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Abstract

The concept of a pennutation polynomial function over a commutative ring with 1 can be generalized
to multiplace functions in two different ways, yielding the notion of a /c-ary permutation polynomial
function (k > 1, k s N) and the notion of a strict &-ary permutation polynomial function respec-
tively. It is shown that in the case of a residue class ring Zm of the integers these two notions coincide
if and only if m is squarefree.

1980 Mathematics subject classification (Amer. Math. Soc.): 13 B 25.

The representation of permutations by polynomials has been thoroughly studied
over the past century. Let (R, +, -, 0, •, 1) be a commutative ring with identity.
Then we call a function f:R-*R a permutation permutation function over
(R, + , - ,0 , -,1> if / is both a permutation of the set R and a polynomial
function over (R, + , - ,0 , -,1). A polynomial f(x) e R[x] which induces such
an / is called permutation polynomial over (R, +,-,0, •, 1).

A direct generalization of this concept to functions in several variables is not
possible, since polynomial functions f:Rk^>R, k > 1, can never represent a
permutation of Rk, since Rk # R. Hence we have to consider /c-tuples (/1 ; . . . , fk)
of functions ft:R

k -* R, i = 1,...,k, and we say: a permutation IT of i^is
r e p r e s e n t e d b y ( / 1 ( f 2 , . . . , fk) if w(rly . . . , r k ) = U \ ( r x , . . . , r k ) , . . . , f k ( r x , . . . , rk))
f o r a l l ( r v . . . , r k ) e R k .

This yields the following generalization of a permutation polynomial function
to the case of several variables: f:Rk -> R is called k-place permutation poly-
nomial function (in short PPF) over R, if / is a component in a A:-tuple of k-ary
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functions over R which represent a permutation of Rk and if / is a polynomial
function over (R, +, - , 0 , •, 1). Polynomials f(xlt..., xk) e R[xv..., xk] which
induce such a PPF are called permutation polynomials in k variables over
(R, +,-,0, -,1>. The set of all A:-ary PPF over (R, + , - , 0 , -,1> is denoted by
Sk(R). It is easy to see that every A:-ary PPFf appears as first component in the
representation of a suitable permutation of Rk, hence we have: A polynomial
function / : Rk -> R is a /c-ary PPF over (R, +, -, 0, •, 1) if and only if there are
k-ary functions f 2 , . . . , fk over R such that ( / , f2,..., fk) represents a permuta-
tion of Rk.

Another possibility of generalization is the following: A polynomial function
f:Rk^>R is called strict permutation polynomial function over (R, + , - , 0, -,1>

(in short SPPF) if there are A>ary polynomial functions f2,...,fk over

(R, + , - , 0 , -,1> such that the &-tuple of polynomial functions ( / , / 2 , . . -,fk)

represents a permutation of Rk. Again we call a polynomial f(xx,...,xk) e

R[x1,...,xk] a strict permutation polynomial ove r ( / ? , + , - , 0, •, 1 ) if

f{xl,x2,...,xk) induces a SPPF f. The set of all A>ary SPPF over
(/?, + , - , 0 , •, 1> will be denoted by SSk(R). If Pk(R) symbolizes the set of all
A:-ary polynomial functions / : Rk -» R, then SSk(R) c S^(/?) c /•*(#).

Both generahzations have been investigated in a series of papers (see H. Lausch
and W. Nobauer [1] and bibliography thereto appended). Especially for permuta-
tion polynomials over finite fields a number of results are known (see R. Lidl and
H. Niederreiter [2]). In the case of finite fields the two notions of PPF and SPPF
coincide, since every A>ary function over GF(q) ( i e N , arbitrary) with values in
GF{q) can be represented by a polynomial function over GF(q). In [3] W.
Nobauer raised the problem for which finite commutative rings this coincidence
holds. In this paper we solve the problem for all residue class rings Zm of the
integers.

First we recall some properties of permutation polynomial functions and
permutation polynomials over (R, + , - , 0 , -,1>. Permutation polynomial func-
tions over finite rings can be characterized as follows:

T H E O R E M . Let (R, +,-,0, - , 1 ) be a finite commutative ring with identity. A

polynomial function f e ^V(-R) is a k-ary PPF if and only if for every r e R the set

of all solutions in R of the equation f{xl,...,xk) = r has the cardinality \R\k\k-\

For a proof see H. Lausch and W. Nobauer ([1], Chapter 3, Proposition 12.21.).

LEMMA 1. (i) / / f(xv x2,---, xk) e R[xx, x2,..., xk] is a k-ary permutation

polynomial over (R, +, -, 0, •, 1) , then f(xv x2,...,xk) is an n-ary permutation

polynomial over (R, +, -, 0, •, 1) for every n > k.
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(ii) If / ( J C J , . . . , xk) G R[xu x2, • • . , xk] then we denote by f{xx,..., xk) the

polynomial which is obtained by removing the constant term from f. Then the

following holds: The k-tuple (fi(xv ...,xk),..., fk(xv ...,xk)) of k-ary polynomi-

als over (R, + , - , 0 , -,1> induces a permutation of Rk if and only if (f1(xl,..., xk),

f2{xx,..., xk),..., / * ( * ! , . . . , xk)) does so as well.

PROOF, (i) follows easily from the preceding theorem and (ii) is evident.

