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Abstract

We give continued fraction algorithms for each conjugacy class of triangle Fuchsian group of signature
(3, n,∞), with n ≥ 4. In particular, we give an explicit form of the group that is a subgroup of the Hilbert
modular group of its trace field and provide an interval map that is piecewise linear fractional, given in
terms of group elements. Using natural extensions, we find an ergodic invariant measure for the interval
map. We also study Diophantine properties of approximation in terms of the continued fractions and
show that these continued fractions are appropriate to obtain transcendence results.
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1. Introduction

The celebrated results of Veech [32] highlighting the importance of translation surfaces
with large affine diffeomorphism groups have led to various uses of generalizations
of regular continued fractions in Teichmüller theory. One aspect has been the
determination of explicit algorithms for expansions of the (inverse) slopes of flow
directions in terms of parabolic fixed points of a related Fuchsian group, [4, 30, 31].

Veech [32] gave a family of translation surfaces with related Fuchsian triangle
groups (of index at most two in a group) of signature (2, n,∞); the corresponding
uniformized hyperbolic surface is of genus zero, has torsion singularities of type 2 and
n, and has one puncture. Some 40 years earlier Rosen [27] gave continued fraction
algorithms for approximation by elements in such triangle groups. The connection
between the two is exploited in [5] to show that of Veech’s [32] original examples
of translation surfaces with nonarithmetic lattice ‘Veech’ group, precisely those of
genus greater than 2 have nonparabolic directions with vanishing Sah–Arnoux–Fathi
invariant.
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Here we construct continued fraction algorithms for the triangle groups of signature
(3, n,∞) that we show to have various desirable properties. These groups were shown
by Ward [33] to also arise from the affine diffeomorphism group of translation surfaces.

For each n, Ward rather naturally presents his group with a generating element of
order n being the standard rotation of order n. However, the Fuchsian group that he
gives does not lie in the matrix group with entries only in the algebraic integers. The
main properties of Veech groups are conjugation-invariant; we explicitly determine
a group that is conjugate to Ward’s group, but is contained in the group of matrices
of algebraic integer entries, and also has the important property (for applications to
translation surfaces) of being in ‘standard form’ [13]: the extended reals 0, 1 and ∞
are all cusps for the group.

Having our explicit groups, we then find a rather natural continued fraction map for
each n, but one that is of infinite invariant measure and fails to enjoy various desirable
approximation properties. The infinitude of the measure being due to the existence
of a parabolic fixed point for the map in the interval, we define a second algorithm
by inducing appropriately with respect to the domain of the corresponding parabolic
element. It is this second continued fraction map, f = fn, that we then show enjoys
desirable properties. In particular, we show that it has no long sequences of poor
approximation and that it detects transcendence.

1.1. Main results. For each n, let f (x) = fn(x) as given later in Definition 3.11. In a
standard manner, to each x, our interval map generates a sequence of f -approximants,
pm/qm. We say that x is fn-irrational if it has an infinite sequence of approximants.
Any such x has its sequence of Diophantine approximation coefficients defined as

Θm = Θm(x) = q2
m|x − pm/qm|.

Fix τ = 1 + 2 cos π/n. Let ν be the probability measure induced on I = In = [−τ, 0)
given as the marginal measure, by integrating dµ = (1 + xy)−2dx dy along the fibers of
the region Γ defined in Definition 3.13.

T 1.1. For each n ≥ 4, the following hold.

(i) Every f -irrational x is the limit of its f -approximants:

lim
m→∞

|x − pm/qm| = 0.

(ii) For every f -irrational x and every m ≥ 1,

min{Θm−1, . . . , Θm+n−1} ≤ τ,

and the constant τ is best possible.
(iii) The map f is ergodic with respect to the finite invariant measure ν on I.

One test of a usefulness of a continued fraction algorithm is that extremely rapid
growth of the denominators qm of the approximants implies transcendence. We show
that our continued fractions pass this test.
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T 1.2. Let λ = 2 cos(π/n) for any integer n ≥ 4 and let d = [Q(λ) : Q]. If a real
number ξ < Q(λ) is f -irrational with convergents pm/qm such that

lim sup
m→∞

log log qm

m
> log(2d − 1)

then ξ is transcendental.

2. Background

2.1. Fuchsian groups, translation surfaces, Veech groups. The motivation for
developing the continued fraction algorithms in this paper is their usefulness in
analyzing the dynamics of the linear flow on certain translation surfaces. A translation
surface is a collection of planar polygons glued along parallel sides in such a way that
the result is a closed, oriented surface of some genus greater than or equal to one. At
the vertices of the polygons, cone points may arise, about which the total angle is 2πn
for some n ≥ 2. A first example of a translation surface is a torus that arises from gluing
parallel sides of a square, although a torus does not have cone points. It is a theorem of
Weyl that on the standard unit torus, in any direction of rational slope, all orbits of the
geodesic flow are closed or periodic, while in a direction of irrational slope, all orbits
are uniformly distributed. Veech [32] proved that on a certain class of translation
surfaces of genus greater than one, now known as the lattice surfaces, the geodesic
flow enjoys a simple dynamic dichotomy similar to that of the torus. A lattice surface
is one for which the stabilizer of the surface under the natural action of PSL2(R) is
a lattice subgroup of PSL2(R). Such a group, which is called a Veech group, is also
the group of derivatives of the affine diffeomorphisms of the corresponding surface.
Since Veech groups are discrete groups of isometries of the hyperbolic plane, they are
also Fuchsian groups. Veech also constructed examples of lattice surfaces by gluing
together a pair of regular 2n-gons, and found the Fuchsian groups mentioned in the
Introduction.

Much work has been dedicated to finding new examples of lattice surfaces; we
focus on those constructed by Ward [33]. These surfaces arise from reflected copies
of a triangle with angles π/2n, π/n and (2n − 3)π/2n for n ≥ 4 and their Veech groups
are Fuchsian triangle groups of signature (3, n,∞). In this paper, we create continued
fraction algorithms for the Veech groups of the Ward surfaces in the hope of using these
algorithms to further study the behavior of the geodesic flow in certain directions on
the Ward surfaces.

