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COINTEGRATED AUTOREGRESSIVE
PROCESSES IN BANACH SPACES
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We extend the notion of cointegration for time series taking values in a potentially
infinite dimensional Banach space. Examples of such time series include stochastic
processes in C[0,1] equipped with the supremum distance and those in a finite
dimensional vector space equipped with a non-Euclidean distance. We then develop
versions of the Granger–Johansen representation theorems for I(1) and I(2) autore-
gressive (AR) processes taking values in such a space. To achieve this goal, we
first note that an AR(p) law of motion can be characterized by a linear operator
pencil (an operator-valued map with certain properties) via the companion form
representation, and then study the spectral properties of a linear operator pencil to
obtain a necessary and sufficient condition for a given AR(p) law of motion to admit
I(1) or I(2) solutions. These operator-theoretic results form a fundamental basis for
our representation theorems. Furthermore, it is shown that our operator-theoretic
approach is in fact a closely related extension of the conventional approach taken
in a Euclidean space setting. Our theoretical results may be especially relevant in a
recently growing literature on functional time series analysis in Banach spaces.

1. INTRODUCTION

Conventionally, the subject of time series analysis concerns time series taking
values in finite dimensional Euclidean space. On the other hand, a recent literature
on functional time series analysis deals with time series taking values in a
possibly infinite dimensional Banach or Hilbert space, for instance, those in C[0,1]
equipped with the supremum norm. Examples of such time series are not restricted
to function-valued stochastic processes: those in a finite dimensional vector space
equipped with a non-Euclidean metric, such as Chebyshev distance or taxicab
distance, are also included.

The property of cointegration, which was introduced by Granger (1981) and has
been studied in Euclidean space, was recently extended to a more general setting. A
recent paper by Chang, Kim, and Park (2016b) appears to be the first to consider the
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possibility of cointegration in an infinite dimensional Hilbert space. More recently,
Beare, Seo, and Seo (2017) adopted the notion of cointegration from Chang et al.
(2016b) and provided a rigorous treatment of cointegrated linear processes taking
values in Hilbert spaces.

The Granger–Johansen representation theorem is a result on the existence and
representation of I(1) (and I(2)) solutions to a given vector autoregressive (AR)
law of motion that accommodates the possibility of cointegration. Due to crucial
contributions by e.g., Engle and Granger (1987), Johansen (1991, 1992, 1995,
2008), Schumacher (1991), Faliva and Zoia (2002, 2010, 2011, 2021), Hansen
(2005), and Franchi and Paruolo (2016, 2019), much on this subject is already
well known in a Euclidean space setting. For a brief historical overview of this
topic, see the introduction of Beare and Seo (2020). More recently, Chang, Hu, and
Park (2016a), Hu and Park (2016), and Beare et al. (2017) extended the Granger–
Johansen representation theorem for the I(1) case to a general Hilbert space setting.
Moreover, Beare and Seo (2020) provided representation theorems for I(1) and
I(2) AR processes in such a setting based on analytic operator-valued function
theory, and Franchi and Paruolo (2020) developed a more general result for I(d)
AR processes for d ≥ 1.

This paper provides a suitable notion of cointegration and extends the Granger–
Johansen representation theorem for Banach-valued, not necessarily Hilbert-
valued, AR processes that are I(1) or I(2); that is, our theory can be applied to
more general AR processes, for instance, those taking values in C[0,1], Lq[0,1],
for 1 ≤ q < ∞, or any finite dimensional vector space equipped with an arbitrary
norm. Viewed in the light of our purpose, our representation theorems need to be
developed without relying on the following two preconditions commonly required
in the literature: (i) a Hilbert space structure and (ii) a special restriction on the
AR polynomial. To see this in detail, we briefly review the relevant literature.
For a given AR(p) law of motion in a Hilbert space, which is characterized by
the AR polynomial �(z) = I − zφ1 − ·· ·− zpφp, Beare et al. (2017) assume that
φ1, . . . ,φp are compact operators when p > 1 (this compactness assumption is
not required if p = 1), and provide a sufficient condition for the existence of
I(1) solutions and a characterization of such solutions. In their representation
theory, compactness of φ1, . . . ,φp makes �(z) belong to a special subclass of
linear operators, called Fredholm operators, and the mathematical properties of
such operators play an important role. More representation theorems in a Hilbert
space setting are provided by Hu and Park (2016), Beare and Seo (2020), and
Franchi and Paruolo (2020), among which the latter paper more generally deals
with I(d) AR(p) processes for d ≥ 1 and p ≥ 1. The representation theorems in
those papers are closely related to that provided by Beare et al. (2017) in the
sense that Fredholmness of �(z) has a crucial role in their developments. The
Fredholm assumption explicitly or implicitly employed in the foregoing papers
turns out to place nontrivial restrictions on solutions to the AR(p) law of motion:
nonstationarity of such a solution is driven by a necessarily finite dimensional
unit root process even in an infinite dimensional setting. From another standpoint,
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Chang et al. (2016a) employ a different assumption that �(1) is a compact
operator and provide an I(1) representation result. As opposed to the results under
Fredholmness of �(z), it turns out that their compactness assumption always leads
to I(1) solutions associated with an infinite dimensional unit root process unless
the considered Hilbert space is finite dimensional. To briefly sum up, all of these
existing versions are developed in a Hilbert space setting, and each of those relies
on a special requirement about �(z), which restricts solutions to the AR(p) law
of motion in a specific way. We thus need a novel approach to overcome these
limitations in our more general setting.

To accomplish our goal, we first introduce a suitable notion of cointegration
in Banach spaces by defining a cointegrating functional that properly generalizes
the conventional notion of a cointegrating vector. We then characterize the cointe-
grating space (to be defined as the collection of cointegrating functionals) based
on the Phillips–Solo device (Phillips and Solo, 1992) applied to operator-valued
functions. After doing that, representation theorems for I(1) and I(2) AR processes
taking values in a Banach space are provided. Our representation theory is derived
under more primitive and weaker mathematical conditions in a general Banach
space setting where we do not even have the notion of an angle (inner product)
between two vectors. From Johansen (1991, 1992) to the foregoing recent papers,
geometrical properties induced by an inner product, such as orthogonality, have
been employed for the representation theory. However, it will be clarified in this
paper that such a richer geometry is not necessarily required: in our representation
theory, geometrical properties induced by an inner product have no essential role.

To obtain our representation theorems, we first note that an AR(p) law of motion
in a Banach space allows the companion form AR(1) representation in a properly
defined product Banach space, and it is thus characterized by a linear operator
pencil (to be introduced in detail later) denoted by �̃(z). By studying the spectral
properties of a linear operator pencil, we find necessary and sufficient conditions
for �̃(z)−1 to have a pole of order 1 and 2, and also obtain a local characterization
of �̃(z)−1 near z = 1. These operator-theoretic results not only determine the
integration order of solutions to the AR(p) law of motion, but also lead us to a
representation of such solutions in terms of the behavior of �̃(z) around z = 1;
that is, our versions of the Granger–Johansen representation theorems for I(1) and
I(2) AR processes are obtained. The fact that solutions to the AR(p) law of motion
are characterized in terms of a local behavior of �̃(z), rather than the original AR
polynomial �(z), makes it difficult to compare our results to those developed in
a Hilbert/Euclidean space setting. We thus provide further representation results
so that important characteristics of I(1) or I(2) solutions are expressed in terms of
linear operators associated with �(z). To this end, we first show that our necessary
and sufficient condition for �̃(z)−1 to have a pole of order 1 (resp. 2) is equivalent
to a natural generalization of the well-known Johansen I(1) (resp. I(2)) condition,
and then we recharacterize solutions to the AR(p) law of motion in a desired way
using these equivalent conditions. By this further effort, not only can we obtain a
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more detailed characterization of such solutions, but also we can better clarify the
connection between our representation results and those in the existing literature.

We structure the remainder of the paper as follows. In Section 2, we develop a
suitable notion of cointegration in Banach spaces and provide some related results.
Our representation theory for I(1) and I(2) AR processes is contained in Section 3,
and concluding remarks follow in Section 4. Appendix A reviews background
material for our study, and Appendix B collects the proofs of our main results.

2. COINTEGRATION IN BANACH SPACES

Let {Xt}t≥0 be an I(1) time series taking values in Euclidean space of dimension
n, denoted by R

n. If there exists a nonzero vector β ∈ R
n such that {βᵀXt}t≥0 is

stationary under a suitable choice of X0, we then say that {Xt}t≥0 is cointegrated
with respect to β, and call β a cointegrating vector; see e.g. Johansen (1995,
Def. 3.4). In this conventional definition of cointegration, β itself acts as a scalar-
valued map defined on R

n, and what makes β a cointegrating vector is stationarity
of scalar-valued time series {βᵀXt}t≥0. We thus may understand cointegration as
a property of scalar-valued maps defined on R

n, which leads to the following
alternative definition.

Definition 2.1. For an I(1) time series {Xt}t≥0 and any scalar-valued linear map
f defined on R

n (i.e., functional on R
n), if { f (Xt)}t≥0 can be stationary under a

suitable choice of X0, then we say that {Xt}t≥0 is cointegrated with respect to f, and
call f a cointegrating functional.

In fact, the above definition is equivalent to the conventional one due to the
Riesz representation theorem (see, e.g., Conway, 1994, p. 13), implying that any
functional f on R

n is uniquely identified as a vector β in the following sense:
f (x) = βᵀx for all x ∈R

n. Nevertheless, defining cointegration as in Definition 2.1
is advantageous especially when we consider a more general vector space; as
will be shown, we may replace R

n with a separable complex Banach space B
without a serious theoretical complication, and then may obtain a suitable notion
of cointegration in B.

Throughout this section, we formally introduce cointegrated I(1) and I(2)
processes taking values in a Banach space and characterize the collection of
cointegrating functionals. Prior to a detailed mathematical treatment of those, it
may be helpful to see an example of functional time series of economic or statistical
interest that can motivate our more general setting.

2.1. Example: Banach-Valued Time Series and Cointegration

Our more general setting is of central relevance for applications involving func-
tional time series. As mentioned and analyzed in Hörmann, Horváth, and Reeder
(2013) and Horváth, Kokoszka, and Rice (2014), possibly one of the most natural
functional time series is a sequence of intraday price curves of a financial asset. Let
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Xt(s) be the price of a financial asset at time s ∈ [smin,smax] on day t ∈ {1,2, . . .}. By
reparametrizing s into u = (s− smin)/(smax − smin), Xt := {Xt(u),u ∈ [0,1]} may be
viewed as a random element in C[0,1], the Banach space of continuous functions
on [0,1] equipped with the usual sup norm. Linear functionals defined on C[0,1]
reveal various characteristics of Xt. For example, consider f1, f2, and f3 defined by

f1(x) = x(1), f2(x) =
∫ 1

0
x(u)du, f3(x) = x(1)−

∫ 1

0
x(u)du, (2.1)

where x ∈ C[0,1]. Then, f1(Xt) (resp. f2(Xt)) computes the closing (resp. average)
price on day t, and f3(Xt) gives their difference.

We may assume that the price curves observed on two adjacent days, say, Xt−1

and Xt, are tightly connected in the sense that Xt(0) = Xt−1(1) or loosely connected
in the sense that an overnight jump εt(0) := Xt(0)− Xt−1(1) is allowed. In either
case, {Xt(u)−Xt−1(1)}u∈[0,1] denotes the cumulative intraday returns on day t. For
illustrative purposes, we may model such a sequence of returns as follows: for a
stationary process {εt}t≥0,1

Xt(u)−Xt−1(1) = εt(u), u ∈ [0,1], (2.2)

where {εt(1)}t≥0 is assumed to have a positive variance for reasons to become
apparent. By introducing a linear operator φ1 defined by φ1(x)(u) = x(1) for
u ∈ [0,1] and then suppressing dependence on u for convenience, (2.2) can be
written as a curve-valued AR(1) process as follows:

Xt = φ1Xt−1 + εt. (2.3)

If we take the functional f1 to both sides of (2.3), we find that Xt(1) = Xt−1(1)+
εt(1); that is, the time series of closing prices { f1(Xt)}t≥0 is a random walk
with stationary increments. This implies that {Xt}t≥0 is a nonstationary curve-
valued process; if it were stationary, { f1(Xt)}t≥0 would be stationary since f1 is
a continuous linear transformation. On the other hand, note that f3(Xt) = f3(εt)

holds and thus { f3(Xt)}t≥0 is stationary, from which we find that f3 transforms the
curve-valued nonstationary process {Xt}t≥0 into a scalar-valued stationary process.
In view of Definition 2.1, f3 may be called a cointegrating functional, which is, of
course, informal at this point since we have not yet provided our formal definition
of a cointegrating functional.

From the definition of φ1 and (2.3), we also observe that the following holds:

Yt(u) := Xt(u)−X0(1) =
t∑

s=1

εs(1)+ (εt(u)− εt(1)), t ≥ 1. (2.4)

We know from (2.4) that, under a suitable initialization, Xt can be decomposed into
the sum of two different components: the first is the random constant function XN

t

1Empirical evidence about stationarity of cumulative stock return curves of a financial asset was provided in Horváth
et al. (2014); however, we need to be careful in interpreting such evidence in our context since their results are obtained
by viewing intraday price curves as random elements of the usual Hilbert space L2[0,1] rather than C[0,1].
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Figure 1. Decomposition of Yt(u) = Xt(u)− X0(1) into the sum of XN
t and XS

t . Notes: For a clear
graphical illustration, we let (i) Yt (resp. εt+1) be a sample path of Brownian motion initialized at 0.5
(resp. 0) and (ii) let Yt and Yt+1 be horizontally separated in the first plot (even if Yt and Yt+1 are tightly
connected under (i)). The horizontal axis in each plot represents values of u ∈ [0,1].

defined by XN
t (u) = Yt(1) = ∑t

s=1 εs(1), and the second is the random continuous
function XS

t which is given by XS
t (u) = εt(u) − εt(1) and hence satisfies that

XS
t (1) = 0 (Figure 1 graphically illustrates this decomposition). Since {XS

t }t≥1 is
stationary, nonstationarity of {Yt}t≥1 results from the fact that the value of XN

t
follows a random walk. Thus, the decomposition given by (2.4) distinguishes
the nonstationary and the stationary components of Yt from each other, and, as
will be discussed in detail later (Remark 2.2), this is a natural extension of the
projection-based decomposition of a cointegrated vector-valued time series; that
is, the transformations Yt �→ XN

t and Yt �→ XS
t can be viewed as done by a certain

projection acting on C[0,1] (Remark 2.3).
One may be interested in describing the above characteristics of the model

(2.3) using the existing theory of cointegration, assuming that the intraday price
curves are random elements of the usual Hilbert space L2[0,1], the space of square
integrable functions on [0,1] equipped with inner product 〈f,g〉 = ∫ 1

0 f (u)g(u)du.
In this case, however, the AR(1) operator φ1 given in (2.3) and the functionals f1
and f3 given in (2.1) lack an essential continuity property required in the existing
theory, and dealing with those linear maps in this context is far beyond what has
been covered in the literature.2 This example, therefore, shows that our general
Banach space setting is useful to accommodate more various functional time series
as subjects of the theory of cointegration.

Many economic/statistical time series can be understood as Banach-valued
(especially C[0,1]-valued) stochastic processes. Some existing examples in the
literature include daily electricity demand curves (Petris, 2013) and annual
temperature profiles (Dette, Kokot, and Aue, 2020).3 Moreover, Banach space
methodology is sometimes naturally in demand when researchers want to adopt a

2φ1, f1, and f3 are not continuous with respect to the topology of L2[0,1]. Such a linear map is equivalently said to
be unbounded. As far as this author knows, unbounded linear operators or functionals have not been considered in
the existing theory of cointegration and the Granger–Johansen representation.
3Nielsen, Seo, and Seong (2019) recently considered similar empirical examples (Ontario monthly electricity demand
curves and Australian annual temperature curves) in the L2[0,1] Hilbert space setting and found empirical evidence
that those are cointegrated time series.
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different notion of distance for functional time series analysis. For example,
Dette et al. (2020) noted that two curves with rather different visual shapes
may still have a small L2-distance and thus be identified as similar in the usual
L2[0,1] setting. They therefore employed the sup-distance, which is expected to
better reflect the visualization of curve-valued observations in statistical analysis,
by assuming that such observations are random elements of C[0,1]. In this
regard, nonstationary, and possibly cointegrated, time series considered in the
L2[0,1] setting can be potentially reconsidered in a Banach space setting; as an
example of such time series, curves of age-specific employment rates (Nielsen
et al., 2019; Seo, 2020), population counts (Shang et al., 2016), mortality rates
(Gao and Shang, 2017), or fertility rates (Hyndman and Ullah, 2007) can be
mentioned.

2.2. Notation

We review our notation for the subsequent discussions. The setting for our analysis
is a separable complex Banach space B equipped with norm ‖·‖B. To conveniently
introduce our notation, we let B̃ denote another such space, equipped with norm
‖ · ‖B̃; for example, B̃ may be set to B or the complex plane C.

A linear operator A : B �→ B̃ is said to be bounded if ‖Ax‖B̃ ≤ M‖x‖B for some
M < ∞ and any x ∈ B. Such an operator is obviously continuous on B. Unless
otherwise noted, every linear operator considered in this paper is bounded. Let
L(B,B̃) denote the space of bounded linear operators from B to B̃ equipped with
the operator norm ‖A‖op = sup‖x‖≤1 ‖Ax‖B̃. We are mostly concerned with the case
B = B̃, so let L(B) denote L(B,B), and let I ∈ L(B) denote the identity operator
acting on B. For any A ∈L(B,B̃), we let ranA (resp. kerA) denote the set {Ax : x ∈
B} (resp. {x ∈B : Ax = 0}). Commonly, ranA (resp. kerA) is called the range (resp.
the kernel) of A, and it is well known that kerA is necessarily closed, whereas ranA
may not be so. If dim(ranA) < ∞, then A is said to be a finite rank operator. For
any subspace V ⊂ B, let V ′ denote the space of bounded linear functionals from
V to C equipped with the operator norm, i.e., V ′ = L(V,C), which is commonly
called the topological dual of V.

For any subset V of B, let clV denote the closure of V, i.e., the union of V and its
limit points. For subspaces V1 and V2 of B, we let V1 +V2 denote the set {v1 +v2 :
v1 ∈ V1,v2 ∈ V2}, which is called the algebraic sum of V1 and V2. If V1 + V2 = B
and V1 ∩ V2 = {0} hold for closed subspaces V1 and V2, we then say that B is the
direct sum of V1 and V2, and write B = V1 ⊕V2. In this case, V1 (resp. V2) is said
to be complemented by V2 (resp. V1), and V2 (resp. V1) is called a complementary
subspace of V1 (resp. V2). These definitions can be extended for a finite collection
of subspaces V1,V2, . . . ,Vk in an obvious way. For any set V ⊂ B, we let Ann(V)

denote the annihilator of V, defined by the set { f ∈ B ′ : f (x) = 0,∀x ∈ V}, which
turns out to be a closed subspace of B ′(Fabian et al., 2010, p. 56). For any closed
subspace V of B, we let B/V denote the quotient space equipped with the quotient
norm ‖ · ‖B/V , which is briefly reviewed in Appendix A.1.
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The definitions of a B-random variable X, its expectation EX, covariance
CX , and cross-covariance CX,Y with another B-random variable Y are given in
Appendix A.2. We are mostly concerned with the collection of B-valued random
variables X satisfying EX = 0 and E‖X‖2

B < ∞, which is denoted by L2(B). For
X ∈ L2(B), we say that X has a positive definite covariance if fCX(f ) = 0 implies
that f = 0.

