not factor DP(E) completely.

THEOREM 9. Given a smoothness bound Q, the proportion of elliptic curves E
given by (1) with a,b £ Fp and such that DQ}P(E) > 1 is

P(Q,P) « Q~loj(p

PROOF: Using (2) and Lemma 1, as in the proof of Lemma 2, we obtain

d\p-l \ N - \ ^
l\d^l^Q d\N

logp(loglogp)2 Yl d-l+p-1/2T(p- l)logp(loglogp)2

d\p-l

Using Lemma 4 we finish the proof. D

https://doi.org/10.1017/S0004972700035048 Published online by Cambridge University Press

https://doi.org/10.1017/S0004972700035048


260 J B . Friedlander, C. Pomerance and I.E. Shparlinski [10]

THEOREM 10 . Given a smoothness bound Q, the proportion of elliptic curves E
given by (1) with a, b G Fp and such that DQ) P(E) has at least two distinct prime factors
is

P(Q,P) « Q-2W(P- i)2(

PROOF: The proof is completely analogous to that of Theorem 9, except that we
use Lemma 5 instead of Lemma 4. D

In particular, we see from Theorem 10 that using the Pollard-Strassen smoothness
test [17] with Q = (logp)A+1 for some constant A > 0, and the deterministic primal-
ity test [1, 13], we actually find the complete factorisation of DP(E) in deterministic
polynomial time for all but the proportion (log py~2A+0^ of elliptic curves over Fp.

Furthermore, using the hyperelliptic smoothness test [11] with

V '(log log log p)V

we actually find a complete factorisation of DP(E) in expected polynomial time for all
but the proportion Q-2+°W of elliptic curves over Fp. Finally, with the heuristic elliptic
curve test we have the same result with

n
'log log log pj '

We can actually get a result of similar quality using fully proved subroutines for finding
smooth parts and general factoring.

THEOREM 1 1 . For any fixed A > 0, and sufficiently large p, there is a proba-
bilistic algorithm to compute the exponent of an elliptic curve E over Fp such that the
expected running time of the algorithm is polynomial except possibly for the proportion

of elliptic curves E given by (1) with a, b G Fp.

PROOF: We put

Q = exp((loglogp)4/3) and K = expf (A + ) , f f )
logloglogp/

We use the hyperelliptic smoothness test [11], which for the above value of Q runs in
polynomial time. Now, provided DQIP(E) ^ K we use the subexponential probabilistic
algorithm of [12] which for the above value of K factors DQIP(E) in polynomial time.

Thus, using (2) and Lemma 1, as in the proof of Lemma 2, we obtain

dlp-1

i\d=>ezQ

Ui(K,Q,p-1) logp(loglogp)2 +P-I'\{p - 1)logp(loglogp)2
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Since logcj(n) <g. log log n — (logQ)3/4, Lemma 6 finishes the proof. D

Clearly, assuming that for some constant C > 0, one can factor an integer n within
the expected number of exp (C(logn)1/3(loglogn)2/3) bit operations (for example, under
the assumption that the number field sieve runs in the widely believed time), the bound
of Theorem 11 can be improved to

6. REMARKS

It immediately follows from the Bombieri-Vinogradov theorem, see [7], that for in-
finitely many primes p, p — 1 has a divisor d with p1/2 ^ d ^ p1/2+o(i) Moreover, one has
this with d the product of two primes of the same magnitude, and so might be expected
to be hard to factor. By the classical result of Deuring [8], when E runs through the
whole family (1) with a, b e Fp, the cardinality #E(FP) takes all integer values, except
for p, in the Hasse-Weil interval [p + 1 - 2p1/2,p + 1 -I- 2p1/2], see also [3, 10, 20, 23].
Thus DP(E) = pl/2+°W for infinitely many pairs of primes p and curves E. And in fact,
DP(E) is infinitely often divisible by a number d which is pll2+o^ and is the product of
two primes of the same magnitude. Moreover, it follows from [21, Proposition 3.3] that
even if one has an arbitrary, but fixed curve E defined over the field of rational numbers,
then, under the Extended Riemann Hypothesis, there are infinitely many primes p with
DP(E) ^ p1/8+°(1) (to see this one has to recall that L in (3) satisfies L \ p - 1). We
should remark, that in this example DP(E) is likely to be prime so its "factorisation"
is an easy task. However, the method of [21] can easily be modified to prove that for
infinitely many primes p, the value of DP(E) is a product of two large primes.

Thus it would seem that as long as the complexity of integer factorisation algo-
rithms remain non-polynomial, the worst case complexity of the algorithm of [16] is not
polynomial either.

It is easy to show using sieve methods that if ip(p) -¥ 0 arbitrarily slowly as p -> oo,
then for almost all primes p, the number p - 1 has two prime divisors q between p 1 ^ ' and
p1/4. Thus most primes p have an elliptic curve E over Fp with a value of DP(E) that is
presumably very difficult to factor completely.

The same arguments also apply to elliptic curves over arbitrary finite fields. One

only needs a generalisation of the bound from [10] to this case (which should be a

rather straightforward task). We however, remark that for an ordinary curve E defined

over a finite field of q elements, and considered in the consecutive extensions E(F,n)

(which is a very typical scenario for cryptographic applications), the value of Dqn(E)

- gcd(E(F,n),g" - 1) is subexponential. Namely, as it follows from [15, Section 5 ], for

any 5 > 0 there is an effectively computable absolute constant C(6) > 0 such that for
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any X > 1
/

for all n ^ X except at most O(X6) of them. On the other hand, it follows from [14]
that

£>,n(E) Zexp(nc']0&l°sn)

for some absolute constant c > 0 and infinitely many n.
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