2.2. Standard number-theoretic planar extension. The notion of natural extension
was introduced by Rohlin [26] to aid in the study of ergodic properties of
transformations. Since the work of Ito et al. [24], and the initial application of their
work by Bosma et al. [9], natural extensions have become an important tool in the
study of Diophantine approximation properties of continued fractions as well. For
examples of applications to the setting of Rosen continued fractions and the Hecke
groups, see, for example, [12, 15, 22, 25].
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Matrix formulation and approximants. Suppose that f : J→ J is an interval map
that is piecewise fractional linear. Say that J =

⋃∞
k=1 ∆k with f (x) = Mk · x for x ∈ Jk,

and Mk ∈ SL2(R) acting projectively. Thus, given general x and m,

f m(x) = Mkm · · · Mk2 Mk1 · x

and we define (
qm −pm

−qm−1 pm−1

)
:= Mkm · · · Mk2 Mk1 .

We define the mth approximant of x as pm/qm. Note that

x =
pm−1 f m(x) + pm

qm−1 f m(x) + qm
. (2.1)

Two dimensional map. Let

Nk =

(
0 −1
1 0

)
Mk

(
0 −1
1 0

)
,

so that Nk · y = −1/(Mk · (−1/y)). For x ∈ ∆k, let

T : (x, y) 7→ (Mk · x, Nk · y). (2.2)

Then

T m(x, 0) =

(
f m(x),

−1
Mkm · · · Mk2 Mk1 · ∞

)
= ( f m(x), qm−1/qm).

Thus, in accordance with, say, [12, p. 1268], we can define the elements of the T -orbit
of (x, 0) as

(tm, vm) := ( f m(x), qm−1/qm). (2.3)

Constants of Diophantine approximation. We define the coefficient of Diophantine
approximation

Θm := Θm(x) = q2
m|x − pm/qm|.

From Equation (2.1),

Θm = q2
m

∣∣∣∣∣ pm−1 f m(x) + pm

qm−1 f m(x) + qm
−

pm

qm

∣∣∣∣∣ =

∣∣∣∣∣ tm
1 + tmvm

∣∣∣∣∣. (2.4)

If we further restrict our matrices Mk to be of the form

Mk =

(
ak −1
1 0

)
, (2.5)

then tm+1 = am − 1/tm and vm+1 = −1/(vm + am), and hence also

Θm =

∣∣∣∣∣ vm+1

1 + tm+1vm+1

∣∣∣∣∣. (2.6)
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Natural extension. The natural extension of a system ( f , I, ν,B), where f : I→ I
is of invariant measure ν and B is the σ-algebra of Borel sets, is another system
(T ,Ω, µ,B′). Here, T is bijective on Ω, and the σ-algebra B′ is generated by the
pull-back of B under a projection π : Ω→ I.

When f and T are as above, one has the following key result of [9], deftly reproven
(in the classical case) by Jager in [17]. Kraaikamp [19] and Barrionuevo et al. [7]
apply Jager’s reasoning for other continued fraction type maps.

P 2.1. Suppose that (T ,Ω, µ,B′) is the natural extension of ( f , I, ν,B)
and that this natural extension is ergodic and given locally as in (2.2), with dµ =

dx dy/(1 + xy)2, up to normalizing factor. Then, for ν-almost every x ∈ I, the sequence
(T m(x, 0))m≥0 is µ-uniformly distributed in Ω.

Jager’s proof is so short and attractive that we sketch it here.

P [J]. Let A be the set of x such that the orbit of (x, 0) is not µ-uniformly
distributed. Let A = {(x, y) ∈Ω | x ∈ A}; then for all (x, y), (x, y′) ∈ A, due to the very
definition of T , we have that (T m(x, y) − T m(x, y′)) is a null sequence (that is, has
the point (0, 0) as its limit). Therefore, for all (x, y) ∈ A, the orbit of (x, y) is not µ-
uniformly distributed. But, the µ measure ofA is positive if and only if the ν-measure
of A is positive. Since T is ergodic, we conclude that ν(A) = 0.

3. Continued fractions for the Ward examples

3.1. A representative in PSL2(OK). For each n ≥ 4, Ward [33] shows that the
translation surface obtained by the unfolding process on the Euclidean triangle of
angles (π/2n, π/n, (2n − 3)π/2n) with n ≥ 4, has as its Veech group a Fuchsian group
of signature (3, n,∞). For n > 4, Ward presents his groups with generators

σn =

(
1 cot π/(2n) + cot π/n
0 1

)
, βn =

(
cos π/n sin π/n
− sin π/n cos π/n

)
.

Ward proves that σn and βn generate a lattice in PSL2(R); however, it is easy to see
that 〈σn, βn〉 does not lie in PSL2(OK) where K = Q(2 cos(π/n)) is the trace field of
the surface. For certain applications of our continued fraction algorithms to translation
surfaces, it is desirable to find a conjugate lattice that does lie in PSL2(OK). Moreover,
we would also like the corresponding conjugated surface to be in standard form, which
means that the directions 0, 1 and ∞ on the surface are algebraically periodic, as
defined in [13]; this is guaranteed by 0, 1 and ∞ being cusps of the group. Calta and
Smillie [13] proved that for any translation surface whose Veech group is a lattice and
which is in standard form, the set of algebraically periodic directions forms a field that
is the trace field of the surface. In this case, one could hope to use number-theoretic
results to study the algebraically periodic directions on a lattice surface, in the manner
of the recent work of Arnoux and Schmidt for the original Veech examples [5].
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Conjugating Ward’s group by
(

1 cos π/n
0 sin π/n

)
, we find a subgroup of PSL2(OK) with

generators

A =

(
1 1 + 2 cos π/n
0 1

)
, B =

(
2 cos π/n 1
−1 0

)
, C =

(
1 −1
1 0

)
.

Note that AB = −C. Let us denote this group byW =Wn = 〈A, B〉. Finally, we check
that the conjugated surface is in standard form. First, observe that ∞ is clearly a cusp
of eachWn. And since B sends 0 to∞, it too is a cusp. Also, since C sends∞ to 1, 1
must be a cusp as well.