2.3. Cointegrated I(d) Processes in Banach Spaces

Throughout this paper, we will need to consider I(d) processes in B and in C for
d ∈ {1,2}, with innovations in B, so it is convenient to define the I(d) property
with another separable complex Banach space B̃ as in Section 2.2. Our definition
of the I(d) property is adapted from Beare and Seo (2020) and Franchi and Paruolo
(2020) for our more general setting. As a key building block for the I(d) property,
we first define the I(0) property.

Definition 2.2. A sequence X = {Xt}t≥t0 in L2(B̃) is said to be I(0) if

Xt −E(Xt) =
∞∑

j=0

θjεt−j, t ≥ t0, (2.5)

where {εt}t∈Z is an i.i.d. sequence in L2(B) with positive definite covariance Cε0

and {θj}j≥0 is a sequence in L(B,B̃) satisfying
∑∞

j=0 ‖θj‖op < ∞ and
∑∞

j=0 θj �= 0.

Remark 2.1. {εt}t∈Z in Definition 2.2 is an i.i.d. sequence in L2(B), which
is called a strong B-white noise (Bosq, 2000, p. 148). The i.i.d. condition is
imposed for simplicity, and the results to be developed remain valid under a weaker
condition that Cεt does not depend on t and Cεt,εs = 0 for all t and s �= t. Such a
sequence {εt}t∈Z is called a weak B-white noise (Bosq, 2000, p. 161).

As in a Euclidean space setting, (2.5) may be conveniently expressed as

Xt −E(Xt) = �(L)εt,

where �(z) = ∑∞
j=0 θjzj and L denotes the lag operator. Note that �(·) is an

operator-valued function defined on C, which is called an operator pencil (see
Appendix A.4); if �(·) is matrix-valued, it is called a matrix pencil. Based on the
I(0) property given by Definition 2.2, we define the I(1) and I(2) properties as
follows.

Definition 2.3. For d ∈ {1,2}, a sequence in L2(B̃) is said to be I(d) if its dth
difference is an I(0) process admitting a representation (2.5) with {θj}j≥0 satisfying∑∞

j=1 jd ‖θj‖op < ∞.

Note that we require some summability conditions for I(1) and I(2) sequences,
which are introduced for mathematical convenience in order to facilitate the use
of the Phillips–Solo device in Section 2.4.
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Cointegration of an I(d) process inB may be defined by extending Definition 2.1
in an obvious way. Let X be an I(d) process in B, f be an element of B′, and � :=
I − L be the difference operator. If the scalar-valued time series { f (�d−1Xt)}t≥0

is stationary (�0 is understood as the identity operator) in C for a suitable choice
of X0, we then say that X is cointegrated and call f a cointegrating functional.
Obviously, the collection of cointegrating functionals constitutes a subspace of B′,
so we call it the cointegrating space.

2.4. Characterization of the Cointegrating Space

In this section, we characterize the cointegrating space associated with I(1) or I(2)
processes in B. A key input to our results is the Phillips–Solo device (Phillips and
Solo, 1992, Lem. 2.1 and Sect. 4) for obtaining an algebraic decomposition of
a linear filter into long-run and transitory components. Even if the Phillips–Solo
device was presented in Phillips and Solo (1992) as a way to decompose matrix
pencils when the usual matrix norm is considered, it can be directly extended to our
Banach space setting by just replacing matrix pencils (resp. the usual matrix norm)
with operator pencils (resp. the operator norm); no further changes are required
from their proofs.

For d ∈ {1,2}, let X = {Xt}t≥−d+1 be an I(d) sequence in B, admitting the
following representation:

�dXt = �(L)εt, t ≥ 1. (2.6)

Under the summability conditions given in Definition 2.3, we may apply the
Phillips–Solo device to obtain

�(L) = �(1)+��⭒(L), (2.7)

where �⭒(L) = −∑∞
j=0 θ⭒j Lj and θ⭒j = ∑∞

k=j+1 θk. In (2.7), �(1) (resp. ��⭒(L))
is called the long-run (resp. transitory) component of �(L); see Phillips and Solo
(1992). We may deduce from (2.7) that (2.6) allows the following representation,
called the Beveridge–Nelson decomposition: for d ∈ {1,2} and for some τ0,

�d−1Xt = τ0 +�(1)

t∑
s=1

εs +νt, t ≥ 0, (2.8)

where {νt}t≥0 is stationary and νt = �⭒(L)εt for each t. Given (2.8), the cointegrat-
ing space C(X) associated with X is formally defined as follows: for d ∈ {1,2},
C(X) = {f ∈ B′ : { f (�d−1Xt)}t≥0 is stationary for some τ0 ∈ L2(B)}.
We also define

A(X) = ran�(1),

which is called the attractor space of X. We then provide useful results to
characterize C(X) when (i) there is no restriction on A(X) and (ii) clA(X) is
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complemented in B. In case (ii), clA(X) allows a complementary subspace,
but which is not uniquely determined in general; for example, if B = R

2 and
clA(X) = span{(1,0)}, then the span of any arbitrary vector that is not included in
span{(1,0)} can be a complementary subspace. We will also see later, in Remark
2.3, that various subspaces can complement clA(X) of the cointegrated time series
considered in Section 2.1.

We thus hereafter let �(clA(X)) denote the collection of the complementary
subspaces of clA(X), i.e., any element V ∈ �(clA(X)) satisfies

B = clA(X)⊕V . (2.9)

If B is a Hilbert space, A(X)⊥ is always a complementary subspace of clA(X)

(Conway, 1994, pp. 35–36), hence A(X)⊥ ∈ �(clA(X)); however, there may not
exist a subspace V satisfying (2.9) if B is an infinite dimensional Banach space
(see Remark 2.4). If the direct sum (2.9) holds for any V ∈ �(clA(X)), we may
define the unique projection PV ∈L(B) onto V along clA(X), i.e., PV is the unique
linear operator satisfying the following properties:

PV = P2
V, ranPV = V, kerPV = clA(X); (2.10)

see Megginson (2012, Thm. 3.2.11). If B is a Hilbert space and V = A(X)⊥ as
mentioned above, PV becomes the orthogonal projection onto A(X)⊥, but for any
other V ∈ �(clA(X)) which is not equal to A(X)⊥, PV becomes a nonorthogonal
projection. Our first result in this section characterizes the cointegrating spaceC(X)

in terms of A(X) and PV defined above.

PROPOSITION 2.1. If X = {Xt}t≥−d+1 is I(d) for d ∈ {1,2}, the following hold.

(i) C(X) = Ann(A(X)).

(ii) If V ∈ �(clA(X)), then C(X) = { f ◦PV : f ∈ B′}, where PV satisfies (2.10).

Proposition 2.1(i) shows that C(X) is given by the annihilator of A(X), and
thus a closed subspace of B′ regardless of whether A(X) is closed or not. This
characterization is obtained without any additional condition on A(X), but it is
instead less informative than that given in Proposition 2.1(ii). If clA(X) allows a
complementary subspace V ∈ �(clA(X)), we then know from the result given by
Proposition 2.1(ii) thatC(X), which is a subspace ofB′, is in fact fully characterized
by the projection PV ∈ L(B) satisfying (2.10). This result in turn leads us to have
a natural decomposition of {�d−1Xt}t≥0 into two components with different kinds
of cointegrating behaviors as in a Hilbert/Euclidean space setting; see Remark 2.2.
Some more remarks on Proposition 2.1 and the direct sum condition (2.9) are in
order.

Remark 2.2. In our Banach space setting, the cointegrating space C(X) is,
by definition, a subspace of B′ which is in general different from B. How-
ever, the result given in Proposition 2.1(ii) makes it possible to understand
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C(X) as a subspace of B. Consider the Beveridge–Nelson decomposition (2.8).
Using PV defined under the direct sum (2.9), we may decompose �d−1Xt into
(I −PV)�d−1Xt and PV�d−1Xt. The former is the unit root component in the
sense that { f (I −PV)�d−1Xt}t≥0 cannot be stationary for all f ∈ B′ as long as
f (I −PV) �= 0, whereas the latter is the stationary component in the sense that
{ f PV�d−1Xt}t≥0 can be made stationary under a suitable choice of τ0 for all f ∈B′.
This projection-based decomposition of a cointegrated time series is what has been
done in a Euclidean space setting (see, e.g., Johansen, 1995, pp. 40–41), and as
discussed, it is also possible in our setting without a richer geometry of a Hilbert
space.

Remark 2.3. In the example given in Section 2.1, any solution to the AR(1)
law of motion (2.3) in B(= C[0,1]) satisfies that �Xt = φ1εt +�(εt −φ1εt) (see
(2.4)) and, as shown in Section B.4, clA(X) = ranφ1 = C0 holds, where C0 denotes
the collection of constant functions. In this case, there are many different choices
of V satisfying (2.9). One possible candidate is what we already considered in
Section 2.1. Note that x ∈ B is uniquely decomposed into x = x1 + x2, where
x1(u) = x(1) (and thus x1 ∈ C0) and x2(u) = x(u) − x(1) for u ∈ [0,1]. Thus, C0

is obviously complemented by C1 = {y ∈ B : y(1) = 0}, and, in this case, PV is
given by PVx(u) = x(u)− x(1). How this projection decomposes Xt into the unit
root and stationary components is already illustrated in Figure 1; specifically, note
that (ignoring τ0) (I − PV)Xt = XN

t and PVXt = XS
t . It may be similarly deduced

that {y ∈ B : y(a) = 0} for a ∈ [0,1] (in this case, PVx(u) = x(u)−x(a)) or {y ∈ B :∫ 1
0 y(u)du = 0} (in this case, PVx(u) = x(u)−∫ 1

0 x(u)du) can be another candidate
for V. We note that (I−PV)Xt = XN

t holds regardless of which V is chosen, meaning
that the unit root component is always uniquely identified. On the other hand, the
stationary component depends on V (e.g., ignoring τ0, PVXt(u) = εt(u)− εt(1) if
V = C1, whereas PVXt(u) = εt(u) − ∫ 1

0 εt(u)du if V = {y ∈ B :
∫ 1

0 y(u)du = 0}).
In a Hilbert/Euclidean space setting, this projection-based decomposition has
been discussed for the case where V = A(X)⊥ and thus PV is an orthogonal
projection. However, it is now clear that orthogonality has no essential role in
such a decomposition; V may be set to a subspace that is not orthogonal to the
attractor space, and this only leads us to have a different stationary component
without affecting the unit root component.

Remark 2.4. If B is an infinite dimensional Banach space, a closed subspace
may not be complemented (Megginson, 2012, pp. 301–302), hence (2.9) is not
generally true. It, however, turns out that either of the following is a sufficient (but
not necessary) condition for the existence of V satisfying (2.9):

(i) dim(A(X)) < ∞, (ii) dim(B/A(X)) < ∞;

see Megginson (2012, Thm. 3.2.18). The two conditions lead to different dimen-
sionalities of the cointegrating space of B′. In case (i), V is necessarily infinite
dimensional, and we deduce from Proposition 2.1 that the cointegrating space is
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also infinite dimensional. In case (ii), on the other hand, V is finite dimensional,
hence the cointegrating space is finite dimensional as well.

One may be interested in how the general results given by Proposition 2.1 reduce
to what we have known about cointegration in a Hilbert/Euclidean space setting.
Let H be a separable complex Hilbert space with inner product 〈·,·〉. If B =H, the
Riesz representation theorem (see, e.g., Conway, 1994, p. 13) implies that every
f ∈ H′ is given by the map 〈·,y〉 : H �→ C for a unique element y ∈ H. Therefore,
we may alternatively define the cointegrating space as follows: for d ∈ {1,2},
CH(X) = {y ∈ H : {〈�d−1Xt,y〉}t≥0 is stationary for some τ0 ∈ L2(H)}. (2.11)

Moreover, in this case, we know that the direct sum (2.9) holds for V = A(X)⊥,
which makes PV become the orthogonal projection onto A(X)⊥. Under all these
simplifications, Proposition 2.1 reduces to the following characterization, which
is identical to the description of CH(X) given by Beare et al. (2017).

COROLLARY 2.1. If X = {Xt}t≥−d+1 is I(d) for d ∈ {1,2} and B = H, then
CH(X) = A(X)⊥.

We close this section with some remarks on Proposition 2.1 and Corollary 2.1.

Remark 2.5. Suppose that B =R
n or Cn equipped with the usual inner product

〈x,y〉 = xᵀy. This is of course a special case of a Hilbert space, so we may consider
the alternative definition of the cointegrating space, CH(X), given in (2.11). If
there exists a nonzero cointegrating vector, the long-run component �(1) from
the Phillips–Solo decomposition in this setting is a reduced rank matrix, i.e.,
rank�(1) = s < n. If so, there are two full column rank n × s matrices �1 and
�2 satisfying �(1) = �1�

ᵀ
2 (see, e.g., Engle and Granger, 1987). As a result,

CH(X) is given by the collection of vectors that are orthogonal to the columns of
�1, which is an (n− s)-dimensional subspace of Rn or Cn.

Remark 2.6 (Second-order cointegrating functionals). Under the summability
requirement for the I(2) property in Definition 2.3, we may apply the Phillips–Solo
device to �⭒(L) in (2.7), and obtain

�(L) = �(1)+��⭒(1)+�2�⭒⭒(L), (2.12)

where �⭒⭒(L) = −∑∞
j=0 θ⭒⭒j Lj and θ⭒⭒j = ∑∞

k=j+1 θ⭒k . We then may deduce from
(2.12) that (2.6) with d = 2 allows the following representation: for some τ0 and τ1,

Xt = τ0 + τ1t +�(1)

t∑
r=1

r∑
s=1

εs +�⭒(1)

t∑
s=1

εs +ν⭒t , t ≥ 0,

where {ν⭒t }t≥0 is stationary and ν⭒t = �⭒⭒(L)εt for each t. Note that for any
f ∈ C(X) = Ann(ran�(1)), we have f (Xt) = f (�⭒(1)

∑t
s=1 εs)+ f (ν⭒t ) by assum-

ing f (τ0) = f (τ1) = 0. Then it may deduced from a nearly identical argument
used to prove Proposition 2.1(i) that { f (Xt)}t≥0 is stationary if and only if f ∈
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Ann(ran�⭒(1)) also holds. To sum up, { f (Xt)}t≥0 can be made stationary under a
suitable choice of τ0 and τ1 for any f ∈ Ann(ran�⭒(1))∩Ann(ran�(1)). We call
such f as a second-order cointegrating functional, which will be of interest to us
in Section 3 as an important aspect of I(2) AR processes in B.

3. REPRESENTATION OF I(1) AND I(2) AUTOREGRESSIVE
PROCESSES

For fixed p ∈N, suppose that a sequence {Xt}t≥−p+1 ⊂L2(B) satisfies the following
AR(p) law of motion:

�(L)Xt = εt, t ≥ 1, (3.1)

where {εt}t∈Z ⊂ L2(B) is an i.i.d. sequence with positive definite covariance Cε0

and

�(z) = I −
p∑

j=1

φjz
j, φ1, . . . ,φp ∈ L(B).

We let the operator pencil � : C �→ L(B) be called the AR polynomial. The i.i.d.
condition imposed on {εt}t∈Z can be replaced by the requirement that Cεt does not
depend on t and Cεt,εs = 0 for all t and s �= t without affecting any of the results to
be developed later; see Remark 2.1. For notational simplicity, it is convenient to
expand �(z) around one as follows:

�(z) =
p∑

j=0

�j(z−1) j, �j = �(j)(1)/j! =
{

I −∑p
h=1 φh, if j = 0,

−∑p−j
h=0

(
j+h

j

)
φj+h, if j = 1, . . . ,p.

(3.2)

We hereafter say that � has a unit root if it satisfies Assumption 3.1, where the
following notation is employed: σ(�) denotes the spectrum of � given by the set
{z ∈C : �(z) is not invertible} and Dr denotes the open disk with radius r centered
at 0 ∈ C.

Assumption 3.1 (Unit root).

(a) σ(�)∩D1+η = {1} for some η > 0 and �0 �= 0.

(b) ran�0 and ker�0 can be complemented.

Assumption 3.1(a) is similar to the standard unit root assumption given in
a Hilbert/Euclidean space setting; see Franchi and Paruolo (2020, Sect. 3.1).
Assumption 3.1(b) requires ran�0 and ker�0 to be closed and allow comple-
mentary subspaces, and we note that such complementary subspaces are not
uniquely determined in general once they exist; see, e.g., Remark 2.3. Thus,
for convenience, let �(ran�0) (resp. �(ker�0)) denote the collection of all the
complementary subspaces of ran�0 (resp. ker�0); that is, if V� ∈ �(ran�0) and
W� ∈ �(ker�0), we have B = ran�0 ⊕V� = ker�0 ⊕W�. If B is a Hilbert space,
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then any closed subspace can be complemented by its orthogonal complement
(Conway, 1994, pp. 35–36), hence these direct sums hold for V� = [ran�0]⊥
and W� = [ker�0]⊥ as long as ran�0 is closed (ker�0 is necessarily closed
since �0 ∈ L(B)). In the existing representation theorems developed in a Hilbert
space setting, closedness of ran�0 is implied by the employed assumptions, so
Assumption 3.1(b) consequentially holds (see Remark 3.1 to appear in Section
3.1). In a general Banach space setting, on the other hand, Assumption 3.1(b)
does not necessarily hold even when ran�0 is closed; see the example given by
Megginson (2012, Thm. 3.2.20). Nevertheless, Assumption 3.1(b) may not be
restrictive in general and, moreover, is a fairly weaker requirement which is strictly
implied by the regularity conditions on �(z) employed in the existing literature; a
more detailed discussion will be given in Remark 3.1.

In this setting, what we seek are (i) a necessary and sufficient condition under
which the AR(p) law of motion (3.1) allows I(1) or I(2) solutions, and (ii) a
characterization of such solutions; in the case B = R

n or C
n, these issues are

dealt with in Johansen’s representation theory. Hereafter, we conveniently say
that a sequence {Xt}t≥−p+1 from (3.1) allows the Johansen I(1) representation if
it satisfies the following: for τ0 depending on initial values of (3.1), a stationary
sequence {νt}t≥0 ⊂ L2(B), and ϒ−1 ∈ L(B),

Xt = τ0 +ϒ−1

t∑
s=1

εs +νt, t ≥ 0. (3.3)

We also say that {Xt}t≥−p+1 allows the Johansen I(2) representation if it can
be represented as follows: for τ0 and τ1 depending on initial values of (3.1), a
stationary sequence {νt}t≥0 ⊂ L2(B), and ϒ−2,ϒ−1 ∈ L(B),

Xt = τ0 + τ1t +ϒ−2

t∑
r=1

r∑
s=1

εs +ϒ−1

t∑
s=1

εs +νt, t ≥ 0. (3.4)

In the case B = R
n or Cn, Johansen (1991, 1995) shows that a necessary and

sufficient condition for the AR(p) law of motion (3.1) to allow I(1) solutions is
given by that

α
ᵀ
⊥⊥�1β⊥⊥ is invertible, (3.5)

where α⊥⊥ (resp. β⊥⊥) is a full-rank n× (n− r) matrix whose columns are orthogo-
nal to α (resp. β) for some r < n, and α and β are full-rank n×r matrices satisfying
�0 = αβᵀ; without loss of generality, we assume that α

ᵀ
⊥⊥α⊥⊥ = β

ᵀ
⊥⊥β⊥⊥ = In−r

(the identity matrix of dimension n − r). The condition given by (3.5) is called
the Johansen I(1) condition, under which a sequence {Xt}t≥−p+1 from (3.1) allows
the Johansen I(1) representation with a certain operator ϒ−1; see Johansen (1995,
Thm. 4.2). A similar representation result for the I(2) case is also given by Johansen
(1995, Thm. 4.6). Extending these results to a Banach space setting may not be
done by a simple extension: due to the fact that B may not be equipped with an
inner product and can be infinite dimensional, we cannot rely on some important
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geometrical properties and matrix algebraic results that are allowed in Euclidean
space. We thus need a novel approach that relies neither on the geometrical
properties induced by an inner product nor on the finite dimension of B.