Now we turn to the problem of finding all Z m for which every / e Z m is a
PPF if and only if / is a SPPF. Let m = p? • p? • ... -pe

n» be the prime
factorization of m. Then Zm is isomorphic to the product of the residue class
rings Zp,,, i = l,...,n. The following theorem is taken from H. Lausch and W.
Nobauer [1] (Chapter 3, Proposition 12.43).

THEOREM. / / V is the variety of commutative rings with identity and R = A X B
in V then there is a bijective mapping of SSk(R) onto SSk(A) X SSk(B) which is,
ifR is finite, the restriction of a bijective mapping from Sk(R) onto Sk(A) X Sk(B).

This theorem reduces our study to Zpt, p prime, e e M, e > 1 (since for finite
fields Zp—as mentioned above—every PPF is SPPF). First we consider the case
k = 2:

We show that in this case there are PPF over Z^, which are not SPPF. <p
denotes Euler's phi-function.

LEMMA 2. The binary function f-.T.1^ -» Z ^ , p prime, e > 1, defined by f(x, y)
= px + yf<-p">+1 mod pe is a PPF.

PROOF. If we multiply every x e Z^, by p, we obtain (mod pe) every non
negative multiple of p which is smaller than pe exactly p times. If (y, pe) = 1
then

y<p(p) + l =yp-p + l = y

by the theorem of Fermat-Euler. If (y, pe) > 1 then

J,»(J>')+I = yp'-p'-1** = 0 mod pe

since we have pe - pe~l + 1 > pe - pe~l > 2pe~l - p^1 = pe~l ^

(1 + I ) * " 1 = E f J o C T 1 ) > e. Let a e Z ^ be a fixed element and a = / mod/»,

t e { 0 , . . . , p — 1}. Then we obtain by f(x, a) every element of Zp* which is

congruent t mod p exactly p times, if x runs through the whole of Zp,. Since the
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congruence yf(p">+l = /modp (/' = 0 , 1 , . . . , p - 1) has pe'x incongruent solu­
tions mod pe, we have: The equation f(x, y) = u possesses p • pe~l = pe solu­
tions in Z^, for every u e Zp.. Hence / is a binary PPFovei Zpt. 

LEMMA 3. / : Zj, -> Zp., defined by f(x, y) = px + y*W>+1 for all (x, y) e Z2

p, 
is not SPPF. 

PROOF. We d e n o t e / _ 1 ( 0 ) c Zpe by fN0. For the function / defined in Lemma 
2 we have 

fN0= {0,pe-\2p<-\...,(p-\)f} x{0,p,2p,...,(?'-*-l)p}. 
Since \fN0\ = pe, a necessary condition for / to be a binary SPPF is the existence 
of a polynomial function g:Zp< -* Zpe such that g restricted to fN0 is a mapping 
onto Z^,. But such a g does not exist, since for any polynomial g(x, y) with 
constant term c, we have g(i-, -q) = c mod p for all (£, 17) ^fNQ. 

To settle the general case let k > 2 be a fixed integer. Then / : Z * , -» Z ^ , 
defined by . . . , xk) := pxx + x 2

p ( p ' ) + 1 for all (xx,..., xk) e Zp<, is by 
Lemma 2 and Lemma 1, (i) a &-ary PPF over Z ^ and fN0 = 
{0,p'-\2P'-l,...,(p - \)p*-1} x {b,p,2p,...,(P<-' - i)p} x zk

pr2. 

LEMMA 4. 77ie function f defined above is not a SPPF over Zp,. 

PROOF. Let us assume in the contrary that / is SPPF. Then there are 
<p 2 , . . . , (pk e Pk(Zpt) such that (f,(p2,...,q>k) represents a permutation of Z*« 
and all <p,-, /' = 2 , . . . , & are assumed to be without constant term. If we restrict / , 
<p2,...,<pk to jN0 then ( / , <p2,..., <pk) has to represent all fc-tuples over Zp< with 
first component 0. Thus (cp2,... ,<pk) has to represent each element of Z^r 1 if 
( x , , x 2 , . . . , x^.) runs over fNQ. Hence (<j> 2 ,<p k ) , if considered mod p, repre­
sents all the elements of Z*" 1 , if x2,..., xk) runs over fN0. 

Each polynomial qp, can be written as g,(x^, xA,..., xk) 4- h,{xx, J C 2 , • - • > 
where every term of h^x^ x2,..., xk) has a factor or J C 2 . Since x1 = x2 = 
0 mod /> for all (xv x2,.. . , JC^) ^fN0, we obtain ^ ( ^ I * * 2 > • - • > *fc) = 
gi(x^xA,...,xk)modp for every x 2 , . . . , xk) &fN0. Hence (<p2,... ,yk) has 
at most IZ^I*" 2 distinct values mod p if (xv x2,..., xk) runs over fN0, a 
contradiction. Hence / is not a /c-ary SPPF over Z^.. 

This yields the following 

THEOREM. Le? R be a finite commutative ring with identity which is isomorphic to 
a direct product Z^ , X Z «2 X • • • x Z r f , (/?,, z = 1 , . . . , n, not necessarily distinct 
primes, et e Z, ei > 1, for i = 1 , . . . , «) . Then every k-ary PPF is SPPF (k > 1, 
k e M arbitrary) if and only if all e, = 1. 
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COROLLARY. Let Zm be a residue class ring of the integers. Then every k-ary
PPF is SPPF if and only if m is squarefree.
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