3.2. An initial interval map, but of infinite measure. Fix an n and set τ = 1 +

2 cos π/n. Considering the graph of C · x, it is reasonable to let I = In = [−τ, 0) and
define

g : I→ I

x 7→ A−kC,

where k = k(x) is the unique positive integer such that g(x) ∈ I. Notice that g(x) =

−kτ + 1 − 1/x. In terms of Section 2.2, we have Mk = A−kC and thus the restriction as
given in Equation (2.5) holds. The rank-one cylinders

∆k =

[ 1
1 − (k − 1)τ

,
1

1 − kτ

)
,

with k ≥ 2 are full cylinders; g sends each surjectively onto I. We have ∆1 = [−τ, 1/(1 −
τ)), whose image under f is [−τ + 1 + 1/τ, 0). The g-orbit of x = −τ is of importance,
thus let

φ j = g j(−τ) for j = 0, 1, . . . .

We claim that φ0, . . . , φn−3 all lie in ∆1; then φn−2 ∈ ∆2; followed by φn−1, . . . , φ2n−5

back in ∆1; thereafter, φ2n−4 = 1/(1 − τ) is the left endpoint of ∆2. It follows that
φ2n−3 = φ0. To justify that this is indeed the g-orbit of φ0, since A−1C · x is increasing
and has no pole in I, it suffices to show the following four things:

φn−2 = (A−1C)n−2 · (−τ) < (A−2C)−1 · 0 = 1/(1 − 2τ);

A−2C(φn−2) ∈ ∆1, (A−1C)n−3 · (φn−1) ∈ ∆2 and W · (−τ) = −τ,

where

W = A−2C(A−1C)n−3A−2C(A−1C)n−2 = A−1B−2A−1B−1 =

(
τ2 + 1 τ3

−τ −τ2 + 1

)
. (3.1)

These are all easily shown, especially since (A−1C)n = Bn = Id, projectively.
Note that from the above, φ2n−4 < φn−2. But then using that M1 · x is an increasing

function, we easily deduce that the following ordering of real numbers holds:

φ0 < φn−1 < φ1 < · · · < φ2n−4 < φn−2.
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R

L5

L3

L6

L4

L2

F 1. Natural extension for n = 5. The region initially lying over ∆1 and its image are shown in white;
the region over ∆2 and its image are shown in light gray; and the region above ∆k with k > 2 and its image

are shown in dark gray. The anti-diagonal y = −x (dashed) is also shown.

Now consider rectangles erected above the g-orbit of φ0. Enumerate their heights
as L1, . . . , L2n−2 and R, so that the region we are considering (see Figure 1) is

Ω =

n−3⋃
i=0

[φi, φn−1+i) × [0, L2i+1] ∪
n−2⋃
j=1

[φn−2+ j, φ j) × [0, L2i] ∪
⋃

[φn−2, 0) × [0, R].

In accordance with the notation of Section 2.2, we have

Nk =

(
0 −1
1 1 − kτ

)
.

We define S(x, y) = (Mk · x, Nk · y) whenever x ∈ ∆k.

P 3.1. The map S : Ω→Ω is bijective (up to µ-measure zero) when R = τ
and

L1 = 1/τ; L2i+1 = N1 · L2i−1, 1 ≤ i ≤ n − 3;

L2 = 1/(τ − 1); L2 j = N1 · L2 j−2, 1 ≤ j ≤ n − 2.

Furthermore, these heights are in increasing order

L1 < L2 < · · · < L2n−2 < R.

P. Direct calculation shows that Nk · τ = 1/((k − 1)τ − 1), and Nk · 0 = 1/(kτ − 1).
Therefore R = τ implies that, for k ≥ 2, S maps ∆k × [0, τ] to

I ×
[ 1
kτ − 1

,
1

(k − 1)τ − 1

]
and of course this lies directly above the S-image of ∆k+1 × [0, τ].
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We have that [φi, φn−1+i) ⊂ ∆1 for i = 0, . . . , n − 4, and claim that S sends

[φi, φn−1+i) × [0, L2i+1] to [φi+1, φn+i) × [L1, L2i+3] when i < n − 4;

and that the image of [φn−3, 1/(1 − τ)) × [0, L2n−5] is [φn−2, 0) × [L1, R]. By definition
of N1, all of this is clear, up to checking that Nn−2

1 · (1/τ) = τ. This latter fact follows
(depending upon parity of n) from Lemmas 3.5 and 3.7 below.

Similarly, one finds that [φn−2+ j, φ j) × [0, L2i] is sent by S to [φn−1+ j, φ j+1) ×
[L1, L2(i+1)] until [φ2n−4, φn−2) × [0, L2n−4] is mapped to [φ0, φn−1) × [1/(2τ − 1), N2 ·

L2n−4]. But
N2 · L2n−4 = N2 · N

n−3
1 N2Nn−2

1 · L1 = L1

follows from our hypotheses and the fact that W fixes −τ. We have thus shown that,
up to measure zero, S is surjective; injectivity is easily verified.

Each of N1 · y and N2 · y define increasing functions of y. Thus, since certainly
1/τ < 1/(τ − 1), the heights are strictly increasing. �

L 3.2. The region Ω is of infinite measure.

P. Since S preserves µ, we see that the S-orbit of (φ0, L1) = (−τ, 1/τ) lies on the
curve y = −1/x. But dµ = dx dy/(1 + xy)2 so that Ω is clearly of infinite µ-measure. �

Schweiger [29] formalized a proof in [24] so as to obtain conditions that imply
that a planar system is a natural extension of an associated interval map. In particular
(see [29, Theorem 21.2.1]), one mainly needs to verify that there is an appropriate
algorithm on the second coordinates. It is easily verified that in our setting the map
given by y 7→ Nk · y provides that algorithm. (For details pertaining to an application
of Schweiger’s formalism in a situation that is less straightforward than ours, see [20,
Section 4.3].)

P 3.3. With Ω as in the previous lemma, let ν be the measure on I obtained by
integration along the fibers. Then (S,Ω, µ,B′) is the natural extension of (g, I, ν,B),
where B′,B denote the respective σ-algebra of Borel sets. In particular, the ν-
measure of I is infinite.

3.3. Bijectivity of the planar map S. Besides giving the calculations that terminate
the proof of the bijectivity of S, we also show that the product of the L j with R = τ
equals one. We use an induction proof, relying upon the following elementary result.

L 3.4. Suppose that the 2 × 2 real matrix M is of determinant one and has the
form M =

(
a b
−b 0

)
. Then for any real x,

M · x =
1

M−1 · (1/x)
.