As observed in an early contribution by Schumacher (1991), the I(d) property
of solutions to the AR(p) law of motion, characterized by a matrix pencil �(z), in
R

n is determined by the behavior of the inverse �(z)−1 around z = 1. This is also
true in our Banach space setting; hence, our approach to developing representation
theory for I(1) and I(2) AR processes essentially boils down to examining the
inverse of the AR polynomial around z = 1. As a way to achieve this goal, we first
consider the companion form of (3.1) characterized by a linear operator pencil �̃

to be defined later, and study the behavior of �̃(z)−1 around z = 1 based on the
spectral theory of linear operator pencils given in, e.g., Kato (1995) and Gohberg,
Goldberg, and Kaashoek (2013). We then recover the behavior of �(z)−1 around
z = 1 from that of �̃(z)−1 by generalizing Johansen’s I(1) and I(2) conditions;
this second step adds to earlier findings on the inversion of linear operator pencils
given by Albrecht, Howlett, and Pearce (2011) and Albrecht, Howlett, and Verma
(2019).

It will be convenient to fix standard notation and terminology, based on
Appendix A.4 providing a brief introduction to operator pencils, for the subsequent
discussions. For any operator pencil A and its spectrum σ(A) = {z ∈ C :
A(z) is not invertible}, we let ρ(A) denote the set C \ σ(A), which is called the
resolvent set of A. Now, suppose that A(z) permits a Laurent series expansion at
z = z0 as follows: for some d ≥ 0,

A(z) =
∞∑

j=−d

Aj(z− z0)
j, A−d �= 0. (3.6)

If d = 0, we say that A(z) is holomorphic (or equivalently, complex-differentiable)
at z = z0. In this case, (3.6) becomes the Taylor series of A(z) at z = z0, which
is called the Maclaurin series of A(z) if z0 = 0. If d �= 0, A(z) is said to have an
isolated singularity at z = z0. An isolated singularity with d < ∞ is called a pole
of order d. A pole of order 1 is said to be simple. If d = ∞, A(z) is said to have
an essential singularity at z = z0. The sum of the leading terms indexed by j =
−d, . . . , − 1 is called the principal part, and the sum of the remaining terms is
called the holomorphic part.

3.1. Relationship to Earlier Literature

A few different versions of the Granger–Johansen representation theorem have
been proposed in the recent literature on cointegrated functional time series taking
values in a Hilbert space, such as Chang et al. (2016a), Hu and Park (2016), Beare
et al. (2017), Beare and Seo (2020), and Franchi and Paruolo (2020). Compared to
those papers, our versions are developed under a general Banach space setting
without relying on the richer geometry of a Hilbert space, which can help us
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consider a greater variety of functional time series as subjects of the theory of
cointegration, as illustrated in Section 2.1. Apart from such mathematical gains,
we here briefly describe how our setting is related to the assumptions employed in
the aforementioned papers by assuming B = H (recall that H denotes an arbitrary
separable complex Hilbert space).

We first focus on the I(1) case. Except for the paper by Chang et al. (2016a)
providing a quite different representation result, the AR polynomial �(z) in the
foregoing papers satisfies the following condition: for z ∈ C,

dim(ker�(z)) < ∞ and dim([ran�(z)]⊥) < ∞. (3.7)

If (3.7) holds, �(z) is called a Fredholm operator. Fredholmness of �(z) can
be more generally defined in our Banach space setting by replacing the latter
condition in (3.7) with dim(B/ ran�(z)) < ∞. The Fredholm property, combined
with the unit root assumption (Assumption 3.1), produces some special behavior
of �(z)−1 near z = 1, which becomes a crucial input to the existing theorems;
see Beare and Seo (2020, Appx. A.1) and Franchi and Paruolo (2020, Appx. B).
An important consequence of assuming (3.7) is that ϒ−1 in (3.3) always becomes
a finite rank operator, hence the random walk component ϒ−1

∑t
s=1 εs in (3.3)

essentially boils down to a finite dimensional unit root process. As a result, the
attractor space (resp. the cointegrating space) associated with the AR(p) law
of motion is necessarily finite dimensional (resp. infinite dimensional). On the
other hand, the version of Chang et al. (2016a) relies on the assumption that
�0(= �(1)) is compact, which turns out to result in the opposite case, where
the cointegrating space is finite dimensional and the random walk component
takes values in an infinite dimensional space unless H is finite dimensional.
Their compactness assumption is not compatible with Fredholmness of �(z) in
an infinite dimensional setting (Abramovich and Aliprantis, 2002, Lem. 4.41). We
thus have two qualitatively different I(1) representation results depending on two
generally incompatible regularity conditions on �(z).

To the best of the author’s knowledge, the existing representation theorems for
I(2) AR processes in a general Hilbert space setting were recently provided by
Beare and Seo (2020) and Franchi and Paruolo (2020), where Fredholmness of
�(z) is an essential assumption for their representation theory. Similar to the I(1)
case, the Fredholm assumption makes ϒ−2 and ϒ−1 in (3.4) become finite rank
operators, hence the random walk component ϒ−2

∑t
r=1

∑r
s=1 εs +ϒ−1

∑t
s=1 εs is

intrinsically a finite dimensional unit root process. This requirement entailed by
the Fredholm assumption not only compels the attractor space associated with I(2)
solutions to be finite dimensional, but also places some more restrictions on their
cointegrating behavior; a more detailed discussion will be given in Sections 3.4
and 3.5.

As discussed above, any regularity conditions imposed on �(z) may compel
solutions to the AR(p) law of motion to have some specific characteristics. It is
thus desirable to develop representation theory for I(1) and I(2) AR processes under
minimal regularity conditions on �(z). We in this paper require weaker conditions
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on �(z) than either of Fredholmness or compactness, which naturally makes our
representation theory place weaker restrictions on solutions to the AR(p) law of
motion. In particular, the random walk component of I(1) or I(2) solutions can
be either finite dimensional or infinite dimensional in our results, whereas the
component is required to be exclusively finite dimensional or infinite dimensional
depending on the employed regularity condition on �(z) in the recent literature.

Remark 3.1. As discussed, in the existing literature concerning the case B =H
of infinite dimension, �(z) is either Fredholm or compact but not both. Fredholm
property (3.7) implies that ran�0 is closed (Conway, 1994, Thm. 2.3, p. 350). We
thus find that ran�0 (resp. ker�0) allows a finite (resp. an infinite) dimensional
complementary subspace; this is also true in a more general situation where B
is not necessarily a Hilbert space and �(z) is a Fredholm operator acting on B
(see Remark 2.4). On the other hand, if �(z) is compact and satisfies Assumption
3.1(a), then Chang et al. (2016a, Lem. 1) showed that ran�0 is necessarily finite
dimensional (and thus closed); from an obvious extension of their proof, it can be
shown that this result does not require the assumption that B is a Hilbert space.
It is then obvious that ran�0 (resp. ker�0) allows an infinite (resp. a finite)
dimensional complementary subspace in a general Banach space setting. Note
that Fredholmness or compactness of �(z) places some specific dimensionality
restrictions on the complementary subspaces, whereas no such restrictions are
required by Assumption 3.1(b).

Remark 3.2. Suppose that B is infinite dimensional. As will be shown in
Proposition 3.4, the random walk component in the I(1) case always takes values
in ker�0, whose dimension is finite (resp. infinite) if �(z) is Fredholm (resp.
compact) under Assumption 3.1(a). This shows where the difference between the
existing I(1) representation results about the dimensionality of the random walk
component originates from.

3.2. Linearization of the AR Polynomial

Consider the product Banach space Bp equipped with the norm ‖(x1, . . . ,xp)‖Bp =∑p
j=1 ‖xj‖B for any (x1, . . . ,xp) ∈ Bp. We let Ip denote the identity map acting on

Bp. In fact, the AR(p) law of motion (3.1) may be understood as the following
AR(1) law of motion in Bp:

�̃(L)X̃t = ε̃t, (3.8)

where �̃ : C �→ L(Bp) is a linear operator pencil given by �̃(z) = Ip − zφ̃1 and

X̃t =

⎡⎢⎢⎣
Xt

Xt−1

...
Xt−p+1

⎤⎥⎥⎦, φ̃1 =

⎡⎢⎢⎣
φ1 φ2 · · · φp−1 φp

I 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

⎤⎥⎥⎦, ε̃t =

⎡⎢⎢⎣
εt

0
...
0

⎤⎥⎥⎦ . (3.9)
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Commonly, (3.8) is called the companion form of (3.1); see, e.g., Johansen (1995,
p. 15) or Bosq (2000, p. 128). From a mathematical point of view, the behavior
of �(z)−1 that we want to know may be obtained from that of �̃(z)−1, and this is
as described in Proposition 3.1, where the following notation is employed: �p :
Bp �→ B and �∗

p : B �→ Bp denote the maps defined by

�p(x1,x2, . . . ,xp) = x1, �∗
p(x1) = (x1,0, . . . ,0). (3.10)

PROPOSITION 3.1. Under Assumption 3.1, the operator pencils �̃ and �

satisfy the following.

(i) σ(�̃) = σ(�) and �p�̃(z)−1�∗
p = �(z)−1.

(ii) Under Assumption 3.1, if either of �̃(z)−1 or �(z)−1 has a pole of order d
(resp. essential singularity) at z = 1, then the other has a pole of order d
(resp. essential singularity) at z = 1.

Proposition 3.1(i) shows that �̃(z) inherits the unit root property of �(z)
given by Assumption 3.1, and �(z)−1 can be recovered from �̃(z)−1 using the
maps given in (3.10). Moreover, Proposition 3.1(ii) implies that we can obtain a
necessary and sufficient condition for �(z)−1 to have a pole of order 1 or 2 at
z = 1 by finding such a condition for �̃(z)−1. These results will become useful in
the development of our representation theorems for I(1) and I(2) AR processes.

3.3. Representation of I(1) Autoregressive Processes

In Section 3.3.1, we develop our representation theory for I(1) AR processes
resorting to the companion form AR(1) representation (3.8); this is done by
studying the spectral properties of �̃(z) under Assumption 3.1. We then discuss
on how the results obtained via the companion form can be reformulated in terms
of the behavior of the AR polynomial �(z) in Section 3.3.2.

3.3.1. Representation via the Companion Form. Resorting to the companion
form (3.8), we in this section provide a necessary and sufficient condition for the
AR(p) law of motion (3.1) to admit I(1) solutions and a characterization of such
solutions.

Under Assumption 3.1(a), we know from the results given in Appendix A.4
(especially, see (A.1)) that �̃(z)−1 can be written as the following Laurent series:
for d ∈ N∪{∞},

�̃(z)−1 = −
−1∑

j=−d

Nj(z−1) j −
∞∑

j=0

Nj(z−1) j. (3.11)

For notational convenience, we let

P := N−1φ̃1, (3.12)

https://doi.org/10.1017/S0266466622000172 Published online by Cambridge University Press

https://doi.org/10.1017/S0266466622000172


COINTEGRATED PROCESSES IN BANACH SPACES 755

and expand �̃(z) around one, obtaining

�̃(z) = �̃0 + (z−1)�̃1, �̃0 = (Ip −φ̃1), �̃1 = −φ̃1. (3.13)

The operator P given above turns out to be a projection under Assumption 3.1
(Lemma B.1(ii)) and has a crucial role in the subsequent discussion. What we
first pursue for the development of our representation theory is a necessary and
sufficient condition under which the AR(p) law of motion (3.1) admits I(1)
solutions (or equivalently, �̃(z)−1 has a simple pole at z = 1). If B =R

n or Cn, it is
well known that the Johansen I(1) condition given by (3.5) is such a condition, and
this condition plays an essential role in Johansen’s representation theory for I(1)
AR processes. Beare et al. (2017), who studied the same issue for the case B =H,
revisited the Johansen I(1) condition and provided its geometric reformulation
given by a certain nonorthogonal direct sum of Hp; see Remark 3.4. Inspired by
their direct sum condition that can be applied for H of an arbitrary dimension, we
propose the following condition.

I(1) condition: Bp = ran�̃0 ⊕ker�̃0.

Some remarks on the I(1) condition are given as follows.

Remark 3.3. The I(1) condition is given as the direct sum of Bp by two fixed
subspaces ran�̃0 and ker�̃0, and this specific direct sum condition will be shown
to be necessary and sufficient for the existence of I(1) solutions. In the case where
our I(1) condition holds, it is worth noting that a unique projection whose range is
ker�̃0 and kernel is ran�̃0 is well defined (Megginson, 2012, Thm. 3.2.11).

Remark 3.4. In the case where B =H of an arbitrary dimension and φ1, . . . ,φp

are compact operators, Beare et al. (2017) showed that the nonorthogonal direct
sum Hp = ran�̃0 ⊕ ker�̃0 is a sufficient condition for the AR(p) law of motion
(3.1) to admit I(1) solutions; however, its necessity was not discussed in their
paper. They showed that their condition becomes equivalent to the Johansen I(1)
condition if H = R

n or Cn. The reader is referred to the results given in Section 4
(and the proofs of those) of their paper.

Our first result in this section not only shows that the I(1) condition is a necessary
and sufficient condition for �̃(z)−1 to have a simple pole at z = 1, but also
characterizes the principal part of its Laurent series.

PROPOSITION 3.2. Suppose that Assumption 3.1 holds. The following condi-
tions are equivalent.

(i) �̃(z)−1 has a simple pole at z = 1.
(ii) P is the projection onto ker�̃0 along ran�̃0.

(iii) The I(1) condition holds.

Under any of these conditions, the following holds: for some η > 0,

(1− z)�̃(z)−1 = P+ (1− z)H(z), z ∈ D1+η, (3.14)
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where H(z) denotes the holomorphic part of the Laurent series of �̃(z)−1 around
z = 1. Moreover, each Maclaurin series of (1 − z)�̃(z)−1 and H(z) is convergent
on D1+η.

Examples of the use of Proposition 3.2 for verifying that �̃(z)−1 has a simple
pole at z = 1 will be given later in this section. Proposition 3.2 extends the results
given by Beare et al. (2017), which are briefly reviewed in Remark 3.4, in the
sense that it provides a necessary and sufficient condition for the existence of
I(1) solutions without requiring either of a Hilbert space structure or compactness
of φ1, . . . ,φp. In addition, combined with Propositions 3.1, the local behavior of
�̃(z)−1 around z = 1 given by (3.14) provides a characterization of solutions to
the AR(p) law of motion (3.1), which leads to our first version of the Granger–
Johansen representation theorem for I(1) AR processes given below.

PROPOSITION 3.3. Suppose that Assumption 3.1 holds. Under the I(1) condi-
tion, a sequence {Xt}t≥−p+1 satisfying (3.1) allows the Johansen I(1) representation
(3.3) with

ϒ−1 = �pP�∗
p, νt = �pH(L)�∗

pεt =
∞∑

j=0

(−1) j�p�̃
j
1(Ip −P)�∗

pεt−j, (3.15)

where P and H(z) are given in Proposition 3.2, and �p and �∗
p are given in (3.10).

Moreover, the AR(p) law of motion (3.1) does not allow I(1) solutions if the I(1)
condition is not satisfied.

Proposition 3.3 shows that, under our I(1) condition, solutions to the AR(p)
law of motion (3.1) can be represented as (3.3) similar to the Beveridge–Nelson
decomposition (2.8) of an I(1) cointegrated linear process. For such a solution
{Xt}t≥0, we may deduce from our discussion in Section 2.4 that { f (Xt)}t≥0 can be
made stationary under a suitable initial condition if and only if f ∈ Ann(�pP�∗

p).
Some more remarks on the results given by Proposition 3.3 are in order.

Remark 3.5. Proposition 3.3 may be viewed as an extension of Theorem
4.1 of Beare et al. (2017), which provides a version of the Granger–Johansen
representation theorem in a Hilbert space setting resorting to the companion form
representation of a given AR(p) law of motion.

Remark 3.6. In the case dim(B) = ∞, neither the attractor nor the cointegrating
space associated with (3.1) is compelled to be finite dimensional in our represen-
tation results, whereas one of those subspaces is necessarily finite dimensional in
the existing theorems developed in a Hilbert space setting; see Section 3.1. As a
simple illustration, let p = 1 and φ1 be an arbitrary projection. In this case, we
may deduce from Propositions 2.1, 3.2, and 3.3 that the dimension of the attractor
space (resp. the cointegrating space) associated with (3.1) is equal to dim(ranφ1)

(resp. dim(kerφ1)). Since φ1 is an arbitrary projection, all the following cases are
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possible: (i) dim(ranφ1) < ∞ and dim(kerφ1) = ∞, (ii) dim(ranφ1) = ∞ and
dim(kerφ1) < ∞, and (iii) dim(ranφ1) = ∞ and dim(kerφ1) = ∞.

In this section, the I(1) condition and solutions to the AR(p) law of motion
(3.1) are characterized in terms of the behavior of �̃(z) around z = 1. For this
reason, our results do not clearly reveal how the proposed I(1) condition and the
cointegrating behavior of I(1) solutions are related to the structure of the original
AR polynomial �(z). This is a natural consequence resulting from that we resort
to the companion form representation of (3.1) to obtain our main results given in
this section. In the next section, we will discuss how these results can be recast
in terms of the behavior of the AR polynomial �(z). By doing so, we obtain a
more detailed characterization of I(1) solutions and find the connection between
our representation results and those developed in a Hilbert/Euclidean space setting.
We close this section with a few examples illustrating the use of Proposition 3.2
for verifying that �̃(z)−1 has a simple pole at z = 1.

Example 3.1. In the example given in Section 2.1, B = C[0,1], �̃(z) = I − zφ1,
and φ1 is defined by φ1x(u) = x(1) for u ∈ [0,1]. Note that �̃0 �= 0 and �̃0x(1)=0
for any arbitrary x ∈ C[0,1]. This implies that every y ∈ ran�̃0 must satisfy
y(1) = 0, from which we find that �̃0 is not invertible. Let C0 and C1 be defined
as in Remark 2.3. Then, it can be shown that Assumption 3.1(a) is satisfied,
ker�̃0 = C0, and ran�̃0 = C1 (see Appendix B.4). As discussed in Remark 2.3,
we have B = C0 ⊕C1, and thus find that the I(1) condition holds.

Example 3.2. Suppose that B = C[−1,1], �̃(z) = I −zφ1, and φ1 is defined by

φ1x(u) = x(u)/2 + x(−u)/2, x ∈ B, u ∈ [−1,1].

One can easily show that (i) σ(�̃) = {1} and (ii) φ1 (resp. I −φ1) is the projection
onto the space of even (resp. odd) functions along the space of odd (resp. even)
functions, hence B = ran�̃0 ⊕ ker�̃0. Thus, it is concluded that �̃(z)−1 has a
simple pole at z = 1. In fact, we reach the same conclusion in cases where any
arbitrary projection replaces φ1 in the above.

Example 3.3. Let c0 be the space of complex sequences converging to zero
equipped with the norm ‖a‖ = supi |ai| for a = (a1,a2, . . .) ∈ c0. The space c0

may be viewed as a natural generalization of a finite dimensional vector space
equipped with the supremum norm, and also turns out to be a separable Banach
space (Megginson, 2012, Exams. 1.2.13 and 1.12.6). Let φ1 be defined by

φ1(a1,a2,a3,a4, . . .) = (a1,a1 +a2,λa3,λ
2a4, . . .), (3.16)

where λ ∈ (0,1). In this case, �̃(z) = I −zφ1 satisfies Assumption 3.1(a) (see
Appendix B.4), and ran�̃0 and ker�̃0 are given as follows:

ran�̃0 = {(0,b1,b2, . . .) : bj ∈ C, lim
j→∞bj = 0},

ker�̃0 = {(0,b1,0,0, . . .) : b1 ∈ C}. (3.17)
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The above subspaces can be complemented (see Example 3.4), hence Assumption
3.1(b) is also satisfied. However, (3.17) clearly shows that B �= ran�̃0 ⊕ ker�̃0.
We thus conclude that �̃(z)−1 does not have a simple pole at z = 1; it will be shown
in Section 3.4 that �̃(z)−1 has a pole of order 2 at z = 1.