P. This is immediately verified. �
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We also note the following useful formula. Using the conjugation expressing B in
terms of βn given in Section 3.1, one easily verifies that, for any integer j,

B j =
1

sin(π/n)


sin

( j + 1)π
n

sin
jπ
n

−sin
jπ
n

−sin
( j − 1)π

n

 . (3.2)

L 3.5. Let n be even. Then, with notation as above, φn/2−1 = −1. Furthermore,
Nn−2

1 · (1/τ) = τ.

P. First note that φn/2−1 = (A−1C)n/2−1 · (−τ), by the calculation of the orbit of φ0

above. It suffices to show that Bn/2−1 · (−τ) = −1, or that Bn/2 · (−τ) = B · (−1), since
B = A−1C. Direct calculation shows that B · (−1) = −τ + 2. From (3.2),

Bn/2 =

(
−cot π/n −csc π/n
csc π/n cot π/n

)
,

and direct calculation shows that Bn/2 · (−τ) = −τ + 2 = B · (−1). Finally, one easily
verifies that Bn/2 · (2 − τ) = −1/τ, and Nn−2

1 · (1/τ) = τ follows. �

C 3.6. Let n be even. Then for 0 ≤ j ≤ n/2 − 1,

φn/2−1− j φn/2−1+ j = 1.

Furthermore, the product R ·
∏2n−4

j=1 L j = 1.

P. The displayed equation obviously holds when j = 0. We use induction,
repeatedly applying Lemma 3.4 with M = M1 = A−1C for 1 ≤ j ≤ n/2 − 1. Thereafter
we apply this lemma with M = M2 = A−2C, and then again with a series of M = A−1C.

Now, we have that the various heights R, L j are y-coordinates of ‘corner’ points
whose corresponding x-coordinates are in the orbit of φ0. Since these corner points lie
on the curve y = 1/x, the result follows. �

L 3.7. Let n = 2m + 3. Then (A−1C)mA−2C(A−1C)n−2(−τ) = −1 and so φ3m+2 =

−1. Furthermore, Nn−2
1 · (1/τ) = τ.

P. We have that Bn−2 = B−2, but

B−2 =

(
−1 1 − τ
τ − 1 (1 − τ)2 − 1

)
,

giving Bn−2 · (−τ) = B−2 · (−τ) = −1/τ. From this, Nn−2
1 · (1/τ) = τ follows.

Now

A−2C =

(
1 − 2τ −1

1 0

)
and so A−2C · (−1/τ) = 1 − τ.
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It remains to show that Bm · (1 − τ) = −1. By (3.2),

Bm · (−2 cos(π/n)) =
−2 cos π

n sin (m+1)π
n + sin mπ

n

2 cos π
n sin mπ

n − sin (m−1)π
n

.

Elementary trigonometric manipulations show that the numerator is −sin((m + 2)π/n).
Similarly, the denominator has value sin((m + 1)π/n). Since m = (n − 3)/2, we are
evaluating the quotient of −sin((n + 1)π/2n) by sin((n − 1)π/2n). We thus find that
Bm · (1 − τ) = −1. The rest follows directly. �

Applying Lemma 3.4 as in the proof of Lemma 3.6 now allows one to show the
following.

C 3.8. Let n = 2m + 3 be odd. Then for 0 ≤ j ≤ m, one has both

φ3m+2− j φ3m+2+ j = 1 and φ j φn−2+ j = 1 .

Furthermore, the product R ·
∏2n−4

j=1 L j = 1.

3.4. Interval map, f . The infinitude of the measure of I can be seen as caused
by the fact that the parabolic W, as given in Equation (3.1), fixes φ0 = −τ. We thus
‘accelerate’ the map g(x), by inducing past W−1 · [−τ, 0), and thereby find our interval
map f (x).

D 3.9. Let ε0 = W−1 · 0, that is, ε0 = −τ3/1 + τ2.

L 3.10. For x ∈ (−τ, ε0), let j(x) be minimal such that g j(x)(x) > ε0. Then

j(x) = −1 +

⌈
−1
τ2

+
1

τ(τ + x)

⌉
.

P. Conjugating by the map x 7→ x + τ sends W to
(

1 0
−τ 1

)
. From this one solves to

find j(x). �

D 3.11. Let f : I→ I be given by

f (x) =

g(x) if x > ε0,

g j(x)(x) otherwise.

L 3.12. Let εi := f i(ε0). Then

φ0 < ε0 < φn−1

and, for ` = 1, . . . , n − 3,

φ` < ε` < εn−2+` < φn−1+` .

Furthermore, ε2n−4 = 1/(1 − 2τ).
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R

L5

L3

L6

L4

L2

F 2. Natural extension of domain Γ, for accelerated map, n = 5. The region initially lying over
the accelerated subinterval is shaded darkest; the remainder lying above ∆1 is shown in white; the
lower region over ∆2 is shown in light gray; the high region over (part of) ∆2 is shown lined; and the
region above ∆k with k > 2 is shown in medium gray. Likewise their images. Curves corresponding to

θ(x, y) = τ, y = −x (dashed) and related to θ(T −1(x, y)) = τ are also shown.

P. Since L2 = 1/(τ − 1), it follows that φn−1 = 1 − τ. One then trivially verifies
that −τ < ε0 < φn−1 holds, since 2 < τ = 1 + 2 cos π/n < 3.

The point α1 := M−1
2 · 0 = 1/(1 − 2τ) is in M1 · ∆1, and further φ2n−4 < φn−2 < α1.

Thus writing αi = g−1(α1), we find that φ2n−4− j < φn−2− j < α j+1 for j = 0, . . . , n − 3.
Furthermore, α j+1 < φ2n−3− j for j = 1, . . . , n − 3, since M1 · φ2n−4 = 0. One completes
this backwards orbit so as to find that α2n−3 must equal ε0. In particular, ε2n−4 =

1/(1 − 2τ). But also it follows that φn−2 < εn−2 < ε2n−4, from which the remaining
inequalities follow. �

We now define a new region (see Figure 2).

D 3.13. Let

Γ = [−τ, ε0) × [0, τ/(τ2 + 1)] ∪ [ε0, ε1) × [0, L1]

∪

n−3⋃
j=1

([ε j, εn−2+ j) × ([0, L j] ∪ [L2 j, L2 j+1]) ∪ [εn−2+ j, ε j+1) × [0, L2 j+1])

∪

[
εn−2,

1
1 − 2τ

)
× ([0, L2n−5] ∪ [L2n−4, τ]) ∪

[ 1
1 − 2τ

, 0
)
× [0, τ].