3.3.2. Further Characterization of I(1) Solutions. If B = R
n or C

n, the
Johansen I(1) condition given by (3.5) is necessary and sufficient for the AR(p)
law of motion (3.1) to admit I(1) solutions. If we let P[ran�0]⊥ (resp. P[ker�0]⊥)
denote the orthogonal projection onto [ran�0]⊥ (resp. [ker�0]⊥), then (3.5) can
be equivalently understood as that P[ran�0]⊥�1(I −P[ker�0]⊥) as a map from ker�0

to [ran�0]⊥ is invertible. We will obtain a natural generalization of this condition
to our Banach space setting, and further characterize I(1) solutions using such a
condition.

Recall that �(ran�0) (resp. �(ker�0)) denotes the collection of all the comple-
mentary subspaces of ran�0 (resp. ker�0). Under Assumption 3.1, �(ran�0) and
�(ker�0) are nonempty sets. For any V� ∈ �(ran�0) and W� ∈ �(ker�0), we have

B = ran�0 ⊕V� = ker�0 ⊕W�. (3.18)

If the direct sums given in (3.18) hold, we may define the projections PV� and PW�
satisfying

ranPV� = V�, kerPV� = ran�0, ranPW� = W�, kerPW� = ker�0; (3.19)

these projections are uniquely defined for any V� ∈ �(ran�0) and W� ∈ �(ran�0)

(Megginson, 2012, Thm. 3.2.11). We then define the operator �1(V�,W�) ∈ L(B)

as follows:

�1(V�,W�) := PV��1(I −PW�). (3.20)

Note that our construction of �1(V�,W�) depends on V� ∈ �(ran�0) and W� ∈
�(ran�0), which are arbitrary elements of �(ran�0) and �(ker�0), respectively.
We thus may understand �1(V�,W�) as an operator-valued function of the
variables V� and W� hereafter. Suppose that B = R

n or C
n, V� = [ran�0]⊥,

and W� = [ker�0]⊥. In this case, PV� (resp. I − PW� ) becomes the orthogonal
projection onto [ran�0]⊥ (resp. ker�0), then it follows from our earlier discussion
that the Johansen I(1) condition given by (3.5) is equivalent to that �1(V�,W�) as
a map from ker�0 to V� is invertible. One may naturally generalize this condition
to a Banach space setting by not requiring V� (resp. W�) to be the orthogonal
complement to ran�0 (resp. ker�0), and our next result given below shows that
this is in fact an equivalent reformulation of the I(1) condition given in Section
3.3.1. Using this result, we moreover obtain a useful characterization of ϒ−1 in
terms of the operators defined above.

PROPOSITION 3.4. Suppose that Assumption 3.1 holds. Then the following
conditions are equivalent.
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(i) The I(1) condition holds.

(ii) �1(V�,W�):ker�0 �→V� is invertible for some V� ∈ �(ran�0) and W� ∈
�(ker�0).

(iii) �1(V�,W�) : ker�0 �→V� is invertible for any arbitrary V� ∈ �(ran�0)

and W� ∈ �(ker�0).

Let any of the above conditions hold. Then, for any V� ∈ �(ran�0) and W� ∈
�(ker�0), a sequence {Xt}t≥−p+1 satisfying (3.1) allows the Johansen I(1) repre-
sentation (3.3) with ϒ−1 satisfying

PW�ϒ−1 = ϒ−1(I −PV�) = 0, ϒ−1 : V� �→ ker�0 = �1,R(V�,W�)
−1, (3.21)

where �1,R(V�,W�) denotes the invertible map �1(V�,W�) : ker�0 �→ V�.

It is interesting that a natural generalization of the Johansen I(1) condition is
equivalent to our previous necessary and sufficient condition for the existence of
I(1) solutions developed in a general Banach space setting. This shows that our
operator-theoretic approach is in fact closely related to the conventional Johansen’s
approach. We know from the equivalence between the three conditions given
in Proposition 3.4 that V� (resp. W�) can be fixed to any arbitrary element of
�(ran�0) (resp. �(ker�0)) with no loss of generality; this, of course, implies that
V� = [ran�0]⊥ and W� = [ker�0]⊥ can always be assumed in a Hilbert/Euclidean
space setting. Moreover, (3.21) describes how the operator ϒ−1 acts as a map from
ran�0 ⊕ V� to ker�0 ⊕ W� for any V� ∈ �(ran�0) and W� ∈ �(ker�0); this, of
course, provides a full characterization of ϒ−1, given that B allows the bipartite
decompositions given in (3.18).

In Section 3.3.1, the I(1) condition and the cointegrating behavior of I(1)
solutions are characterized in terms of some operators associated with �̃(z) given
in the companion form (3.8); however, one may be interested in characterizing
those using operators associated with the original AR polynomial �(z). The
conditions (ii) and (iii) in Proposition 3.4 are already given in such a manner,
and those are equivalent reformulations of our I(1) condition. Moreover, our
characterization of ϒ−1, given by (3.21), helps us characterize the cointegrating
behavior in a desired way; see Remarks 3.7 and 3.8.

Remark 3.7. From (3.21), we know that the attractor space of I(1) solutions
is given by ranϒ−1 = ker�0. Let W� ∈ �(ker�0), and let PW� be the projection
onto W� along ker�0. We then deduce from Proposition 2.1 that a cointegrating
functional f can be written as f = gPW� for some g ∈ B′.

Remark 3.8. Using the results given in Proposition 3.4, we may obtain a
stronger characterization of the cointegrating behavior of I(1) solutions than that
given in Section 3.3.1. From the expression of ϒ−1 given in (3.21), we find that a
nonzero element f ∈ B′ satisfies

{ f (Xt)}t≥0 is I(0) if and only if f ∈ Ann(ker�0); (3.22)
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see Appendix B.4 for our proof of (3.22). The above characterization not only
shows that the cointegrating space is given by Ann(ker�0), but also establishes
I(0)-ness of { f (Xt)}t≥0 for any f ∈ Ann(ker�0).

3.4. Representation of I(2) Autoregressive Processes

In this section, we suppose that the I(1) condition fails and develop our repre-
sentation theory for I(2) AR processes. We know from Proposition 3.4 that the
failure of the I(1) condition is understood as noninvertibility of �1(V�,W�) as a
map from ker�0 to V�, where V� (resp. W�) may be fixed to any arbitrary element
of �(ran�0) (resp. �(ker�0)) without loss of generality; especially, V� = [ran�0]⊥
and W� = [ker�0]⊥ can be assumed if B is a Hilbert space, which is helpful to
compare the results to be developed with the existing I(2) results given in a Hilbert
space setting. For such a fixed choice of V� and W�, we define PV� and PW� as in
(3.19) and let

R := PV��1 ker�0, K := {x ∈ ker�0 : �1x ∈ ran�0}.
Using the notation given above, we summarize the assumptions for our I(2)
representation results as follows.

Assumption 3.2.
(a) Assumption 3.1 holds and �1(V�,W�) is not invertible for some fixed V� ∈

�(ran�0) and W� ∈ �(ker�0); if B is a Hilbert space, V� = [ran�0]⊥ and
W� = [ker�0]⊥.

(b) R (resp. K) can be complemented in V� (resp. ker�0), i.e., for some R� ⊂ B
and K� ⊂ B,

V� = R⊕R�, ker�0 = K⊕K�. (3.23)

If R� and K� satisfying (3.23) exist, then they are not uniquely determined in
general. For convenience, we hereafter let �(R) (resp. �(K)) denote the collection
of the complementary subspaces of R in V� (resp. K in ker�0). Our requirement for
the existence of such complementary subspaces may not be restrictive in general
and do not invalidate that our I(2) results to be developed can complement the
earlier results developed in a general Hilbert space setting; the regularity condition
imposed on �(z) for the existing I(2) results strictly implies the requirement and,
moreover, places some certain restrictions on the dimensions of the complementary
subspaces; see Remark 3.9.

Remark 3.9. Fredholmness of �(z) is an essential assumption in the existing
I(2) representation theorems developed in the case B = H (Beare and Seo, 2020;
Franchi and Paruolo, 2020). In such a setting, we have B = ran�0 ⊕ V� =
ker�0 ⊕W� for some V� and W� (Remark 3.1), and both V� and ker�0 are finite
dimensional. Since every finite dimensional space can be complemented (Remark
2.4), (3.23) holds for some R� and K�. This is also true in a more general situation
where B is not necessarily a Hilbert space and �(z) is a Fredholm operator acting
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onB, which can be seen from Remark 2.4. Note that Fredholmness of �(z) requires
that V�, ker�0, R�, and K� are all finite dimensional (and thus W� is infinite
dimensional), which means that the assumption leads us to stronger conditions
than those required by Assumption 3.2.

As in Section 3.3, we first develop our representation theory for I(2) AR
processes resorting to the companion form representation (3.8), and then discuss
how the results obtained via the companion form can be recast in terms of the
behavior of the AR polynomial �(z). In the subsequent discussion, we will need
the notion of a generalized inverse of a linear operator in our Banach space
setting, which is introduced in Appendix A.3; the generalized inverse considered
in this paper is a natural generalization of the well-known Moore–Penrose inverse,
employed in Beare and Seo (2020) and Franchi and Paruolo (2020) for their I(2)
representation results developed in a Hilbert space setting.

3.4.1. Representation via the Companion Form. As in Section 3.3.1, we first
resort to linearization of � : C �→B, hence consider �̃ : C �→Bp given in (3.8) and
(3.9). Under Assumption 3.2, we have the Laurent series of �̃(z)−1 near z = 1 as
in (3.11), and also define P as in (3.12). Before stating our main results, we collect
some preliminary results and fix notation.

Under Assumption 3.2, ran�̃0 and ker�̃0 can be complemented (Lemma
B.2(i)) in Bp. We let �(ran�̃0) (resp. �(ker�̃0)) denote the collection of the
complementary subspaces of ran�̃0 (resp. ker�̃0); that is, for any V� ∈ �(ran�̃0)

and W� ∈ �(ker�̃0), we have

Bp = ran�̃0 ⊕V� = ker�̃0 ⊕W�. (3.24)

Under the direct sums given by (3.24), we may define the projections PV� and PW�
satisfying

ranPV� = V�, kerPV� = ran�̃0, ranPW� = W�, kerPW� = ker�̃0.
(3.25)

The projections PV� and PW� are uniquely defined for any V� ∈ �(ran�̃0) and
W� ∈ �(ker�̃0); see Megginson (2012, Thm. 3.2.11). For notational convenience,
we let

K = ran�̃0 ∩ker�̃0. (3.26)

A crucial preliminary result is that K �= {0} is required for �̃(z)−1 to have a pole
of order 2 at z = 1 (Lemma B.2(ii)); based on this result and the notation defined
above, we propose our I(2) condition as follows.

I(2) condition: K �= {0} and for some V� ∈ �(ran�̃0) and W� ∈ �(ker�̃0),

Bp = (ran�̃0 +ker�̃0)⊕ �̃
g
0K, (3.27)

where �̃
g
0 is the generalized inverse of �̃0 (see Remark 3.10 and Appendix A.3).

Some remarks on the I(2) condition are given as follows.
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Remark 3.10. For any V� ∈ �(ran�̃0) and W� ∈ �(ker�̃0), the generalized
inverse �̃

g
0 is defined as the unique linear operator satisfying

�̃0�̃
g
0�̃0 = �̃0, �̃

g
0�̃0�̃

g
0 = �̃

g
0, �̃0�̃

g
0 = Ip −PV�, �̃

g
0�̃0 = PW�;

see Appendix A.3 for a more detailed discussion. In a Hilbert space setting, V�
(resp. W�) can be set to [ran�̃0]⊥ (resp. [ker�̃0]⊥), then �̃

g
0 becomes equivalent

to the Moore–Penrose inverse of �̃0.

Remark 3.11. The I(2) condition is given as the direct sum of Bp by two
subspaces ran�̃0 + ker�̃0 and �̃

g
0K, where the latter depends on V� ∈ �(ran�̃0)

andW� ∈ �(ker�̃0) since the definition of �̃
g
0 does so (see Remark 3.10). However,

it turns out that if (3.27) holds for some V� ∈ �(ran�̃0) and W� ∈ �(ker�̃0), then
it holds for any arbitrary V� ∈ �(ran�̃0) and W� ∈ �(ker�̃0) (Lemma B.2(iii)).
Thus, the choice of V� and W� does not affect the subsequent results, and also
may be arbitrarily fixed without loss of generality; for example, in a Hilbert space
setting, we may assume that V� = [ran�̃0]⊥ and W� = [ker�̃0]⊥.

Remark 3.12. If B = H and �̃(z) is Fredholm, we may assume that V� =
[ran�̃0]⊥ and W� = [ker�̃0]⊥ in the I(2) condition with no loss of generality
(Remark 3.11); in this case, �̃

g
0 is equal to the Moore–Penrose inverse �̃

†
0 of �̃0

(Remark 3.10). Then, our I(2) condition reduces to a necessary and sufficient
condition for �̃(z)−1 to have a pole of order 2 at z = 1 given by Beare and Seo
(2020, Thm. 4.2 and Rem. 4.7).4

Our next result shows that the proposed I(2) condition is indeed necessary
and sufficient for �̃(z)−1 to have a pole of order 2 at z = 1, and provides a
partial characterization of the principal part of the Laurent series; a more detailed
characterization of the principal part can be obtained in terms of some operators
associated with �̃(z), but which is postponed to Appendix B.3.3 since more
preliminary results to be developed in Appendix B are required.

PROPOSITION 3.5. Suppose that Assumption 3.2 holds. Then �̃(z)−1 has a
pole of order 2 if and only if the I(2) condition holds. Under the I(2) condition, the
following holds for some η > 0:

(1− z)2�̃(z)−1 = −N−2 + (1− z)(N−2 +P)+ (1− z)2H(z), z ∈ D1+η, (3.28)

where N−2 satisfies ranN−2 = K, H(z) is the holomorphic part of the Laurent
series of �̃(z)−1, and each Maclaurin series of (1− z)2�̃(z)−1 and H(z) converges
on D1+η.

Examples of the use of Proposition 3.5 for verifying that �̃(z)−1 has a pole
of order 2 will be given at the end of this section. Proposition 3.5 provides a

4In fact, the direct sum condition given by Beare and Seo (2020, Thm. 4.2 and Rem. 4.7) is slightly different. However,
with a simple algebra, it can be shown that the direct sum given in the I(2) condition is equivalent to B = (ran�̃0 +
ker�̃0)⊕ (Ip − �̃

g
0)K, which is exactly comparable with their direct sum condition.
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characterization of the local behavior of �̃(z)−1 around z = 1 under the I(2)
condition, which, together with Proposition 3.1, leads to our first version of the
Granger–Johansen representation theorem for I(2) AR processes as follows.

PROPOSITION 3.6. Suppose that Assumption 3.2 holds. Under the I(2) condi-
tion, a sequence {Xt}t≥−p+1 satisfying (3.1) allows the Johansen I(2) representation
(3.4) with

ϒ−2 = −�pN−2�
∗
p, ϒ−1=�p (N−2+P)�∗

p,

νt = �pH(L)�∗
pεt=

∞∑
j=0

(−1) j�p�̃
j
1(Ip −P)�∗

pεt−j, (3.29)

where N−2, P, and H(z) are given in Proposition 3.5, and �p and �∗
p are given in

(3.10). Moreover, the AR(p) law of motion (3.1) does not allow I(2) solutions if the
I(2) condition is not satisfied.

Note that the representation (3.4) with (3.29) is similar to the Beveridge–Nelson
decomposition (2.8) of an I(2) cointegrated linear process. From our discussion in
Section 2.4, we may deduce that f ∈ Ann(�pN−2�

∗
p) (resp. f ∈ Ann(�pN−2�

∗
p)∩

Ann(�pP�∗
p)) is a cointegrating functional (resp. a second-order cointegrating

functional). Appendix B.3.3 provides characterizations of N−2 and P in terms of
certain operators associated with �̃(z), which complements the results given by
Proposition 3.6.

In this section, we have shown that the AR(p) law of motion (3.1) admits
I(2) solutions if and only if the I(2) condition holds, and provided a partial
characterization of such solutions. All these results are obtained resorting to
the companion form representation of (3.1), hence it is not clearly revealed how
the I(2) condition and the cointegrating behavior of I(2) solutions are related to the
structure of the original AR polynomial �(z). This issue will be addressed in
the next section by providing a more detailed characterization of I(2) solutions
in terms of operators associated with �(z). Before closing this section, we give
examples of the use of Proposition 3.5 for verifying that �̃(z)−1 has a pole of
order 2.

Example 3.4. Consider Example 3.3, where we showed that �̃(z)−1 does not
have a simple pole at z = 1, hence we know that Assumption 3.2(a) holds. Note that
ran�̃0 (resp. ker�̃0) allows a complementary subspaceV� (resp.W�); specifically,
V� and W� may be set to

V� = {(b1,0,0, . . .), b1 ∈ C}, W� = {(b1,0,b2,b3, . . .), : bj ∈ C, lim
j→∞bj = 0}.

Observe that ran�0 ⊕R = ran�0 +�1 ker�0 = ran�̃0 +ker�̃0 = ran�̃0 and K =
ker�̃0, hence Assumption 3.2(b) is also satisfied for R� = V� and K� = {0}. For
any (b1,0, . . .) ∈ V�, we find that −�̃0(b1,0, . . .) = (0,b1,0, . . .). Precomposing
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both sides of this equation with �̃
g
0, we obtain

(−b1,0, . . .) = �̃
g
0(0,b1,0, . . .), (3.30)

where the equality holds since (b1,0, . . .) ∈ W� and �̃
g
0�̃0 = PW� . From (3.17),

(3.30), and the fact that K = ran�̃0 ∩ ker�̃0 = ker�̃0, we deduce that �̃
g
0K =

{(b1,0, . . .), b1 ∈C}, which is a complementary subspace of ran�̃0 +ker�̃0. Thus,
�̃(z)−1 has a pole of order 2 at z = 1.

Example 3.5. In the setting of Examples 3.3 and 3.4, we observed that ker�̃0

and K are finite dimensional under the I(2) condition. However, these subspaces
may not be finite dimensional in general. To see this, we will consider slight
modifications of φ1; under any of the changes in φ1 to be given below, it can be
easily shown that Assumption 3.2 is still satisfied. We first replace (3.16) with the
following:

φ1(a1,a2,a3,a4, . . .) (3.31)

= (a1,a2 +a1,a3 +a1,a4,a5 +a4,a6 +a4,a7,a8 +a7,a9 +a7, . . .).

In this case, the I(2) condition holds (see Appendix B.4), and ran�̃0 and ker�̃0

are given by

ran�̃0 = {(0,b1,b1,0,b2,b2,0,b3,b3, . . .) : bj ∈ C, lim
j→∞bj = 0}, (3.32)

ker�̃0 = {(0,b1,b2,0,b3,b4,0,b5,b6, . . .) : bj ∈ C, lim
j→∞bj = 0}. (3.33)

Since K = ran�̃0, it is obvious that ker�̃0 and K are infinite dimensional. Now,
we replace (3.16) with the following:

φ1(a1,a2,a3,a4, . . .) = (a1,a2 +a1,a3,a4, . . .).

From similar arguments to those in Appendix B.4, we find that the I(2) condition
holds. Note also that

ran�̃0 ={(0,b1,0,0, . . .) : b1 ∈ C}, ker�̃0 ={(0,b1,b2, . . .) : bj ∈C, lim
j→∞bj =0},

(3.34)

and thus K = ran�̃0. We know from (3.34) that ker�̃0 is infinite dimensional, but
K is finite dimensional.

3.4.2. Further Characterization of I(2) Solutions. Suppose that B =R
n or Cn

and the Johansen I(1) condition fails. Continuing with the notation introduced for
(3.5), we let � and � be full-rank (n−r)×s matrices satisfying α

ᵀ
⊥⊥�1β⊥⊥ = ��ᵀ,

where s < n − r. Let �⊥⊥ (resp. �⊥⊥) be a full-rank n × (n − r − s) matrix whose
columns are orthogonal to those of (α,α⊥⊥�) (resp. (β,β⊥⊥�)). Without loss of
generality, we may assume that �

ᵀ
⊥⊥�⊥⊥ = �

ᵀ
⊥⊥�⊥⊥ = In−r−s (the identity matrix of

dimension n − r − s). Johansen (1992, 1995) provides a necessary and sufficient
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condition for the AR(p) law of motion (3.1) to admit I(2) solutions, which is given
by that

�
ᵀ
⊥⊥

(
�2 −�1�

†
0�1

)
�⊥⊥ is invertible, (3.35)

where �
†
0 is the Moore–Penrose inverse of �0. To provide a natural generalization

of the Johansen I(2) condition that can be applied to our Banach space setting, as
we did in Section 3.3.2 for the I(1) case, we first review some preliminary results
that hold under Assumption 3.2 and fix some notation.

We let PV� and PW� be defined as in (3.19) for V� ∈ �(ran�0) and W� ∈
�(ker�0), which are fixed with no loss of generality in Assumption 3.2. We then
let �

g
0 denote the generalized inverse of �0, which is the unique linear operator

satisfying the following properties:

�0�
g
0�0 = �0, �

g
0�0�

g
0 = �

g
0, �0�

g
0 = I −PV�, �

g
0�0 = PW� .

If B =H and thus V� = [ran�0]⊥ and W� = [ker�0]⊥, then �
g
0 is equivalent to the

Moore–Penrose inverse �
†
0 of �0; see Appendix A.3. Moreover, we note that the

direct sum conditions given in Assumption 3.2 can be combined and equivalently
formulated as follows:

B = ran�0 ⊕R⊕R� = W� ⊕K� ⊕K. (3.36)

Then, for any R� ∈ �(R) and K� ∈ �(K), we may define the unique projections PR�
and PK satisfying

ranPR� = R�, kerPR� = ran�0 ⊕R, ranPK = K, kerPK = W� ⊕K�;
(3.37)

see Megginson (2012, Thm. 3.2.11). We then define the operator �2(R�,K�) ∈
L(B) as follows:

�2(R�,K�) := PR�
(
�2 −�1�

g
0�1

)
PK. (3.38)

Our construction of �2(R�,K�) depends on the choice of R� and K�, hence
�2(R�,K�) may be understood as an operator-valued function of the variables R�
and K�. Suppose that B = R

n or Cn (hence V� = [ran�0]⊥ and W� = [ker�0]⊥),
R� = [ran�0 ⊕R]⊥, and K� = [W� ⊕K]⊥ in (3.36). In this case, the Johansen I(2)
condition given by (3.35) can be equivalently understood as that �2(R�,K�) as a
map from K to R� is invertible, then we know from Johansen (1995, Thm. 4.6) that
the AR(p) law of motion (3.1) allows I(2) solutions. We will show in Proposition
3.7 that this result can be extended to our Banach space setting where the notion
of an orthogonal complement is not generally allowed. To simplify mathematical
expressions, we hereafter employ the following notation:

M1 = �1(V�,W�), M2 = �2 −�1�
g
0�1, M3 = �3 −�1�

g
0�1�

g
0�1,

where, unlike in Section 3.3.2, M1 = �1(V�,W�) is understood as a fixed element
of L(B) under Assumption 3.2. Moreover, as the last piece of our preliminary
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results for Proposition 3.7, we note that the generalized inverse Mg
1 of M1 is

uniquely defined for any R� ∈ �(R) and K� ∈ �(K) under Assumption 3.2, and
it satisfies ranMg

1 = K� and kerMg
1 = ran�0 ⊕R� (Lemma B.3).

PROPOSITION 3.7. Suppose that Assumption 3.2 holds. Then the following
conditions are equivalent.

(i) The I(2) condition holds.

(ii) �2(R�,K�) : K �→ R� is invertible for some R� ∈ �(R) and K� ∈ �(K).

(iii) �2(R�,K�) : K �→ R� is invertible for any arbitrary R� ∈ �(R) and K� ∈
�(K).

Let any of the above conditions hold. Then, for any choice of R� and K�, a sequence
{Xt}t≥−p+1 satisfying (3.1) allows the Johansen I(2) representation (3.4) with ϒ−2

satisfying

(I −PK)ϒ−2 = ϒ−2(I −PR�) = 0, ϒ−2 : R� �→ K = �2,R(R�,K�)
−1, (3.39)

and ϒ−1 satisfying

(I−PK)ϒ−1(I−PR�)=−Mg
1,

(I−PK)ϒ−1PR�=
(
�

g
0�1 +Mg

1M2
)
ϒ−2,

PKϒ−1(I−PR�)=ϒ−2
(
�1�

g
0 +M2Mg

1

)
,

PKϒ−1PR�=ϒ−2
(
M3−M2�

g
0�1 −�1�

g
0M2−M2Mg

1M2
)
ϒ−2,

where �2,R(R�,K�) denotes the invertible map �2(R�,K�) : K �→ R�.

Proposition 3.7 not only shows that the condition given by (3.38) is equivalent
to our I(2) condition given in Section 3.4.1, but also implies that R� and K�
can be arbitrarily chosen among possible candidates; this, of course, means that
R� and K� can always be fixed to the relevant orthogonal complements in a
Hilbert/Euclidean space setting without loss of generality. Moreover, Proposition
3.7 shows in detail how ϒ−2 and ϒ−1 act on B satisfying the tripartite decompo-
sitions given by (3.36), from which we obtain a more detailed characterization of
the cointegrating behavior of I(2) solutions than that given in Section 3.4.1; see
Remarks 3.13–3.15.

Remark 3.13. From (3.39), we know that the attractor space associated with
I(2) solutions is given by ranϒ−2 = K. Then it follows from Proposition 2.1 that a
cointegrating functional f satisfies f = g(I −PK) for some g ∈ B′, where PK is the
projection on K along W� ⊕K�; see (3.37).

Remark 3.14. Using the results given in Proposition 3.7, we can obtain a
stronger characterization of the cointegrating behavior of I(2) solutions as follows:
for any nonzero element f ∈ B′ and for some r ∈ {0,1},
{ f (Xt)}t≥0 is I(r) if and only if f ∈ Ann(K), (3.40)
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{ f (Xt)}t≥0 is I(0) if and only if f ∈ Ann(ker�0)∩Ann(�
g
0�1K). (3.41)

Obviously, (3.40) (resp. (3.41)) identifies the cointegrating space (the collection
of second-order cointegrating functionals). A detailed discussion including our
proofs of these results is given in Appendix B.4.

Remark 3.15 (Polynomial cointegration for an I(2) AR process). For any
cointegrating functional f ∈ Ann(K), f may or may not satisfy f ∈ Ann(ker�0)

since K ⊂ ker�0. If f ∈ Ann(ker�0) and one combines levels and first differences
as in f (Xt)− f (�g

0�1�Xt), then such a sequence is always I(0); this phenomenon
does not occur if f /∈ Ann(ker�0). A detailed discussion including our proof of
this result is given in Appendix B.4. The case where the sequence of f (Xt) and
that of f (�g

0�1�Xt) are both I(1) may be understood as polynomial cointegration
or multicointegration (Yoo, 1987; Granger and Lee, 1989; Engsted and Johansen,
1999; Kheifets and Phillips, 2021) in our setting; a more extensive discussion and
development of this topic can be found in the recent paper by Kheifets and Phillips
(2022), and a detailed treatment for the caseB=H is given by Franchi and Paruolo
(2020, Sect. 4.2).

3.5. Representation in a Hilbert Space Setting

We here focus on the case B = H and see how our representation results can be
simplified in this setting. It is then clarified how such results are related to the
existing ones developed in a Hilbert space setting.

3.5.1. I(1) Case. If B = H, Proposition 3.4 implies that the AR(p) law of
motion (3.1) admits I(1) solutions if and only if

�1(V�,W�) : ker�0 �→ V� is invertible for V� = [ran�0]⊥ and W� = [ker�0]⊥.
(3.42)

Beare and Seo (2020, Thm. 3.2) and Franchi and Paruolo (2020, Prop. 4.6) earlier
showed that (3.42) is necessary and sufficient for the AR(p) law of motion (3.1)
to admit I(1) solutions if the Fredholm property (3.7) holds. In this case, any
solution to (3.1) allows the Johansen I(1) representation (3.3) with ϒ−1 of finite
rank. (Note that (3.21) implies ranϒ−1 = ker�0 and ker�0 is finite dimensional if
�(z) is Fredholm.) This implies that the random walk component in (3.3) reduces
to a finite dimensional unit root process. On the other hand, if �(z) satisfies
Assumption 3.1 and �0 is compact, then �0 turns out to be a finite rank operator
(Chang et al., 2016a, Lem. 1). In this case, (3.42) reduces to the condition given
by Chang et al. (2016a, Thm. 2) as a sufficient condition for the existence of
I(1) solutions, and ker�0, where the random walk component takes values, is
infinite dimensional unless H is finite dimensional. In our results for the case
B =H, ranϒ−1 = ker�0 is not required to be either finite or infinite dimensional;
we see this from Remark 3.6. Thus, our I(1) representation result given by
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Proposition 3.4 complements the earlier results developed in a Hilbert space
setting.

Noting that f ∈ Ann(V) is given by the map 〈·,v〉 for some v ∈ V⊥,5 we find
that our characterization of the cointegrating behavior (3.22) given in Remark 3.8
reduces to the following: for any v ∈ H \ {0},
{〈Xt,v〉}t≥0 is I(0) if and only if v ∈ [ker�0]⊥.

The above characterization was earlier found by Beare and Seo (2020) and Franchi
and Paruolo (2020) for the case where �(z) is a Fredholm operator satisfying (3.7).

Remark 3.16. Suppose, in addition to (3.42), that B = R
n or C

n. In this
setting, ϒ−1 may be understood as an n×n matrix. Using the notation introduced
for (3.5), the results given by (3.21) can be written as β(βᵀβ)−1βᵀϒ−1 =
ϒ−1α(αᵀα)−1αᵀ = 0 and β

ᵀ
⊥⊥ϒ−1α⊥⊥ = (α

ᵀ
⊥⊥�1β⊥⊥)−1. Thus, ϒ−1 can be

written as

ϒ−1 = β⊥⊥
(
α
ᵀ
⊥⊥�1β⊥⊥

)−1
α
ᵀ
⊥⊥,

which is equivalent to the expression of ϒ−1 given by Johansen (1995, Thm. 4.2).

3.5.2. I(2) Case. Suppose that B = H and the complementary subspaces, V�,
W�, R�, and K�, are set to the relevant orthogonal complements without loss of
generality. In this case, �

g
0 is equal to the Moore–Penrose inverse �

†
0 (Remark

3.10). Proposition 3.7 implies that the AR(p) law of motion (3.1) admits I(2)
solutions if and only if

�2(R�,K�) : K �→ R� is invertible for R� = [ran�0 ⊕R]⊥ and

K� = [[ker�0]⊥ ⊕K]⊥. (3.43)

In the case where �(z) satisfies the Fredholm assumption (3.7), Beare and Seo
(2020, Thm. 4.2) showed that (3.43) is a necessary and sufficient condition for
the existence of I(2) solutions (see also Section 4 of Franchi and Paruolo, 2020).
In this case, any solution to the AR(p) law of motion satisfies the Johansen I(2)
representation (3.4) for ϒ−2 and ϒ−1 of finite rank; that is, the random walk
component of I(2) solutions is intrinsically a finite dimensional unit root process.
However, in our results for the case B = H, the random walk component is not
required to have such a property; we see this by noting that ranϒ−2 = K and K can
be infinite dimensional as in Example 3.5. Thus, Proposition 3.7 complements the
earlier I(2) representation results developed in a Hilbert space setting.

Moreover, in this case, our characterization of the cointegrating behavior given
in Remarks 3.14 and 3.15 can be reformulated as follows: for any v ∈ H \ {0} and
for some r ∈ {0,1},
{〈Xt,v〉}t≥0 is I(r) if and only if v ∈ K⊥,

5To see why, observe that (i) any f ∈ H′ is identified as the map 〈·,v〉 for a unique element v ∈ H and (ii) 〈x,v〉 = 0
for all x ∈ V if and only if v ∈ V⊥.
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{〈Xt,v〉}t≥0 is I(0) if and only if v ∈ [ker�0]⊥ ∩ [�†
0�1K]⊥,

and for any v ∈ K⊥,

{〈Xt−�
†
0�1�Xt,v〉}t≥1 is I(0) if and only if v ∈ [ker�0]⊥.

These results reduce to the cointegration properties of I(2) solutions provided by
Beare and Seo (2020, Rems. 4.5 and 4.6) and Franchi and Paruolo (2020, Rem.
4.10) for the case where �(z) is Fredholm.

Remark 3.17. Suppose further thatB=R
n orCn. Using the notation introduced

for (3.35), (3.39) can be recast as �(�ᵀ�)−1�ᵀϒ−2 = ϒ−2�(�ᵀ�)−1�ᵀ = 0 and

�
ᵀ
⊥⊥ϒ−2�⊥⊥ = (�

ᵀ
⊥⊥

(
�2 −�1�

†
0�1

)
�⊥⊥)−1, from which we find that

ϒ−2 = �⊥⊥
[
�

ᵀ
⊥⊥

(
�2 −�1�

†
0�1

)
�⊥⊥

]−1
�

ᵀ
⊥⊥. (3.44)

Let α1 = α⊥⊥� , β1 = β⊥⊥�, α1 = α1(α
ᵀ
1 α1)

−1, and β1 = β1(β
ᵀ
1 β1)

−1. Then the
operator M1 can be written as M1 = α⊥⊥��ᵀβᵀ

⊥⊥, and its Moore–Penrose inverse
M†

1 is given by M†
1 = β1α

ᵀ
1 . By replacing ϒ−2 and Mg

1 with (3.44) and M†
1,

respectively, in our characterization of ϒ−1 given in Proposition 3.7, we can obtain
ϒ−1 characterized as an n × n matrix. These expressions for ϒ−2 and ϒ−1 are
equivalent to those in Johansen’s representation of I(2) AR processes (see, e.g.,
Johansen, 2008, Thm. 5). The case where B = R

n or Cn was discussed in detail as
a special case of a Hilbert space in the recent literature, so the results given in this
remark were already noted in the earlier works; see, e.g., Beare and Seo (2020,
Rem. 4.4).

4. CONCLUDING REMARKS

This paper introduces a concept and formulation of cointegration in Banach
spaces and studies theoretical properties of the cointegrating space. We also
extend the Granger–Johansen representation theorem to a potentially infinite
dimensional Banach space setting. Compared to existing results, our representation
theorems are derived under a weaker geometry of a Banach space and weaker
regularity conditions on the AR polynomial. As a consequence, our representation
theory not only can accommodate more general AR(p) laws of motion, but
also does not place potentially strong restrictions on solutions to such a law of
motion, for example, such as finite or infinite dimensionality of the random walk
component.

To develop our representation theorems under weaker assumptions, this paper
only focuses on the I(1) and I(2) cases. On the other hand, Franchi and Paruolo
(2020) recently studied the general I(d) case for d ≥ 1 and provided a complete
characterization of the cointegrating behavior in a convenient form based on the
geometry of a Hilbert space and the spectral properties of Fredholm operator
pencils; moreover, their representation results can also be extended to the AR(∞)
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case without any further theoretical difficulties, whereas such an extension is not
straightforward in the present paper resorting to the companion form represen-
tation. Therefore, extending their results directly to our Banach space setting,
where non-Fredholm AR polynomials are allowed, seems to be nontrivial. This
can certainly be further explored in future study.

It may also be of interest in the near future to develop statistical procedures for
analyzing Banach-valued cointegrated time series to complement existing results
on estimation, testing, and forecasting with stationary Banach-valued time series
(see, e.g., Pumo, 1998; Bosq, 2002; Labbas and Mourid, 2002; Dehling and
Sharipov, 2005; Ruiz-Medina and Álvarez-Liébana, 2019; Dette et al., 2020). We
believe that the present paper, with a more recent article by Albrecht et al. (2021)
containing a novel contribution to the theory of cointegration and the Granger–
Johansen representation in a Banach space setting, can serve as a building block
for studies in this direction.

APPENDIX

A. Preliminaries

A.1. Quotient Spaces. Let V be a subspace of an arbitrary separable complex
Banach space B equipped with norm ‖ ·‖B . The cosets of V are defined as the collection of
the following sets: x+V = {x+v : v ∈ V}, x ∈ B. The quotient space of V, denoted by B/V ,
is the vector space whose elements are equivalence classes of the cosets of V: two cosets
x + V and y + V are in the same equivalence class if and only if x − y ∈ V . In the present
paper, any quotient space B/V is mostly associated with a closed subspace V. For such V,
the quotient map πB/V is defined by the map πB/V (x) = x+V for x ∈ B, and the quotient
norm ‖ ·‖B/V is defined as ‖x+V‖B/V = infy∈V ‖x−y‖B for x+V ∈B/V . B/V equipped
with the quotient norm ‖ · ‖B/V is a Banach space (Megginson, 2012, Thm. 1.7.7).

A.2. Random Elements in B. We briefly introduce Banach-valued random ele-
ments, called B-random variables. The reader is referred to Bosq (2000, Chap. 1) for a
more detailed discussion on this subject.

Let (�,F,P) be an underlying probability triple. A B-random variable is a measurable
map X : � �→B, where B is understood to be equipped with the Borel σ -field. We say that X
is integrable if E‖X‖B < ∞. If X is integrable, it turns out that there exists a unique element
EX ∈ B such that, for all f ∈ B′, E[f (X)] = f (EX). Let L2(B) be the space of B-random
variables X with EX = 0 and E‖X‖2 < ∞. The covariance operator CX of X ∈ L2(B) is a
map from B′ to B, defined by CX(f ) = E[f (X)X] for f ∈ B′. For X,Y ∈ L2(B), the cross-
covariance operator CX,Y is defined by CX,Y (f ) = E[f (X)Y].

A.3. Generalized Inverse Operators. Suppose that B and B̃ are separable complex
Banach spaces, and B̃ = ranA⊕V and B = kerA⊕W hold for some A ∈ L(B,B̃). We then
may define the projection PV (resp. PW ) onto V (resp. W) along ranA (resp. kerA). Since
AR = A : W �→ ranA is invertible, A−1

R : ranA → W is well defined. The generalized inverse

Ag of A is obtained by extending the domain (resp. codomain) of A−1
R to B (resp. B̃); that
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is, Ag is the map given by

B � x �→ A−1
R (I −PV )x ∈ B̃.

It can be shown that Ag satisfies the following properties: AAgA = A, AgAAg = Ag, AAg =
(I − PV ), and AgA = PW . Note that V and W satisfying B̃ = ranA ⊕ V and B = kerA ⊕ W
are not uniquely determined in general, hence the above definition of Ag depends on the
choice of V and W; however, for any given choice of V and W, Ag is uniquely defined.
In the case where B̃ and B are Hilbert spaces, V (resp. W) can be set to [ranA]⊥ (resp.
[kerA]⊥), which makes Ag become equivalent to the Moore–Penrose inverse of A. For a
more detailed discussion on generalized inverses, see Engl and Nashed (1981).