In order to define cylinder sets for g(x) indicated by a single subscripting index, we
now define ∆′k for k nonzero integers.

D 3.14. If k > 2, then let ∆′k = ∆k. Further, let ∆′1 = [ε0, 1/(1 − τ)) and

∆′j =

[
−τ +

τ

−( j − 1)τ2 + 1
, −τ +

τ

− jτ2 + 1

)
for j ≤ −1.
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In particular, for x ∈ ∆′j with j ≤ −1, we have g(x) = W− j · x. Accordingly, let

M− j = W j and N− j be its conjugate by
(

0 −1
1 0

)
. Thus, we have defined cylinder sets

of index in −N ∪ N, and correspondingly indexed maps.
For brevity, when we write that a two-dimensional map is the natural extension of

an interval map we mean that a relationship holds analogously to the formal statement
included in Proposition 3.3.

P 3.15. Define T : Γ→ Γ by T (x, y) = (Mk · x, Nk · y) whenever x ∈ ∆′k for
k ∈ −N ∪ N. Then:

(i) T is a bijection up to µ-measure zero;
(ii) Γ is a finite measure subset of Ω;
(iii) the map T : Γ→ Γ gives a natural extension of f : I→ I.

P. By definition, T agrees with S on [1/(1 − 2τ), 0) × [0, τ], giving an image of
[−τ, 0) × (0, 1/(2τ − 1)]. Also on [εn−2, 1/(1 − 2τ)) × [L2n−4, τ], the maps T and S
agree, and give as image [εn−1, 0) × [L1, L2].

From Lemma 3.12, one has that ε2n−2 < 1/(1 − τ); therefore, Γ includes the region[ 1
1 − τ

,
1

1 − 2τ

)
× [0, L2n−5],

upon which T agrees with S, and gives an image of [−τ, 0) × [1/(2τ − 1), N2 · L2n−5].
But, by Proposition 3.1, one has

N2 · L2n−5 = N2N−1
1 · τ =

τ

τ2 + 1
.

A calculation confirms that N− j′ sends[
0,

τ

τ2 + 1

]
to

[ j′τ
j′τ2 + 1

,
(1 + j′)τ

(1 + j′)τ2 + 1

]
.

By definition, W j′ · ∆′
− j′ = [ε0, 0), and thus we find that T sends

[0, ε0) ×
[
0,

τ

τ2 + 1

]
to [ε0, 0) ×

[
τ

τ2 + 1
, L1

]
.

On the remaining portion of Γ, one has agreement of T with S, and the image is
easily calculated. In particular, one finds that T is bijective up to measure zero, and
that Γ is a closed proper subset of Ω. Since τ/(τ2 + 1) < L1, we have that (φ0, L1) < Γ.
It follows that the S-orbit of this point is not in Γ, and from this one easily finds that Γ

is bounded away from the curve y = −1/x. Therefore, Γ is of finite µ-measure. Finally,
one checks that T is the induction to Γ of S just as f is induced from g, and thus
Proposition 3.3 implies that T gives the natural extension of f . �

4. Ergodicity and Diophantine properties from natural extensions

We use the system (T , Γ, µ), where µ denotes the probability measure on Γ induced
by dµ = (1 + xy)−2dx dy, to find egodicity as well as to study Diophantine properties
of the interval maps fn.
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4.1. Convergence. Consecutive Diophantine approximation constants have an easily
computed ratio, when T is locally of a particularly nice form.

L 4.1. Consider the function h given by

h : (x, y) 7→ (M · x, N · y),

with M · x = a + ε/x, N · y = 1/(−a + εy)), and ε = ±1. Then

θ(h(x, y))/θ(x, y) = −(M · x)/(N · y).

P. This is a matter of direct calculation. �

P 4.2. For any x of infinite f -orbit

lim
m→∞

|x − pm/qm| = 0,

where pm/qm are the approximants of x as in (2.1).

P. By definition, |x − pm/qm| = Θm/q2
m. The ratio of two consecutive values is

then
Θm/q2

m

Θm−1/q2
m−1

= v2
m

Θm

Θm−1
,

since qm = qm−1/vm, using the notation of (2.3). Thus, if (tm, vm) = (M · tm−1, N · vm−1)
with M, N meeting the hypotheses of Lemma 4.1, then this ratio is −tmvm. Since
statement (ii) of Proposition 3.15 gives that the region Γ is bounded away from
y = −1/x, there is a 0 < δ < 1 such that the ratio in question is between zero and δ.

Now, the only setting in which T (x, y) = (M · x, N · y) with M, N not of the form
of Lemma 4.1 is where there is some j such that M = W j. But we have W j =

(M2Mn−3
1 M2Mn−2

1 ) j, thus we can apply Lemma 4.1 to the various intermediate steps,
and since the original domain Ω is bounded above by the curve y = −1/x, we are
assured that if M = W j, then the ratio (Θm/q2

m)/(Θm−1/q2
m−1) is bounded above by 1.

Since applications of W j are isolated, the convergence to zero of the geometric
sequence of ratio δ implies that limm→∞ |x − pm/qm| = 0. �

R 4.3. A traditional way to show convergence of the approximants of a
continued fraction algorithm is to show that the coefficients of approximation, the Θm,
are bounded (which is indeed the case here), and then to show that the denominators
of the approximants, the qm, are strictly increasing and grow to infinity. Here, the qm

are not strictly increasing, as is shown immediately by the fact that qm−1/qm = vm is a
y-coordinate in Γ, and thus can be greater than 1.

Note that our approach is also viable for other continued fraction maps, such as the
well-studied Rosen continued fractions.
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4.2. Ergodicity. In this section we apply arguments similar to those of [12] for the
Rosen λ-continued fractions to prove the following result.

T 4.4. Both the system ( f , I, ν,B) and its natural extension (T , Γ, µ,B′) are
ergodic.

A system and its natural extension are jointly either ergodic or not, and a system is
ergodic if any reasonable (see [29, Theorem 17.2.4]) induced system is ergodic. Since
the weak Bernoulli property implies ergodicity, we show that a system induced from
f is weak Bernoulli.

Recall that if (I, f , ρ, P) is a dynamical process for which f acts on I, ρ is an
invariant probability measure on I and P is a partition of the system, then (I, f , ρ, P)
is said to be weak Bernoulli if the sequence βn→ 0 where

βn = sup
L≥1

{∑
i, j

|ρ(Ai ∩ T−n−L(A j)) − ρ(Ai)ρ(A j)| : {Ai} is the set of cylinders of rank L
}
.

For fixed τ = 1 + 2 cos(π/n), let I = In, f = fn, ρ = ρn and P be the partition given
by the cylinders of fn. Given an m-tuple (a1, . . . , am) of nonzero integers, we let
[a1, . . . , am] =

⋂n
j=1 f − j+1(∆′a j

) and say that the m-tuple is admissible if [a1, . . . , am]
is a rank m cylinder for f in the sense that the intersection in this definition has positive
ρ-measure. Compare the following with Figure 2. The restrictions on the ai are: (1)
a negative integer ai can only be preceded by ai−1 > 1; (2) there are at most n − 2
consecutive ai = 1; (3) n − 2 consecutive 1s succeeded by a 2 can be followed by
at most n − 3 consecutive 1s; (4) a sequence realizing the maximum in the previous
restriction can only be succeeded by a 3 or greater.

To show that (I, f , ρ, P) is ergodic, we show that a particular induced process
is weak Bernoulli and thus a fortiori ergodic. Let Y be the union of the rank-one
cylinders for digits at least 3 for f , that is, Y =

⋃∞
n=3 ∆n = [1/(1 − 2τ), 0). Let fY be the

induced transformation on Y , that is, fY (y) = f m(y) where m = inf{k > 0 : f k(y) ∈ Y}.
Furthermore, let ρY be the normalized probability measure on Y . Also let Q be the
partition of the system (Y, fy, ρY ) given by the sets

Qα = [a1, a2, . . . , am] ∩ f −m(Y)

where α = (a1, . . . am) and each index α = (a1, . . . , am) is admissible, a1 ≥ 3, ai < 3 for
i > 2. Note that this last condition simply guarantees that if α = (a1, . . . , am), then for
any y ∈ Qα, f k(y) < Y for any k < m.

To prove that the induced process (Y, fY , ρY , Q) is weak Bernoulli, we show that it
satisfies Adler’s criteria:

(i) fY maps Qα onto Y for each α;
(ii) fY restricted to each Qα is twice differentiable;
(iii) infx∈Y | f ′Y (x)| > 1;
(iv) supα supx,y∈Qα | f

′′
Y (x)|/| f ′Y (y)|2 <∞.

https://doi.org/10.1017/S1446788712000651 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000651


[15] Continued fractions for triangle groups 35

P 4.5. The process (Y, fY , ρY , Q) is weak Bernoulli.

P. That criterion (i) is satisfied follows from the facts that all rank-one cylinders
∆′a for a > 1 are full and that ε2n−4 = 1/(1 − 2τ). (Note that if we had included ∆2 in
our Y , then this criterion would not be satisfied.)

Criterion (ii) follows from the fact that if α = (a1, . . . , am), then on Qα, fY = f m,
and this is certainly twice differentiable.

To see that criterion (iii) is satisfied, note that if x ∈ Qα for α = (a1, . . . , am), then
fY (x) = f m(x). The chain rule allows us to prove that the derivative of f m(x) is greater
than one in absolute value, by showing that | f ′( f m−1(x)) · · · f ′(x)| > 1.

Now, if k ≥ 1 and x ∈ ∆k, then f (x) = A−kC · x = 1 − kτ − 1/x. Thus f ′(x) = 1/x2

and | f ′(x)| > 1 exactly when x ∈ (−1, 0).
If x ∈ [−τ, ε0), the accelerated interval upon which powers of the matrix W are

applied, then using Equation (3.1) we easily have that | f ′(x)| ≥ 1. It thus remains to
examine the interval [ε0, −1), upon which M := M1 = A−1C is applied. Suppose that
x ∈ [ε0, −1) and M j · x ∈ [1/(1 − 2τ), 0) = Y . Then certainly x ∈ [M−( j+1) · 0, M− j · 0].
For ease of reading, write M(x) = M · x and similarly for any function defined by a
matrix action, so that we wish to show that |(M j)′(x)| > 1. Now (M j)′(x) = 1/d(x)2

where
d(x) = M j(x)M j−1(x) · · · x.

Thus it suffices to show that |d(x)| < 1. To do this, we show that d(x) vanishes on
the right endpoint of the interval, that |d(x)| < 1 at the left endpoint and that d(x) is
appropriately increasing or decreasing on the entire interval.

First note that d(M− j(0)) = 0 because of the leftmost factor of d(x) and that

d(M− j+1(0)) = M− j+1(0)M− j(0) · · · M−1(0).

One can show inductively that M− j(0) = −B j/B j+1 where the sequence B j is defined
recursively as B0 = 0, B1 = 1 and Bk+1 = λBk − Bk−1. Thus

d(M− j(0)) = (−B1/B2)(−B2/B3) · · · (−B j/B j+1),

which simplifies as (−1) j/B j+1. Now, as reported in [12], Bk = sin(kπ/n)/ sin(π/n),
which is in particular greater than one in absolute value. Thus |d(M−( j+1)(0))| < 1 for
all j.

We now show that if j is even then d(x) decreases on [M−( j+1)(0), M− j(0)], but that
d(x) increases if j is odd. Using the product rule,

d′(x) =

j∏
i=1

Mi(x) +
∑

k

xDk(x)

where Dk(x) is the derivative of Mk(x) times the product indexed with i , k of the
Mi(x). If j is even, the first term in the sum is positive because each Mi(x) < 0;
also each summand xDk(x) is positive because x is negative, (Mk(x))′ is positive
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and the product of the rest of the terms is negative. Thus if j is even, d′(x) > 0 on
[M−( j+1)(0), M− j(0)]; and similarly, if j is odd, d′(x) < 0. And in either case, we find
that |d(x)| < 1 on the entire interval. Thus | f ′Y (x)| > 1 for all x ∈ Y .

We now turn to criterion (iv). Elementary considerations show that the supremum
of | f ′′Y (x)|/| f ′Y (y)|2 is bounded for x, y ∈ Qα over all α = (a1). We will thus suppose in
what follows that α = (a1, . . . , am) with m > 1. With x ∈ Qα, from fY (x) = f m(x), we
have that

fY (x) =
qmx − pm

pm−1 − xqm−1
.