A.4. Operator Pencils. Let U be some open and connected subset of the complex
plane C. An operator pencil is an operator-valued map A : U → L(B). An operator pencil
A is said to be holomorphic on an open and connected set U0 ⊂ U if, for each z0 ∈ U0, the
limit A(1)(z0) := limz→z0(A(z)− A(z0))/(z − z0) exists in the norm of L(B). It turns out
that if an operator pencil A is holomorphic, for every z0 ∈ U0, we may represent A on U0 in
terms of a power series A(z) = ∑∞

j=0 Aj(z− z0) j for z ∈ U0, where A0,A1, . . . is a sequence
in L(B). If there exists k such that Aj = 0, for all j ≥ k, then A is called a polynomial operator
pencil. If Aj = 0, for all j ≥ 2, then A is called a linear operator pencil. The collection of
z ∈ U at which the operator A(z) is not invertible is called the spectrum of A, and denoted
by σ(A). It turns out that the spectrum is always a closed set, and if A is holomorphic on
U, then A(z)−1 is holomorphic on U \σ(A) (Markus, 2012, p. 56). U \σ(A) is called the
resolvent set of A, and denoted ρ(A). If A is holomorphic and z0 is an isolated point of σ(A),
then A(z)−1 allows the following Laurent series in a punctured neighborhood of z = z0:

A(z)−1 =
∞∑

j=−d

Aj(z− z0) j, d ∈ N∪{∞}, Aj ∈ L(B). (A.1)

By Cauchy’s residue theorem, we have Aj = − 1
2π i

∫
�

A(z)−1

(z−1)j+1 dz, where � ⊂ ρ(�̃) is a

clockwise-oriented contour around z0 such that the only element of σ(A) included inside
the contour is z0.

B. Mathematical Appendix

We provide mathematical proofs of the results given in Sections 2 and 3. It is sometimes
convenient to consider A ∈ L(B) whose domain is restricted to V ⊂ B, which is denoted by
A|V ; that is, A|V = A : V �→ B.

B.1. Proofs of the Results Given in Sections 2 and 3.2

Proof of Proposition 2.1. To show (i), we take 0 �= f ∈B′ to both sides of (2.8) and obtain
f (�d−1Xt) = f (τ0)+ f�(1)(

∑t
s=1 εs)+ f (νt), t ≥ 0. Then { f (νt)}t≥0 is stationary since f

is Borel measurable and {νt}t≥0 is stationary. Because E[(f�(1)εt)
2] = f�(1)Cε0 f�(1),

the second moment of f�(1)(
∑t

s=1 εs) is given by tf�(1)Cε0 f�(1), which increases
without bound as t grows unless f�(1) = 0. Therefore, for { f (�d−1Xt)}t≥0 to be stationary,
f�(1) = 0 is required. In this case, a suitable initial condition on τ0 can be obtained by
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letting f (τ0) = 0. Moreover, one can show without difficulty that f�(1) = 0 if and only if
f ∈ Ann(ran�(1)), so C(X) = Ann(A(X)).

To show (ii), suppose that g ∈ C(X). Note that x ∈ B allows the following unique
decomposition, x = xclA(X) + xV , where xclA(X) ∈ clA(X) and xV ∈ V . From (i) and
continuity of bounded linear functionals, we find that C(X) = Ann(A(X)) = Ann(clA(X)).
Therefore, g ∈ C(X) implies that g(x) = g(xV ) = g ◦ PV (x). Now, suppose that g = f ◦
PV . Then, clearly, g(Xt) = g(τ0) + g(νt), t ≥ 0. This can be made stationary by letting
g(τ0) = 0. �

Proof of Corollary 2.1. Under the simplifications discussed in Section 2.4 for the case
B = H, Proposition 2.1(ii) implies that f ∈ C(X) is given by the map 〈·,PV y〉 for y ∈ H.
Then the stated result follows. �

Proof of Proposition 3.1. Note that �̃(z) may be viewed as the following block operator
matrix,

�̃(z) =

⎛⎜⎜⎜⎜⎜⎝
I−zφ1 −zφ2 −zφ3 · · · −zφp
−z I I 0 · · · 0

0 −z I I · · · 0
...

...
. . .

. . .
...

0 0 0 −z I I

⎞⎟⎟⎟⎟⎟⎠ =:

(
�̃[11](z) �̃[12](z)
�̃[21](z) �̃[22](z)

)
, (B.1)

where �̃[22](z) : Bp−1 �→ Bp−1 is invertible for all z ∈ C. Define the Schur complement
of �̃[22](z) as �̃+

[11](z) := �̃[11](z) − �̃[12](z)�̃[22](z)
−1�̃[21](z). From a little algebra,

we find that �̃+
[11](z) = �(z). When �̃[22](z) is invertible, �̃(z) is invertible if and only if

�̃+
[11](z) is invertible (Bart et al., 2007, Sect. 2.2), so σ(�̃) = σ(�). Furthermore, from the

Schur formula in Bart et al. (2007, p. 29), we have

�̃(z)−1 =
(

�(z)−1 −�(z)−1�̃[12](z)�̃[22](z)
−1

−�̃[22](z)
−1�̃[21](z)�(z)−1 �̃[22](z)

−1 + �̃[22](z)
−1�̃[21](z)�(z)−1�̃[12](z)�̃[22](z)

−1

)
,

(B.2)

which shows �(z)−1 = �p�̃(z)−1�∗
p. (iii) is deduced from (B.2) and invertibility of

�̃[22](z). �

B.2. Proofs of the Results Given in Section 3.3 (I(1) Representation)

B.2.1. Preliminary Results. We provide important preliminary results for the subse-
quent discussions. Hereafter, it should be noted that P and Nj may be alternatively expressed
as the following contour integrals:

P = −1

2π i

∫
�
(Ip −zφ̃1)−1φ̃1dz, Nj = −1

2π i

∫
�
(Ip −zφ̃1)−1(z−1)−j−1dz, j ∈ Z, (B.3)
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where � ⊂ ρ(�̃) is a clockwise-oriented contour around one such that the only element
of σ(�̃) included inside the contour is one. From �̃(z)−1�̃(z) = Ip = �̃(z)�̃(z)−1, the
identity map may be understood as the power series defined in a punctured neighborhood
of one as follows:

∞∑
j=−∞

(
Nj−1φ̃1 −Nj(Ip −φ̃1)

)
(z−1) j = Ip =

∞∑
j=−∞

(
φ̃1Nj−1 − (Ip −φ̃1)Nj

)
(z−1) j.

(B.4)

The above identity expansions give us the following relationships:

N−1φ̃1 −N0(Ip −φ̃1) = Ip = φ̃1N−1 − (Ip −φ̃1)N0, (B.5)

Nj−1φ̃1 −Nj(Ip −φ̃1) = 0 = φ̃1Nj−1 − (Ip −φ̃1)Nj, j �= 0. (B.6)

The following lemma collects some essential spectral properties of �̃(z).

LEMMA B.1. Suppose that Assumption 3.1 holds. Then the following hold.

(i) If �̃(z)−1φ̃1 has a pole at z = 1 of order �, then N−m�̃0 = 0 for all m ≥ �.
(ii) Njφ̃1Nk = (1 − ηj − ηk)Nj+k+1, where ηj = 1{ j ≥ 0}. Moreover, N−1φ̃1 and N−1

are projections.
(iii) Njφ̃1 = φ̃1Nj for all j ∈ Z.
(iv) �̃(z)−1 has a pole of order at most � at z = 1 if and only if (a) n−1‖G�−1(Ip −

G)n‖op → 0 for some � ∈ N and (b) ran(Gm) is closed for some m ∈ N satisfying
m ≥ �, where G = �̃0P.

Proof. To show (i), we note that Ip = (Ip −zφ̃1)−1(Ip −φ̃1)− (z−1)(Ip −zφ̃1)−1φ̃1 in a
punctured neighborhood of z = 1. It is then clear that (Ip −zφ̃1)−1(Ip −φ̃1) must have a pole
of order �− 1 if (Ip −zφ̃1)−1φ̃1 has a pole of order � ≥ 1. We therefore have N−m�̃0 = 0
for all m ≥ �.

Our proof of (ii) is similar to those in Kato (1995, p. 38) and Amouch et al. (2015, p.
119). Let �,�′ ⊂ ρ(�) be contours enclosing z = 1, and assume that �′ is outside �. Using
the generalized resolvent equation (Gohberg et al., 2013, p. 50), it can be shown that

Njφ̃1Nk =
(

1

2π i

)2 ∫
�′

∫
�

(Ip −λφ̃1)−1 − (Ip −zφ̃1)−1

(λ− z)(z−1)j+1(λ−1)k+1
dzdλ. (B.7)

From Kato (1995, p. 38), we may deduce that

1

2π i

∫
�

(λ− z)−1

(z−1)j+1
dz = ηj(λ−1)−j−1,

1

2π i

∫
�′

(λ− z)−1

(λ−1)k+1
dλ = (1−ηk)(z−1)−k−1.

(B.8)

Since we may evaluate the integral in any order, the right-hand side of (B.7) can be written
as
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(
1

2π i

)2 ∫
�′

∫
�

(Ip −λφ̃1)−1

(λ− z)(z−1)j+1(λ−1)k+1
dzdλ

1

−
(

1

2π i

)2 ∫
�

∫
�′

(Ip −zφ̃1)−1

(λ− z)(z−1)j+1(λ−1)k+1
dλdz

2

.

From (B.8) and Cauchy’s residue theorem, we deduce that 1 = −ηjNj+k+1 and 2 =
(ηk −1)Nj+k+1, from which we find that Njφ̃1Nk = (1−ηj −ηk)Nj+k+1. By putting j = −1
and k = −1, we obtain N−1φ̃1N−1 = N−1, which implies that N−1φ̃1 is a projection.
We now let U(z) = zI − φ̃1, and define PU = 1

2π i

∫
� U(z)−1dz. Then PU is a projection

(Gohberg et al., 2013, Lem. 2.1 in Chap. I) and PU = N−1 holds (Beare and Seo, 2020,
Rem. 3.11).

To show (iii), note that φ̃1 and Ip −zφ̃1 commute. This implies (Ip −zφ̃1)−1φ̃1 =
φ̃1(Ip −zφ̃1)−1 (Kato, 1995, Thm. 6.5), and we thus have Njφ̃1 = φ̃1Nj, for all j ∈ Z.

To show (iv), we will first verify that the following holds for some η > 0:

−(Ip −zφ̃1)−1φ̃1 =
∞∑

j=1

Gj(z−1)−1−j +N−1φ̃1(z−1)−1 +NH(z), z ∈ D1+η \ {1},

(B.9)

where NH(z) is the holomorphic part of the above Laurent series. We deduce that φ̃1N−2 =
�̃0N−1 from (B.6), and �̃0N−1 = �̃0N−1φ̃1N−1 = �̃0P = G from (ii) and (iii). We thus
find that G = N−2φ̃1 = φ̃1N−2. It is also deduced from (ii) and (iii) that N−kφ̃1 = Gk−1 and
Gk−1 = �̃k−1

0 P for k ≥ 2, from which we find that (B.9) holds. In order for (B.9) to converge

for z ∈ D1+η \{1}, limk→∞ ‖Gk‖1/k
op = 0 must hold (Kato, 1995, pp. 180–181). In this case,

(a) and (b) are necessary and sufficient for G� to be zero (Laursen and Mbekhta, 1995, Lem.
3 and Cor. 7). If G� = 0, we know, from (B.9) and (i), that −(Ip −zφ̃1)−1φ̃1 has a pole of
order at most � at z = 1 and N−k�̃0 = 0, for all k ≥ �. Combining these results with (B.6),
we have N−k−1φ̃1 = N−k�̃0 = 0, for all k ≥ �. Since N−k−1 = N−k−1�̃0 + N−k−1φ̃1,
we find that N−k−1 = 0, for all k ≥ �, so (Ip −zφ̃1)−1 has a pole of order at most � at z = 1.
Conversely, if (Ip −zφ̃1)−1 has a pole of order at most � at z = 1, we have N−k−1φ̃1 = Gk =
0, for k ≥ �. For G�+1 to be nilpotent, (a) and (b) must hold; see Laursen and Mbekhta (1995,
Lem. 3 and Cor. 7). �

B.2.2. Proofs of the Main Results.

Proof of Proposition 3.2. Since (ii) ⇒ (iii) is trivial, we will show that (i) ⇒ (ii) and (iii)
⇒ (i). This completes our proof of the equivalence of (i)–(iii). Then we will verify (3.14).

We will show (i) ⇒ (ii). Since �̃(z)−1 has a simple pole at z = 1, we may deduce from
(B.6) that �̃0N−1 = 0. This implies that ranN−1 ⊂ ker�̃0. We then find that ranP ⊂ ker�̃0
since P = N−1φ̃1. Furthermore, ker�̃0 ⊂ ranP holds. To see this, note that if xk ∈ ker�̃0,

Pxk = − 1

2π i

∫
�
(Ip −zφ̃1)−1φ̃1xkdz = 1

2π i

∫
�
(z−1)−1xkdz = xk. (B.10)
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We thus find that ranP = ker�̃0. Moreover, N−1�̃0 = 0 is deduced from (B.6) and
Ip −P = Ip −φ̃1N−1 is deduced from Lemma B.1(iii). Since N−1 ran�̃0 = {0}, we have
(Ip −P) ran�̃0 = ran�̃0, which implies that ran�̃0 ⊂ ran(Ip −P). On the other hand, for
any x ∈ ran(Ip −P), we have x = (Ip −φ̃1N−1)x since Ip −P is a projection and P = φ̃1N−1.
We know from (B.5) that φ̃1N−1 = �̃0N0 + Ip. Therefore, x = (Ip −φ̃1N−1)x = −�̃0N0x,
which implies that x ∈ ran�̃0. Hence, ran(Ip −P) ⊂ ran�̃0 holds, from which we conclude
that ran(Ip −P) = ran�̃0 since ran�̃0 ⊂ ran(Ip −P) was already shown. To sum up, ranP =
ker�̃0 and ran(Ip −P) = ran�̃0, which means that P is the projection onto ker�̃0 along
ran�̃0.

To prove (iii) ⇒ (i), we first show that �̃(z)−1 has a pole of order at most 2 at z = 1.
Due to Lemma B.1(iv), it suffices to show that n−1‖G(Ip −G)n‖op → 0 and ran(G2) is
closed for G = �̃0P. Since φ̃1 and P commute, G2 = �̃2

0P = P�̃2
0. Moreover, it can be

shown that ran(P�̃2
0) = ranP∩ ran�̃2

0. To see this, note that for x ∈ ran(P�̃2
0), there exists

y ∈ Bp such that x = P�̃2
0y = �̃2

0Py, where the second equality results from commutativity

of P and �̃2
0. This shows that x ∈ ranP ∩ ran�̃2

0, hence ran(P�̃2
0) ⊂ ranP ∩ ran�̃2

0. The

reverse inclusion is trivial, so we omit its proof. Since ran(P�̃2
0) = ranP ∩ ran(�̃2

0) and

ranP is closed, ran(P�̃2
0) is closed if ran(�̃2

0) is closed. Under the I(1) condition, �̃0Bp =
�̃0[ran�̃0 ⊕ ker�̃0] = �̃0 ran�̃0 holds; that is, ran(�̃2

0) = ran�̃0, which is closed. It

remains to show that n−1‖G(Ip −G)n‖op → 0. Note that (Ip −G)n = (Ip −P)+ φ̃n
1P. Since

φ̃1 and P commute,

n−1‖G(Ip −G)n‖op ≤ n−1‖�̃0φ̃n
1‖op ≤ n−1‖φ̃n

1 |ran�̃0
‖op‖�̃0‖op. (B.11)

Under Assumption 3.1, we may deduce, from nearly identical arguments used in Beare
et al. (2017) to prove a similar statement, that there exists k ∈ N such that, for all n ≥ k,
‖φ̃n

1 |ran�̃0
‖ < an for some a ∈ (0,1). Hence, the upper bound in (B.11) vanishes to zero,

and we conclude that �̃(z)−1 has a pole of at most 2 at z = 1 under the direct sum Bp =
ran�̃0 ⊕ ker�̃0. From (B.5) and (B.6), we have N−2�̃0 = 0 and N−2φ̃1 = N−1�̃0. The
former (resp. the latter) shows that N−2|ran�̃0

= 0 (resp. N−2|ker�̃0
= 0). Since Bp =

ran�̃0 ⊕ker�̃0, we conclude that N−2 = 0. Hence, �̃(z)−1 has a simple pole at z = 1.
It remains only for us to show that (3.14) holds. Let H(z) denote the holomorphic part

of the Laurent series given in (3.11). Note that if Assumption 3.1 holds and �̃(z)−1 has a
simple pole, the Maclaurin series of (1−z)�̃(z)−1 = P+(1−z)H(z) is convergent on D1+η.
Then, from Lemma 4.1 of Johansen (1995) (or its obvious extension allowing power series
with operator coefficients), it may be deduced that the Maclaurin series of H(z) is convergent
on D1+η. Now, we will show P = N−1 to complete our proof. One can deduce from our
proof of (i) ⇒ (iii) that ranP = ranN−1. Moreover, Lemma B.1(ii) implies that N−1 is a
projection. Therefore, N−1 is clearly a projection whose range is equal to ranP = ker�̃0.
Then we find that P = N−1φ̃1 = φ̃1N−1 = N−1, where the second equality is from the
fact that φ̃1 and N−1 commute, and the last equality is from that φ̃1|ker�̃0

= Ip |ker�̃0
and

ranN−1 = ker�̃0. �

Proof of Proposition 3.3. From Propositions 3.1 and 3.2, we have (1 − z)�(z)−1 =
�pN−1�∗

p + (1 − z)�pH(z)�∗
p. Applying the linear filter induced by (1 − z)�(z)−1

to (3.1), we obtain �Xt = �pN−1�∗
pεt + �νt, where νt = �pH(L)�∗

pεt and H(z) =∑∞
j=0 Hjz

j with Hj = H(j)/j! is convergent on D1+η. Clearly, the process given by
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�pN−1�∗
p
∑t

s=1 εs + νt is a solution, which is completed by adding a time invariant
component τ0 given as the solution to the homogeneous equation �Xt = 0.

We then verify the claimed expression of νt in (3.15). Once we show that

H0 = Ip −P, Hj = φ̃1Hj−1, j ≥ 1, (B.12)

then the claimed expression given in (3.15) may be easily verified. First, it can be shown that
H(z) = H(z)(Ip −P) holds. To see this, note that H(z) = −∑∞

j=0 Nj(z−1)j. Since Lemma

B.1(ii) implies that Nj(Ip −P) = Nj −Njφ̃1N−1 = Nj, for j ≥ 0, we find that H(z)(Ip −P) =
−∑∞

j=0 Nj(Ip −P)(z − 1)j = −∑∞
j=0 Nj(z − 1)j. This also shows that �̃(z)−1(Ip −P) =

H(z), and

Ip −P = �̃(z)�̃(z)−1(Ip −P) = �̃(z)H(z). (B.13)

We then easily deduce that H0 = Ip −P from (B.13) evaluated at z = 0. Furthermore, (B.13)
can be rewritten as (Ip −φ̃1)H(z)− (z−1)φ̃1H(z) = Ip −P, from which we have

H(j)(z)− jφ̃1H(j−1)(z)− zφ̃1H(j)(z) = 0, j ≥ 1. (B.14)

Evaluating (B.14) at z = 0, we obtain H(j)(0) = jφ̃1H(j−1)(0) = j! φ̃1Hj−1, which verifies
(B.12).