If we also suppose that y ∈ Qα, then since all of p j, q j for j = 0, . . . , m are common to
x and y, from the above equality we see that

| f ′′Y (x)|/| f ′Y (y)|2 = 2qm−1(qm−1y − pm−1)4/|qm−1x − pm−1|
3

and it is this quantity we must bound. Recalling that Θm(x) = q2
m|x − pm/qm|, we can

rewrite this as
2Θm−1(y)[Θm−1(y)/Θm−1(x)]3.

Now, there is a finite upper bound (depending only on Γ) for Θm−1(x), Θm−1(y), as
one easily sees from (2.4) and statement (ii) of Proposition 3.15; in the (t, v)-plane in
our region Γ is bounded away from tv = −1. By elementary considerations of partial
derivatives, we find a (positive) lower bound on Θm−1(x) = −tm−1/(1 + tm−1vm−1) by
letting vm−1 take its lower bound value, zero; and letting tm−1 = f m−1(x) take its upper
bound value in this setting, 1/(1 − 2τ). We conclude that there is a global finite upper
bound on | f ′′Y (x)|/| f ′Y (y)|2. �

4.3. No long sequences of poor approximation. In this subsection, we prove the
following result, similar to results of Borel in [8], which excludes long sequences of
poor approximation by pm/qm to x. Recall that Borel showed that for every irrational
number x, and every n ≥ 1 with the classical constants of approximation θk,

min{θn−1, θn, θn+1} <
1
√

5
.

The constant 1/
√

5 is best possible. Our approach is related to that of [22]. Recall that
τ = 1 + 2 cos π/n.

P 4.6. For every f -irrational x and every m ≥ 1,

min{Θm−1, . . . , Θm+n−1} ≤ τ,

and the constant τ is best possible.

Since poor approximation is signaled by large approximation coefficients, we define
the following.

https://doi.org/10.1017/S1446788712000651 Published online by Cambridge University Press

https://doi.org/10.1017/S1446788712000651


[17] Continued fractions for triangle groups 37

D 4.7. Let
θ(x, y) =

−x
1 + xy

,

and define the region of large coefficients of Diophantine approximation to be

D = {P ∈ Γ | θ(P) > τ, θ(T −1(P)) > τ}.

We have the following immediate result.

L 4.8. For x ∈ In and m ∈ N, min{Θm−1(x), Θm(x)} > τ if and only ifT m(x, 0) ∈ D.

P. Equation (2.4) shows that, for x ∈ In,

θ(T m(x, 0)) = θ(tm, vm) = Θm(x).

Thus the result holds. �

Only a small number of consecutive elements of a T -orbit can lie in the regionD.

P 4.9. Given any P ∈Ω, at least one of {P, T (P), . . . , T n−2(P)} lies outside
ofD. Furthermore, there exist points Q such that {Q, T (Q), . . . , T n−3(Q)} ⊂ D.

P. The first result holds as soon as we show that the projection to the first
coordinate sends D to a subset of ∆′1, for the f -orbit of any x can lie in ∆′1 at most
n − 3 consecutive times.

We consider the location relative to the boundary of D of some corner points of
Ω. By Equations (2.4) and (2.6), a point P = (x, y) whose pre-image is not of x-
coordinate in [−τ, ε0) lies in D if and only if both y > −1/x − 1/τ and y > τ/(1 − τx).
First note that (−τ, 0) and (0, τ) lie on the curves that restrict to give the boundary.
Now, since L2n−5 = N−1

1 · τ, it follows that P∞ := (1/(1 − τ), L2n−5) (when n = 5, this is
the top left corner ‘light gray’ point of the left region of Figure 2) lies on the curve
of equation y = −1/x − 1/τ. Since the map (x, y) 7→ (M2 · x, N2 · y) sends this point to
(−τ, τ/(τ2 + 1)), Equation (2.6) implies that this latter point (when n = 5, this is the top
left corner ‘dark gray’ point of the left region of Figure 2) lies on the curve of equation
y = τ/(1 − τx). Elementary use of partial derivatives shows that all of Γ ∩ {x < ε0} lies
exterior toD. From ε0 = −τ3/(1 + τ2) we find

εn−2 = M−2
1 · ε0 = (−1 + τ − τ2)/(τ(2 − τ + τ2));

therefore, the point (x, y) = (εn−2, τ) lies on the curve −1/x − 1/τ = −1 + 1/τ + τ.
Since τ > 1, this point lies exterior to D. Combining this with the fact that P∞ lies
on the lower boundary of D, we have that points in Γ of x-coordinate greater than or
equal to 1/(1 − τ) all lie exterior toD. The first result follows.

To see the optimality of the exponent n − 2, one can certainly find Q̌ of x-coordinate
less than ε0 and such that all of Q̌, Q = T (Q̌) and T n−3(Q) lie above the curve
θ(x, y) = τ. Lemma 4.1 shows that the function θ(x, y) increases along the T -orbit
of Q until y ≥ −x. For y ≥ −x, the function θ(x, y) is decreasing along the T -orbit.
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Thus, the θ-values along the orbit from Q to T n−3(Q) increase from a value greater
than τ and thereafter decrease to a value still greater than τ; those all are greater than
τ. We conclude that all of {Q, T (Q), . . . , T n−3(Q)} ⊂ D. �

P 4.10. For each j ∈ N, there is a unique point P j = (x j, y j) in Γ with x j a
fixed point of Mn−3

1 W jM2, and y j a fixed point of
(

0 −1
1 0

)
Mn−3

1 W jM2

(
0 −1
1 0

)
. The point

P j is periodic under T of period length n − 1; the minimum value along the T -orbit
of P j of θ(x, y) is realized at P j itself. The limit as j tends to infinity of these values
equals τ.

P. For any x ∈ [ε0, ε1), we have that f n−3(x) = Mn−3
1 · x. Furthermore, amongst

this set of x, there exists a subinterval such that f n−3(x) ≥ 1/(1 − τ), thus for which
f n−2(x) = M2Mn−3

1 · x. Since the image under M2Mn−3
1 of this subinterval is [−τ, εn−1),

there are smaller intervals upon which f n−1(x) = W jM2Mn−3
1 · x. The image of each

∆′
− j under W j is [ε0, 0), thus this image covers all of our initial interval. In particular,

there is certainly a fixed point of W jM2Mn−3
1 there. Conjugating, we find that there is

an x j of the type announced. One now easily verifies that there is a point P j fixed by
T n−1, with P j = (x j, y j) and y j ∈ [0, L2n−5].