It remains to show that if the I(1) condition is not satisfied, then the AR(p) law of
motion (3.1) does not allow I(1) solutions. This immediately follows from Propositions 3.1
and 3.2. �

Proof of Proposition 3.4. Throughout this proof, we write the Laurent series of �(z)−1

near z = 1 as follows: for d ∈ N∪{∞}, �(z)−1 = −∑∞
j=−d N̈j(z−1) j. Since it is obvious

that (iii) ⇒ (ii), we will only show that (i) ⇒ (iii) and (ii) ⇒ (i). The whole proof is divided
into several parts.

1. (i) ⇒ (iii): Let V� ∈ �(ran�0) and W� ∈ �(ker�0) be arbitrarily chosen. We know
that d = 1, N̈−1 = �pP�∗

p, and ranP = ker�̃0 under the I(1) condition (Propositions

3.1 and 3.2). Since (x1, . . . ,xp) ∈ ker�̃0 implies that x1 = ·· · = xp ∈ ker�0, ranN̈−1 =
ran�pP�∗

p ⊂ �p ker�̃0 = ker�0 holds. From the coefficients of (z − 1)−1 and (z − 1)0

in the identity expansion �(z)−1�(z) = I, we know that N̈−1 satisfies N̈−1�0 = 0 and
N̈−1�1 + N̈0�0 = −I. From these equations, we observe that −N̈−1PV��1(I − PW�) =
I − PW� , hence ker�0 ⊂ ranN̈−1. We thus find that ranN̈−1 = ker�0, so �1(V�,W�) :

ker�0 �→ V� is an injection. Moreover, from the coefficients of (z − 1)−1 and (z − 1)0

in the expansion �(z)�(z)−1 = I, we find that �0N̈−1 = 0 and �1N̈−1 + �0N̈0 = −I,
which implies that −PV��1N̈−1 = PV� . Since ranN̈−1 = ker�0 was already shown, it is
concluded that �1(V�,W�) : ker�0 �→ V� is also a surjection, i.e., it is a bijection. The
above arguments do not depend on the choice of V� and W�. Thus, (i) ⇒ (iii).

2. (ii) ⇒(i): For given V� ∈ �(ran�0) and W� ∈ �(ker�0), we define Q� : Bp → Bp as
follows:

Q� =

⎛⎜⎜⎝
PV� PV�

∑p
j=2 φj PV�

∑p
j=3 φj · · · PV�φp

0 0 0 · · · 0
.
.
.

.

.

.
.
.
.

. . .
.
.
.

0 0 0 · · · 0

⎞⎟⎟⎠ . (B.15)
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Then Q� is a projection on Bp and Q��̃0 = 0. The latter may be verified by noting that

�̃0 =
(

�0 �̃[12](1)

0 �̃[22](1)

)(
I 0

�̃[22](1)−1�̃[21](1) Ip−1

)
, Q�

(
�0 �̃[12](1)

0 �̃[22](1)

)
= 0,

where �̃[12](·), �̃[21](·), and �̃[22](·) are defined in (B.1). We thus find that kerQ� ⊃
ran�̃0. It can also be shown that kerQ� ⊂ ran�̃0. To see why, note that PV�(x1 +∑p

j=2 φjx2 + ∑p
j=3 φjx3 + ·· · + φpxp) = 0 holds for any x = (x1, . . . ,xp) ∈ kerQ�, and

�̃0(0,x2, . . . ,
∑p

j=2 xj) = (−∑p
j=2 φjx2 − ∑p

j=3 φjx3 − ·· · − φpxp,x2, . . . ,xp). Let y1 =
−∑p

j=2 φjx2 −∑p
j=3 φjx3 −·· ·−φpxp. With some algebra, we obtain the following results:

(x,0, . . . ,0) ∈ ran�̃0, for x ∈ ran�0, (B.16)

y1 = PV�y1 + (I −PV�)y1, PV�y1 = PV�x1. (B.17)

Using (B.16) and (B.17), we find that (PV�x1,x2, . . . ,xp) ∈ ran�̃0. Combining this result

with (B.16), we conclude that x = (x1, . . . ,xp) ∈ ran�̃0, so kerQ� ⊂ ran�̃0.
We have shown that kerQ� = ran�̃0, hence Q� is a projection onto some V� ∈

�(ran�̃0). Let xk = (x1,k, . . . ,xp,k) ∈ ker�̃0, then it may be easily shown that x1,k = ·· · =
xp,k and x1,k ∈ ker�0. With a little algebra and from the fact that x1,k = (I −PW�)x1,k, we
obtain

Q�xk =
(
−PV��1(I −PW�)x1,k,0, . . . ,0

)
. (B.18)

Moreover, from the definition of Q�, we find that ranQ� ⊂ {(x1,0, . . . ,0) ∈ Bp : x1 ∈ V�}.
Combining this result with (B.18) and invertibility of �1(V�,W�) : ker�0 �→ V�, we find
that Q�,R = Q� : ker�̃0 �→ V� is invertible. This implies that B = ran�̃0 ⊕ker�̃0, which

is deduced from Fact 4.3 of Fabian et al. (2010) and the fact that the map D : ran�̃0 ⊕V� �→
ran�̃0 ⊕ker�̃0, given by D =

(
Ip 0

0 Q−1
�,R

)
, is invertible.

3. Formula for ϒ−1ϒ−1ϒ−1: For V� ∈ �(ran�0) and W� ∈ �(ker�0), we found that
−N̈−1PV��1(I −PW�) = I −PW� and �1(V�,W�) :ker�0 �→V� is invertible, from which
(3.21) follows immediately. �

B.3. Proofs the Results Given in Section 3.4 (I(2) Representation)

B.3.1. Preliminary Results. We first collect some preliminary results that are useful
for the subsequent discussion.

LEMMA B.2. Let everything be as in Section 3.4.

(i) Under Assumption 3.1, ran�̃0 and ker�̃0 can be complemented in Bp.
(ii) Under Assumption 3.2, K �= {0} is necessary for �̃(z)−1 to have a pole of order 2.

(iii) Under Assumption 3.2, the I(2) condition is equivalent to the following: K �= {0}
and Bp = (ran�̃0 + ker�̃0) ⊕ �̃

g
0K holds for any arbitrary V� ∈ �(ran�̃0) and

W� ∈ �(ker�̃0).

Let V� ∈ �(ran�̃0) and W� ∈ �(ker�̃0) be arbitrarily chosen and let R = PV� ker�̃0.
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(iv) Under Assumption 3.2, the following direct sums hold for some R� ⊂ Bp and K� ⊂
Bp,

Bp = ran�̃0 ⊕R⊕R� = W� ⊕K� ⊕K. (B.19)

(v) Under Assumption 3.2, the operator Q = PV�(Ip −PW�) allows the generalized
inverse Qg satisfying ranQg = K� and kerQg = ran�̃0 ⊕R�, where R� and K�
satisfy (B.19).

Proof. Under Assumption 3.1, we may define the projection Q� given in (B.15).
Since kerQ� = ran�̃0, ran�̃0 is complemented by ranQ�. Moreover, ker�̃0 is also
complemented. To see this, we note that x = (x1, . . . ,xp) ∈ ker�̃0 implies that x1 = x2 =
·· · = xp and x1 ∈ ker�0. Let T� be the (p × p) operator matrix whose entries of the first
column are all equal to I − PW� and all the other entries are equal to zero. Then it can be

easily shown that this is a projection defined on Bp and its range is equal to ker�̃0; hence,
ker�̃0 is complemented by the kernel of this projection. This completes our proof of (i).

To show (ii), suppose that �̃(z)−1 has a pole of order 2 at z = 1 and K = {0}. It can be
shown that ker�̃0 ⊂ ranP ⊂ ker(�̃2

0) holds under Assumption 3.1, where the first inclusion
follows from (B.10). To see why the second inclusion holds, we note that N−2 = �̃0P
(Lemma B.1(iv)), and then deduce from (B.6) that �̃0N−2 = 0. From these results, we find
that �̃0N−2 = �̃2

0P = 0, which proves the second inclusion. Since K = {0} implies that

ker�̃0 = ker(�̃2
0), we find that ranP = ker�̃0 and so N−2 = �̃0P = 0. This contradicts our

assumption that �̃(z)−1 has a pole of order 2 at z = 1, so K �= {0}.
To show (iii), we let �̃

g
0,1 and �̃

g
0,2 be the generalized inverses depending on two

different choices of V� ∈ �(ran�̃0) and W� ∈ �(ker�̃0). Let S = ran�̃0 + ker�̃0, S1 =
�̃

g
0,1K, and S2 = �̃

g
0,2K. We know from Megginson (2012, Thm. 1.7.14 and Cor. 3.2.16)

that two complementary subspaces of S are isomorphic, implying that AS1 = S2 and
S1 = A−1S2 for some invertible map A ∈ L(S1,S2) and its inverse A−1 ∈ L(S2,S1). Let

D : S⊕S1 �→ S⊕S2 be the map given by D =
(

Ip 0
0 A

)
, which is obviously invertible and its

inverse D−1 : S⊕S2 �→ S⊕S1 is given by D−1 =
(

Ip 0
0 A−1

)
. Note that D(S) = S, D(S1) = S2,

D−1(S) = S, and D−1(S2) = S1. It then follows from Fact 4.3 of Fabian et al. (2010) that
Bp = S ⊕S1 holds if and only if Bp = S ⊕S2 holds. This completes the proof.

To show (iv), note that ran�̃0 + ker�̃0 = ran�̃0 ⊕R. We define S� : Bp → Bp as
the block operator matrix obtained by replacing PW� with PR� in (B.15). Then it can

be shown that S� is a projection and S��̃0 = 0. If x ∈ ker�̃0, then x = (xk, . . . ,xk) for
some xk ∈ ker�0 and S�x = −PR��1xk = 0 since kerPR� = ran�0 ⊕ R = ran�0 +
�1 ker�0. We thus find that kerS� ⊃ ran�̃0 +ker�̃0. Moreover, kerS� ⊂ ran�̃0 +ker�̃0
also holds. To see why, let x = (x1, . . . ,xp) ∈ kerS�. Then x must satisfy PR�(x1 +∑p

j=2 φjx2 +∑p
j=3 φjx3 +·· ·+φpxp) = 0. As in our proof of Proposition 3.4, if we let y1 =

−∑p
j=2 φjx2 −∑p

j=3 φjx3 −·· ·−φpxp, then PR�y1 = PR�x1 and �̃0(0,x2, . . . ,
∑p

j=2 xj) =
(y1,x2, . . . ,xp) hold. Note that (x,0, . . . ,0) ∈ ran�̃0 + ker�̃0 if x ∈ ran�0 + �1 ker�0,
which is because, for any arbitrary u ∈B and w ∈ ker�0, we have �̃0(v−w,v−2w, . . . ,v−
pw) + (w,w, . . . ,w) = (�0v + �1w,0, . . . ,0). Combining all these results with the fact
that kerPR� = ran�0 + �1 ker�0, we find that x ∈ ran�̃0 + ker�̃0. To sum up, S� is
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a projection and kerS� = ran�̃0 + ker�̃0 = ran�̃0 ⊕ R, meaning that ran�̃0 ⊕ R is
complemented by ranS�. The latter direct sum of (B.19) clearly holds forK� = ker�̃0 ∩V�.

To show (v), we note that Bp = ran�̃0 ⊕ ranQ ⊕R� under the former direct sum of
(B.19). Moreover, from the latter direct sum of (B.19), we have Bp = kerQ ⊕K�, where
kerQ = W� ⊕ K. Therefore, the generalized inverse Qg exists, and ranQg = K� and
kerQg = ran�̃0 ⊕R�; see Appendix A.3. �

LEMMA B.3. Let Assumption 3.2 hold. For any arbitrary choice of R� and K�, the
operator M1 = PV��1(I −PW�) allows the generalized inverse Mg

1 satisfying (i) M1Mg
1 =

(I −PR�)PV� , (ii) Mg
1M1 = PK� , (iii) Mg

1 = K�, and (iv) kerMg
1 = ran�0 ⊕R�, where PK�

is the projection onto K� along W� ⊕K.

Proof. Under the direct sums given in (3.36), B = ran�0 ⊕ranM1 ⊕R� holds. Note also
that kerM1 = W�⊕K, hence we have B = kerM1 ⊕K�. We then know from Appendix A.3
that M1 allows the generalized inverse Mg

1 whose range is K� and kernel is ran�0 ⊕ R�,
from which the desired result follows. �

B.3.2. Proofs of the Main Results.

Proof of Proposition 3.5. Under the direct sums (B.19) given in Lemma B.2(iv), we let
PR� denote the projection onto R� along ran�̃0 ⊕R, which is well defined. The whole
proof is divided into several parts.

1. Necessity of the I(2) condition: If the I(2) condition is not satisfied, then it must be the
case either(

ran�̃0 +ker�̃0
)∩ �̃

g
0K �= {0} or Bp �= ran�̃0 +ker�̃0 + �̃

g
0K. (B.20)

It will be shown that (B.20) is false if �̃(z)−1 has a pole of order 2 at z = 1. From (B.5) and
(B.6), we have

N−2�̃0 =0 = �̃0N−2, (B.21)

N−2φ̃1 −N−1�̃0 =0 = φ̃1N−2 − �̃0N−1, (B.22)

N−1φ̃1 −N0�̃0 = Ip = φ̃1N−1 − �̃0N0. (B.23)

From (B.21), we observe that

N−2 = φ̃1N−2 = N−2φ̃1, (B.24)

N−2 = N−2PV� . (B.25)

Restricting both sides of (B.22) to ker�̃0, we find that

N−2|ker�̃0
= 0 ⇔ N−2 ker�̃0 = {0}. (B.26)

We note that �̃
g
0 exists, and then deduce from (B.22) and (B.24) that

N−1(Ip −PV�) = N−2�̃
g
0, PW�N−1 = �̃

g
0N−2. (B.27)
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(B.25) implies that postcomposing both sides of the latter equation in (B.27) with PV�
changes nothing, so

N−1PV� = �̃
g
0N−2 + (Ip −PW�)N−1PV� . (B.28)

From the former equation in (B.27) and (B.28), we find that

N−1 =N−2�̃
g
0 + �̃

g
0N−2 + (Ip −PW�)N−1PV� . (B.29)

Restricting both sides of (B.29) toK, we obtain N−1|K = N−2�̃
g
0|K, which is due to (B.26).

Furthermore, N−1|K = Ip |K is deduced by restricting both sides of (B.23) to K, so we
find that N−1|K = N−2�̃

g
0|K = Ip |K. Given PR� , the former direct sum given in (B.19),

equations (B.25) and (B.26), and the fact that ran�̃0 ⊕R = ran�̃0 +ker�̃0, we conclude
that N−2 = N−2PR� . Therefore,

N−2PR��̃
g
0|K = Ip |K. (B.30)

This proves injectivity of PR��̃
g
0 : K �→ R�, hence the former condition in (B.20) is

impossible.
Precomposing both sides of the latter equation in (B.22) with PR��̃

g
0 and using (B.24),

we have

PR��̃
g
0N−2 = PR�PW�N−1 = PR�N−1, (B.31)

where the last equality is established from the fact that the kernel of PR� is ran�̃0 +ker�̃0
and thus PR�(Ip −PW�) = 0. Similarly, precomposing both sides of the latter equation of
(B.23) with PR� ,

PR� φ̃1N−1 = PR� +PR��̃0N0 = PR� . (B.32)

Note that PR�N−1 = PR��̃0N−1 + PR� φ̃1N−1, where the first term is 0. We there-
fore deduce from (B.32) that PR�N−1 = PR� . Combining this with (B.31), we obtain

PR��̃
g
0N−2 = PR� , which implies surjectivity of PR��̃

g
0 : K �→ R�. Hence, the latter

condition in (B.20) cannot hold.

2. Sufficiency of the I(2) condition: Suppose that �̃(z)−1 has a pole of order m ≥ 3 at
z = 1. We deduce that N−m = N−mφ̃1 = φ̃1N−m from (B.6), and also N−m = Gm−1 =
�̃m−1

0 P from Lemma B.1(iv). If the I(2) condition holds, any x ∈ Bp can be written as x =
xran + xker + �̃

g
0xK, where xran ∈ ran�̃0, xker ∈ ker�̃0, and xK ∈ K. From the definitions

of ran�̃0 and K, we also know that there exist y1 ∈Bp and y2 ∈Bp satisfying xran = �̃0y1,
xK = �̃0y2, and �̃2

0y2 = 0. We thus find that

�̃m−1
0 Px = P�̃m−1

0 (xran + xker + �̃
g
0xK) = P�̃m

0 y1 +P�̃m−1
0 (xker + y2) = 0, (B.33)

where the first equality comes from commutativity of P and �̃0. It is then deduced from
(B.33) that �̃m−1

0 PB= {0}, so �̃m−1
0 P = 0. That is, N−m = 0 is concluded, which, however,

contradicts our assumption that �̃(z)−1 has a pole of order m ≥ 3. In addition, K �= {0}
implies that B �= ran�̃0 ⊕ ker�̃0, which excludes the existence of a simple pole (see
Proposition 3.2).
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3. Formula for N−1N−1N−1: Note that N−1 = �̃0N−1 + φ̃1N−1. We also know from (B.24) that
N−2φ̃2

1 = N−2φ̃1 = N−2. Combining this with (B.22), it is deduced that N−1 = �̃0N−1 +
φ̃1N−1 = N−2 +P.

4. ranN−2 = KranN−2 = KranN−2 = K: The result immediately follows from (B.30) and invertibility of PR��̃
g
0 :

K → R�.

5. Holomorphicity of (1− z)2�̃(z)−1(1− z)2�̃(z)−1(1− z)2�̃(z)−1 and H(z)H(z)H(z) on D1+ηD1+ηD1+η: We know that the Maclaurin

series of (1−z)2�̃(z)−1 is convergent on D1+η. Then, from an obvious extension of Lemma
4.1 of Johansen (1995), it may be deduced that the Maulaurin series of H(z) is convergent
on D1+η. �

Proof of Proposition 3.6. From Propositions 3.1 and 3.5, we have (1 − z)2�(z)−1 =
−�pN−2�∗

p + �p(N−2 + P)�∗
p(1 − z) + �pH(z)�p(1 − z)2. Applying the linear filter

induced by (1 − z)2�(z)−1 to (3.1), we obtain �2Xt = −�pN−2�∗
pεt + �p(N−2 +

P)�∗
p(εt − εt−1) + (�νt − �νt−1). We then may deduce that solutions to (3.1) satisfy

(3.4) for some τ0 and τ1. The claimed expression of νt can be verified from nearly
identical arguments used in our proof of Proposition 3.3. Moreover, we may deduce from
Propositions 3.1 and 3.5 that (3.1) does not allow I(2) solutions if the I(2) condition is not
satisfied. �

Proof of Proposition 3.7. We write the Laurent series of �(z)−1 around z = 1 as follows:
for d ∈ N∪ {∞}, �(z)−1 = −∑∞

j=−d N̈j(z − 1) j. Since it is obvious that (iii) ⇒ (ii), we
will only show that (i) ⇒ (iii) and (ii) ⇒ (i). The whole proof is divided into several parts.

1. (i) ⇒ (iii): Let R� ∈ �(R) and K� ∈ �(K) be arbitrarily chosen. If (x1, . . . ,xp) ∈ K, we
know from (4.40) of Beare et al. (2017) that x1 = ·· · = xp, and there exists y1 ∈ B such that
�0y1 = −�1x1. This implies that x1 ∈ K. Since ranN−2 =K, ranN̈−2 = ran�pN−2�∗

p ⊂
K holds. Under the I(2) condition, we know that �(z)−1 has a pole of order 2 at z = 1 and
deduce the following from the identity expansion �(z)−1�(z) = I = �(z)�(z)−1:

N̈−2�0 =0 = �0N̈−2, (B.34)

N̈−2�1 + N̈−1�0 =0 = �1N̈−2 +�0N̈−1, (B.35)

N̈−2�2 + N̈−1�1 + N̈0�0 = −I = �2N̈−2 +�1N̈−1 +�0N̈0. (B.36)

From some algebra similar to that in the proof of Theorem 4.2 of Beare and Seo (2020),
we find that N̈−2(I − PR�) = 0 and −N̈−2PR�M2PK = PK. This implies that K ⊂ ranN̈−2

(hence ranN̈−2 = K has been established) and thus �2(R�,K�) = PR�M2PK : K �→ R� is
an injection.

Now, from the latter equation in (B.35) and the properties of �
g
0, we may deduce that

�1N̈−1 = −�1�
g
0�1N̈−2 +�1(I −PW�)N̈−1. (B.37)

From the latter equation in (B.36) and (B.37), we have PR�M2N̈−2 + PR��1(I −
PW�)N̈−1 = −PR� . Because PR��1 ker�0 = {0}, PR��1(I − PW�)N̈−1 = 0 and thus

PR�M2N̈−2 = −PR� hold. Given that ranN̈−2 = K, this implies that �2(R�,K�) =
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PR�M2PK : K �→ R� is also a surjection, i.e., it is a bijection. The above arguments do
not depend on a specific choice of R� ∈ �(R) and K� ∈ �(K), and thus (i) ⇒ (iii).

2. (ii) ⇒ (i): It suffices to show that the I(2) condition holds for some choice of �̃
g
0 (Lemma

B.2(iii)). Let

�̃
g
0 =

(
�

g
0 −�

g
0�̃[12](1)�̃[22](1)−1

−�̃[22](1)−1�̃[21](1)�
g
0 �̃[22](1)−1 + �̃[22](1)−1�̃[21](1)�

g
0�̃[12](1)�̃[22](1)−1

)
, (B.38)

where �̃[12](·), �̃[21](·), and �̃[22](·) are defined in (B.1). From the factorization formula
(2.3) of Bart et al. (2007), it may be easily shown that �̃0�̃

g
0 = Ip −Q� for Q�, the

projection whose kernel is equal to ran�̃0, given in (B.15). Moreover, �̃
g
0�̃0 = Ip −T�

for T�, the projection whose range is equal to ker�̃0, given in our proof of Lemma B.2(i).
Therefore, �̃

g
0 given in (B.38) is the generalized inverse of �̃0 for some V� ∈ �(ran�̃0)

and W� ∈ �(ker�̃0). For given R� and K�, we let S� : Bp → Bp denote the block operator
matrix obtained by replacing PV� with PR� in the definition of Q� given by (B.15), and let

S�,[1,2] :Bp−1 �→B denote the upper-right block ofS�. We already showed thatS� is a pro-

jection onto a complementary subspace of ran�̃0 +ker�̃0 in our proof of Lemma B.2(iv).

Then, using the formula (2.3) of Bart et al. (2007), we find that S��̃
g
0 =

(
C1 C2
0 0

)
, where

C1 = PR��
g
0 − S�,[12]�̃[22](1)−1�̃[21](1)�

g
0 and C2 = PR��

g
0�̃[12](1)�̃[22](1)−1 +

S�,[12](�̃[22](1)−1 +�̃[22](1)−1�̃[21](1)�
g
0�̃[12](1)�̃[22](1)−1). If xk = (x1,k, . . . ,xp,k) ∈

K, then x1,k = ·· · = xp,k and x1,k ∈ K. For such xk, we obtain the following after a tedious
algebra:

S��̃
g
0xk =

(
−PR�M2PKx1,k,0, . . . ,0

)
. (B.39)

From the definition of S�, it may be deduced that ranS� ⊂ {(x1,0, . . . ,0) ∈ Bp : x1 ∈ R�}.
Combining this result with (B.39) and invertibility of the map �2(R�,K�) = PR�M2PK :

K �→ R�, we find that S� : �̃0K �→ R� is invertible. This implies that �̃
g
0K is a

complementary subspace of ran�̃0 + ker�̃0 by a similar argument that we used in our
proof of Proposition 3.4. From the above proof, we know that K = {0} is impossible since
it implies K = {0}.
3. Formula for ϒ−2ϒ−2ϒ−2: We know −N̈−2PR�M2PK = PK holds under the I(2) condition. Since

the map �2(R�,K�) : K �→ R� is invertible and ϒ−2 = −N̈−2, the desired results given by
(3.39) are easily obtained.

4. Formula for ϒ−1ϒ−1ϒ−1: We first establish some preliminary results. According to the direct
sums given in Assumption 3.2 and for any arbitrary choice of the complementary subspaces
therein, we have

I = (I −PV�)+ (I −PR�)PV� +PR� . (B.40)

Based on the identity (B.40), we will obtain explicit expressions of N̈−1(I −PV�), N̈−1(I −
PR�)PV� , and N̈−1PR� . In the sequel, we need (B.35), (B.36), and the following obtained

from the coefficient of (z−1)1 in the identity expansion �(z)−1�(z) = I = �(z)�(z)−1:

N̈−2�3 + N̈−1�2 + N̈0�1 =0 = �3N̈−2 +�2N̈−1 +�1N̈0. (B.41)
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From (B.35), we find that

N̈−1(I −PV�) = −N̈−2�1�
g
0. (B.42)

From (B.36) and the identity N̈−1�1 = N̈−1(I − PV�)�1 + N̈−1PV��1, it follows that

[N̈−2�2 + N̈−1(I − PV�)�1 + N̈−1PV��1](I − PW�) = −(I − PW�). Substituting (B.42)
into this equation, we have

N̈−1M1 = −(I + N̈−2M2)(I −PW�). (B.43)

Postcomposing both sides of (B.43) with Mg
1 and using the fact that M1Mg

1 = (I −PR�)PV�
(Lemma B.3), we obtain that

N̈−1(I −PR�)PV� = −(I + N̈−2M2)Mg
1. (B.44)

Now, from (B.41), we have [N̈−2�3 +N̈−1�2 +N̈0�1]PK = 0. We note from the definition
of K that N̈0�1PK = N̈0(I −PV�)�1PK, and deduce from (B.36) that N̈0(I −PV�) = −�

g
0 −

N̈−2�2�
g
0 − N̈−1�1�

g
0. Combining these results, we obtain

N̈−1M2PK = −[N̈−2M3 − N̈−2M2�
g
0�1 −�

g
0�1]PK. (B.45)

Since N̈−1PR�M2PK = [N̈−1M2 − N̈−1(I − PV�)M2 − N̈−1(I − PR�)PV�M2]PK, and

N̈−1(I −PV�) and N̈−1(I −PR�)PV� are given in (B.42) and (B.44), we have

N̈−1PR�M2PK = −[N̈−2M3 − N̈−2M2�
g
0�1 −�

g
0�1]PK + N̈−2�1�

g
0M2PK

+ (I + N̈−2M2)Mg
1M2PK. (B.46)

By postcomposing both sides of (B.46) with N̈−2, a formula for N̈−1PR� is obtained.

Combining this with (B.42), (B.44), and the fact that ϒ−2 = −N̈−2 and ϒ−1 = N̈−1, we
obtain

ϒ−1 =−Mg
1 +

(
�

g
0�1 +Mg

1M2

)
ϒ−2 +ϒ−2

(
�1�

g
0 +M2Mg

1

)
+ϒ−2

(
M3 −M2�

g
0�1 −�1�

g
0M2 −M2Mg

1M2

)
ϒ−2. (B.47)

Using the fact that ranMg
1 = K� and ϒ−2 = PKϒ−2PR� , the desired results are obtained

from (B.47). �

B.3.3. Supplementary Results to Proposition 3.5. We here characterize the prin-
cipal part of the Laurent series �̃(z)−1 in more detail. Let PW� , PV� , and �̃

g
0 be defined

as in Section 3.4.1. Given the direct sum conditions in (B.19), we let PR� (resp. PK) be

the projection onto R� (resp. K) along ran�̃0 ⊕R (resp. W� ⊕K�). Let �̃ be the map
given by PR��̃

g
0 : K �→ R�, and let Q = PV�(Ip −PW�). The generalized inverse Qg is

well defined and satisfies that ranQg = K� and kerQg = ran�̃0 ⊕R� (Lemma B.2(v)).
We will show that �̃ : K �→ R� is invertible and N−2 satisfies

(Ip −PK)N−2 = N−2(Ip −PR�) = 0, N−2 : R� �→ K = �̃−1, (B.48)
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and, moreover, P = (Ip −�r)Qg(Ip −��)+��(Ip −�r)+�r, where �� = �̃
g
0N−2 and �r =

N−2�̃
g
0.

1. Formula for N−2N−2N−2: Under the I(2) condition, we know from our proof of Proposition 3.5
that (B.30) holds, N−2 = N−2PR� , and �̃ = PR��̃

g
0 : K → R� is bijective. From these

results, (B.48) follows.

2. Formula for PPP: From the former direct sum in (B.19), we have

Ip = (Ip −PV�)+ (Ip −PR�)PV� +PR� . (B.49)

Thus, P = P(Ip −PV�) + P(Ip −PR�)PV� + PPR� , and we will obtain an expression for
each summand.

Precomposing both sides of the former equation in (B.22) with φ̃1, we obtain φ̃1N−2φ̃1 =
φ̃1N−1�̃0. We then deduce the following from (B.24) and the fact that φ̃1N−1 = P,

P(Ip −PV�) = N−2�̃
g
0. (B.50)

Using the identity Ip = (Ip −PV�) + PV� and postcomposing both sides of the former
equation in (B.23) with Ip −PW� , we find that PQ = (Ip −P(Ip −PV�))(Ip −PW�). Then,

from (B.50), we obtain PQ = (Ip −N−2�̃
g
0)(Ip −PW�). Moreover, it may be deduced from

Lemma B.2(v) that QQg = (Ip −PR�)PV� , hence we find that

P(Ip −PR�)PV� =
(

Ip −N−2�̃
g
0

)
Qg. (B.51)

We obtain P�̃
g
0PK − N0(Ip −PV�)PK = �̃

g
0PK by postcomposing both sides of the

former equation in (B.23) with �̃
g
0PK. Note that (Ip −PV�)PK = PK. We also deduce from

(B.6) that N0φ̃1 = N1�̃0, which implies that N0PK = 0. Combining these results, we find
that P�̃

g
0PK = �̃

g
0PK. Then, from (B.49), we have

PPR��̃
g
0PK =�̃

g
0PK −P(Ip −PV�)�̃

g
0PK −P(Ip −PR�)PV��̃

g
0PK. (B.52)

We then substitute (B.50) and (B.51) into (B.52), and then postcompose both sides with
N−2, noting that PKN−2 = N−2 due to (B.48). This gives us an explicit formula for PPR� .
Combining this with (B.50) and (B.51), the claimed formula for P can be obtained.

B.4. Supplement to Examples and Remarks

Remark 2.3: Note that (i) x(u) = x(1) holds for u ∈ [0,1] if x ∈ ranφ1, (ii) (I −φ1)x = 0
for any constant function x ∈ C[0,1], and (iii) C0 is closed; from these results, we find that
clA(X) = ranφ1 = C0.

Example 3.1: Assumption 3.1(a) is satisfied since �̃(z)−1x(u) = x(u) + zx(1)/(1− z),
which is well defined for any z �= 1 and u ∈ [0,1]. Moreover, since �̃0 = I −φ1, we know
from Section 2.1 and Remark 2.3 that ker�̃0 = C0 and ran�̃0 ⊂ C1. ran�̃0 ⊃ C1 follows
from that x = �̃0x holds for any x ∈ C1.

Example 3.3: We show that Assumption 3.1(a) is satisfied in this example. Note that
�̃(z)a = ((1 − z)a1,(1 − z)a2 − za1,(1 − zλ)a3,(1 − zλ2)a4, . . .) for a = (a1,a2, . . .) ∈ c0,
from which it can be easily shown that �̃(z) is injective on c0 for any z ∈ D1+η \ {1}.
Furthermore, for any sequence b = (b1,b2,b3, . . .) ∈ c0, we can find a sequence a =
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(a1,a2,a3, . . .) ∈ c0 satisfying �̃(z)a = b by setting a1 = b1/(1 − z), a2 = b2/(1 − z) +
zb1/(1 − z)2, and aj = bj/(1− zλj−2), for j ≥ 3. This shows that �̃(z) is also a surjection
for z ∈ D1+η \ {1}. Therefore, �̃(z) is invertible on D1+η \ {1}.
Example 3.5: K �= {0} is obvious. With some algebra, it can be shown that (i) �̃(z)
is invertible for z �= 1, (ii) ran�̃0 and ker�̃0 can be complemented, and (iii) W� =
{(b1,0,b2,b3,0,b4,b5,0,b6, . . .) : bj ∈ C, limj→∞ bj = 0} is a complementary subspace
of ker�̃0. Note that −�̃0(b1,0,b2,b3,0,b4,b5, . . .) = (0,b1,b1,0,b3,b3, . . .) holds. Since
(b1,0,b2,b3,0,b4, . . .) ∈ W� and �̃

g
0�̃0 = PW� , we find that

−(b1,0,b2,b3,0,b4,b5, . . .) = �̃
g
0(0,b1,b1,0,b3,b3, . . .). (B.53)

Equations (3.32), (3.33), and (B.53) imply that ran�̃0 +ker�̃0 = ker�̃0 and �̃
g
0K = W�,

so (3.27) holds as desired.

Remark 3.8: We here verify (3.22). From (3.21), we find that ranϒ−1 = ker�0. Therefore,
for a nonzero f ∈ Ann(ker�0), f (Xt) = f (τ0)+ f (νt) holds for t ≥ 0. Let τ0 satisfy f (τ0) = 0.
We know from Proposition 3.2 that �(z)−1 = −N̈−1(z−1)−1 −∑∞

j=0 N̈j(z−1) j, H(z) is
convergent on D1+η for η > 0 (and thus the coefficients of the Maclaurin series of H(z)
decay exponentially in norm) and N̈0 = −∑∞

j=0 �pHj�
∗
p. We thus only need to show

that f N̈0 �= 0 to establish I(0)-ness of { f (νt)}t≥0. Under the I(1) condition, we know that
N̈−1�1 + N̈0�0 = −I, which implies that ranN̈−1 + ranN̈0 = B. In this case, for any
f ∈ ker�0, f N̈0 = 0 implies that f = 0, which contradicts our assumption that f �= 0.

Remark 3.14: We here prove (3.40) and (3.41). Since ranϒ−2 = K, f ∈ Ann(K) is a
cointegrating functional. For any nonzero f ∈ Ann(ϒ−2), we may deduce from the formula
of ϒ−1 given in Proposition 3.7 that fϒ−1 is equal to

−f Mg
1(I −M2ϒ−2)+ f�g

0�1ϒ−2. (B.54)

Using the expression of fϒ−1 given by (B.54), we will show that the following holds:

fϒ−1 = 0 ⇔ f ∈ Ann(�
g
0�1K)∩Ann(ker�0). (B.55)

Since ranϒ−2 = K, the second term in (B.54) is zero if and only if f ∈ Ann(�
g
0�1K). It

thus only remains to show that f ∈ Ann(K�) because ker�0 = K⊕K� and f ∈ Ann(K). To
see this, we first show that ran(Mg

1(I − M2ϒ−2)) = K�. Since ranMg
1 = K�, ran(Mg

1(I −
M2ϒ−2)) ⊂ K�. Note that for any V ⊂ B, Mg

1(I − M2ϒ−2)V ⊂ Mg
1(I − M2ϒ−2)B ⊂ K�

holds. Thus, if there is a subset V such that Mg
1(I − M2ϒ−2)V = K�, then ran(Mg

1(I −
M2ϒ−2)) = K� holds. Let V = (I − PR�)V�. We then know from (3.39) that M2ϒ−2V =
{0}. Moreover, ranMg

1 = Mg
1V holds since kerMg

1 = ran�0 ⊕ R�. From these results, we

find that Mg
1(I−M2ϒ−2)V = Mg

1V = K�, so ran(Mg
1(I−M2ϒ−2)) = K�. We thus conclude

that f ∈ Ann(K�) if and only if the first term in (B.54) is zero.
We have shown that (B.55) holds for f ∈ Ann(K). We know from Proposition 3.7 that

(ignoring τ0 and τ1 without loss of generality) a nonzero element f ∈ Ann(K) satisfies either
of the following: (i) fϒ−1 �= 0 and f (Xt) = fϒ−1

(∑t
s=1 εs

)+ f (νt) or (ii) f (Xt) = f (νt). In
case (i), { f (Xt)}t≥0 is I(1) obviously. In case (ii), f (Xt) is I(0) under our I(2) condition. To
see this, note that we know from Proposition 3.5 that �(z)−1 = −N̈−2(z−1)−2 − N̈−1(z−
1)−1 −∑∞

j=0 N̈j(z − 1) j, H(z) is convergent on D1+η for η > 0 (and thus the coefficients
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of the Maclaurin series of H(z) decay exponentially in norm), and N̈0 = −∑∞
j=0 �pHj�

∗
p.

As in Appendix B.4, it suffices to show that f N̈0 �= 0 to establish the desired I(0)-ness.
Under the I(2) condition, we know from (B.36) that ranN̈−2 + ranN̈−1 + ranN̈0 = I. Since
f N̈−2 = f N̈−1 = 0 in case (ii), f N̈0 = 0 implies f = 0, which contradicts our assumption
that f �= 0. We thus find that f N̈0 �= 0, so the cointegrating behavior of I(2) solutions is
characterized as stated.

Remark 3.15: For a nonzero f ∈ Ann(K), we deduce from (B.54) that f (Xt)− f (�g
0�1�Xt)

is given by

−f

⎛⎝Mg
1(I −M2ϒ−2)

t∑
s=1

εs

⎞⎠+ f (ν⭒t ), (B.56)

where ν⭒t = νt − �
g
0�1εt + �νt. As shown above, ran(Mg

1(I − M2ϒ−2)) = K�. Since
ker�0 = K ⊕ K� and f ∈ Ann(K), f /∈ Ann(ker�0) implies that f /∈ Ann(K�). Thus, the
sequence given in (B.56) cannot be stationary for f /∈ Ann(ker�0). On the other hand,
if f ∈ Ann(ker�0), then the first term in (B.56) is zero. Therefore, the desired result
is established if { f (ν⭒t )}t≥0 is I(0). The summability condition for the I(0) property is
satisfied, which can be easily shown. We rewrite ν⭒t as ν⭒t = ∑∞

j=0 �jεt−j, and find that∑∞
j=0 �j = −N̈0 −�

g
0�1N̈−1. If f

∑∞
j=0 �j is nonzero, then { f (ν⭒t )}t≥0 is I(0). Suppose

by contradiction that f N̈0 = −f�g
0�1N̈−1. Precomposing (B.36) with f�g

0 and using the

fact that �
g
0�0 = PW� , we obtain

f�g
0�2N̈−2 + f�g

0�1N̈−1 + f PW� N̈0 = f�g
0�2N̈−2 − f N̈0 + f PW� N̈0 = −f�g

0.

In the above, f PW� N̈0 = f N̈0 since f (I − PW�) = 0 for any f ∈ Ann(ker�0). We thus find

that f�g
0�2N̈−2 = −f�g

0. From our expression of N̈−2 = −ϒ−2 given in (3.39), we know
that N̈−2�0 = 0, so

0 = f�g
0�2N̈−2x = −f�g

0x, for all x ∈ ran�0. (B.57)

From the properties of �
g
0, we have �

g
0 ran�0 = W�, so (B.57) holds if and only if f ∈

Ann(W�). Since f ∈ Ann(ker�0) andB= ker�0 ⊕W�, this means f = 0, which contradicts
the assumption that f �= 0.
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