We now claim that lim j→∞ P j = (1/(1 − τ), L2n−5). Indeed, as j increases, the
subinterval ∆′

− j tends to the left. Since M2 · x is an increasing function, the x j are thus
decreasing, with limit value M−1

2 · (−τ) = 1/(1 − τ). Similarly, the images under T of
∆′
− j × [0, τ/(1 + τ2)] increase in height with j, with heights limiting to L1. Therefore,

the y j limit in value to Nn−3
1 · L1 = L2n−5. Note that θ(1/(1 − τ), L2n−5) = τ.

It is clear that each y j equals −1/z with z one of the two fixed points of the
hyperbolic Mn−3

1 W jM2. Since Γ contains no points on the curve −1/x, it must in fact
be that y j = −1/x∗j , where ∗ denotes the ‘conjugate’ fixed point. A direct calculation
shows that θ(T 2(P1)) > τ.

For j > 1, T 2(P j) lies to the left and higher than T 2(P1); use of partial derivatives
shows that θ(T 2(P j)) > θ(T 2(P1)). For any j, as in the proof of Proposition 4.9,
Lemma 4.1 implies that along theT -orbit ofT 2(P j) until y = −x, the θ-values increase,
thereafter they decrease until reaching θ(P j). From this, the minimal value on the orbit
of P j is taken at either P j or T 2(P j). (Note that the lemma does not apply for an
application of W j.) But at T 2(P j) the θ-values are above τ, and at P j they are below.
The result follows. �

P  P 4.6 First, since T is ergodic, Jager’s result (Proposition 2.1)
shows that there are x ∈ In such that the T -orbit of (x, 0) meets the set of points Q
such that all of Q, . . . , T n−3(Q) lie in D. Lemma 4.8 shows that such an x has n − 2
consecutive Θm values greater than τ.

Second, let the point P j as above have coordinates (x j, y j). Then f n−2(x j) = x j and
T m(n−2)(x j, 0) converges to P j (with increasing y-values), showing the optimality in
the statement of the theorem. �
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5. Transcendence results

A basic question one can ask about a given continued fraction algorithm is if it
can be used to develop criteria for determining whether or not a real number α is
transcendental. This question was first addressed for the regular continued fractions
by Maillet [23], Davenport and Roth [16], and Baker [6]. Bugeaud and Adamczewski
improved upon their work in [1, 2]. They showed that if ξ is an algebraic irrational
number with approximants pn/qn, then the sequence {qn}n≥1 cannot increase too
quickly. Bugeaud et al. obtained similar transcendence results for the Rosen continued
fractions in [11].

In this section, we prove a transcendence theorem for the Ward continued fractions
in the spirit of these past results.

We recall the following theorem stated by Roth and proved by LeVeque; see [10,
Ch. 4]. Note that if α is an algebraic number, then its naive height, denoted by H(α),
is the largest absolute value of the coefficients of its minimal polynomial over Z.

T 5.1 (Roth–LeVeque). Let K be a number field and ζ a real algebraic number
not in K. Then, for any ε > 0, there exists a positive constant c(ζ, K, ε) such that

|ζ − α| >
c(ζ, K, ε)
H(α)2+ε

holds for every α ∈ K.

L 5.2. There exists a constant c such that for every real number x and for each
m ≥ 0,

|x − pm/qm| < c/(qmqm+1).

P. The region Ω is bounded away from the curve y = −1/x. Let d be the distance
from this curve to Ω, and let c = 1/d. Then

|x − pm/qm| =
1

q2
m|(qm+1/qm) + f m+1(x)|

=
1

qmqm+1|1 + (qm/qm+1) f m+1(x)|

=
1

qmqm+1|1 + vm+1tm+1|

<
1

dqmqm+1
=

c
qmqm+1

.

In the third equality, we used the definition T m+1(x, 0) = (tm+1, vm+1), and the identity
vm+1 = qm/qm+1. �

We also have the following lemma, which appears in entirely analogous form as [11,
Lemma 3.2]; their proof goes through here.
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L 5.3. Let d denote the field extension degree [Q(λ) : Q]. If ξ < Q(λ) is a real
algebraic number that is f -irrational, with f -approximants pm/qm, then there exist
constants k = k(λ) and m0 = m0(x) so that, for all m ≥ m0,

H(pm/qm) ≤ kqd
m.

It is important to note, however, that the result from [11] depends on the fact
that their continued fraction algorithms arise from Fuchsian triangle groups, as do
our algorithms as well. These groups have the following domination of conjugates
property, by combining [28, Corollary 5] with the main result of [14].

T 5.4 (Wolfart et al.). For any M ∈Wn whose trace is of absolute value
greater than two,

|tr(M)| ≥ |σ(tr(M))|

where σ is any field embedding of Q(2 cos(π/n)).

We are now ready to give the proof for our second main theorem. We use the
standard notation of� to denote inequality with an implied constant.

P  T 1.2. Fix ε > 0. The Roth–LeVeque theorem implies that

|ξ − pm/qm| � H(pm/qm)2+ε, n ≥ 1.

And from Lemma 5.3, we have that, for m ≥ m0 = m0(ξ),

|ξ − pm/qm| � q−d(2+ε)
m .

Lemma 5.2 thus implies that there exists a constant c1 such that

qm+1 < c1qd(2+ε)−1
m

for all m ≥ m0. On the other hand, for each j < m0, there exists an l j such that
q j < l jq

d(2+ε)−1
j−1 . If we let c2 = max{c1, l1, . . . , lm0−1}, then, for all m > 1,

qm+1 < c2qd(2+ε)−1
m .

Let a = d(2 + ε) − 1. Iterating this inequality once, we have that

qm+1 < c2qa
m < c2(c2qa

m−1)a < (c2qm−1)a2
,

and continuing, qm+1 < (c2q1)am
.

Since qm/qm+1 ≤ τ for all m ≥ 1, qm+1 ≥ (1/τ)qm and so by letting c3 = c2q1, we have
that log qm < an log(c3). It then follows that

lim sup
n→∞

log log qm

m
< log(d(2 + ε) − 1).

If we let ε go to zero, we have that every algebraic number satisfies

lim sup
m→∞

log log qm

m
≤ log(2d − 1). �
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