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Abstract

Using the geometry of the Kendall shape space, in this paper we study the shape, as
well as the size-and-shape, of the projection of a configuration after it has been rotated
and, when the given configuration lies in a Euclidean space of an arbitrary dimension,
we obtain expressions for the induced distributions of such shapes when the rotation is
uniformly distributed.
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1. Introduction

Since Kendall’s seminal paper [1] on shape spaces over twenty years ago, many advances
have been made in both theory and applications. A recent example is the study of the shape of
the projection onto a fixed hyperplane of a given configuration after it is randomly rotated in
[5] and [6] (see also [3]). As pointed out in the above papers, one motivation for this study is
its importance in the field of biophysics, where, using electron microscopes, one views images
of single particles in an aqueous environment in order to study the structure of biological
molecules. Thus, one is viewing a planar projection of the particle rather than the three-
dimensional particle itself. Moreover, the size of the particle, together with its movement,
makes it impossible to control the direction of the projection. Alternatively, one might be
viewing the planar projections of a group of isometric but randomly oriented particles. For the
practical motivation for, and discussion of, this point of view, see [7].

We first recall Kendall’s construction of the shape space as follows. A configuration of k
labelled, and not totally identical, points in Euclidean m-dimensional space R

m is represented
by an m × k matrix X∗. Without loss of generality, the configuration is assumed to have its
centroid at the origin and then the matrixX∗ is multiplied on the right by a certain k×k special
orthogonal matrix which has the effect of producing a zero first column which is then discarded
to give the pre-size-and-shape matrixX. The pre-shape matrixX/‖X‖ represents a point in the
sphere S

m(k−1)−1 and the shape π(X) of the original configuration is the image in the shape
space �km, which is the quotient of the pre-shape sphere by the left action of SO(m) acting on
the representative matrices. (Cf. [2].)

Assuming that the dimension of the Euclidean space where the configuration lies is 2,
Panaretos [5] studied the diffusion, in the Kendall shape space, of the shape of the projected
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configuration when the rotation evolves as a Brownian motion in SO(2). This he termed a Radon
diffusion of shape. Panaretos also obtained, in the same paper, the equilibrium distribution of
such a resulting shape diffusion. In [6], he studied the diffusion of the unoriented size-and-
shape of the projected configuration under the assumption that the rotation evolves as a Brownian
motion in SO(n) when the given configuration lies in an n-dimensional Euclidean space.

In this paper we study the induced distribution of the random shape, as well as that of
the random size-and-shape, of the projected configuration when the rotation is uniformly
distributed. Since the argument for the results relating to size-and-shapes are similar to those
for shapes, we shall concentrate mainly on the results for shapes and give brief outlines for
size-and-shapes at the end of the paper. Furthermore, since our result reduces to one of the
results of [5] when the dimension of the Euclidean space in which the initial configuration lies
is 2, we shall focus mainly on the case where the dimension is at least 3.

The paper is organised as follows. In Section 2 we introduce the injective map φ sending
v ∈ S

m−1 to the shape of the projection onto a fixed plane of the given configuration after it
has been rotated by R, where R is any rotation such that Rv is the normal of the fixed plane.
Our main technique is to reinterpret φ in terms of the map G sending v to the pre-shape of
the projection of the fixed configuration onto the inversely rotated plane, that with normal v.
We obtain a technical result involving the derivative of G that enables us, in Section 3, to use
the geometry of shape spaces to obtain an isometric copy of the derivative φ∗. This makes it
possible for us in Section 4 to derive the expression for the required induced distribution of
the shape of the projection of the given configuration after it has been randomly rotated, in
terms of the characteristic polynomial of a certain matrix. In Section 5 we further analyse this
expression to obtain closed expressions when the dimension of the Euclidean space in which the
original configuration lies is 3 or 4. The last section gives brief outlines on the corresponding
arguments and results for the size-and-shape of the projected configuration after it has been
randomly rotated.

2. The map φ to the shape of the projection

For a fixed unit length column vector v0, representing a point on the unit (m − 1)-sphere
S
m−1, we are interested in the shape of the projection onto the orthogonal complement v⊥

0 of
v0 of a given configuration comprising k (> m > 2) labelled vertices in general position in
R
m after it has been rotated by R ∈ SO(m). Note that both the orthogonal projection and

rotated image of a centred configuration are also centred and that the operations of projection
and rotation commute with the standard mapping from the space of centred configurations to
the corresponding pre-size-and-shape space. It follows that the shape of the projection of the
rotated configuration is also the shape of the projection of the rotated pre-size-and-shape of the
given configuration. Thus, instead of specifying an m× k matrix representing the coordinates
of the given configuration, we start from a fixedm×(k−1)matrixX of rankm representing, in
standard coordinates, the pre-size-and-shape of the configuration. Without loss of generality,
we also fix v0 to be the mth standard basis element em = (0, . . . , 0, 1)�. Then, the pre-size-
and-shape of the above projection of the rotated image of the given configuration is�(em)RX,
where �(v) = Im − vv� is the matrix representing the projection onto v⊥ and Im denotes the
m×m identity matrix, and in particular�(em)RX is anm× (k−1)matrix with its final row 0.
From this we derive our primary mapping

ψ : SO(m) → SSkm−1, R �→ �(em)RX, (1)

where SSkm−1 is the space of pre-size-and-shapes of configurations with k labelled vertices in
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R
m−1, embedded in SSkm in terms of the standard embedding by adding a final zero row to all

its (matrix) elements.
RotatingX byR is equivalent to rotating em byR−1 = R� and, indeed, writing vR = R�em

and noting that R��(Rv)R = �(v) for any vector v and rotation R, we obtain the identity

�(em)RX = R�(vR)X. (2)

The assumption that m > 2 implies that the map q : SO(m) → S
m−1, given by R �→ vR ,

is not injective: vR = vR̄ if and only if R�em = R̄�em. This is however if and only if
R̄R� is in the stabiliser stab(em) of em which we identify with SO(m − 1). This gives the
usual identification of S

m−1 with the symmetric space SO(m)/SO(m − 1), the unit vector v
corresponding to the coset of rotations R such that v = vR .

Then, for any S ∈ SO(m − 1), since vSR = vR , we have SR�(vSR)X = SR�(vR)X.
However,R�(vR)X is the pre-size-and-shape of a configuration that lies in e⊥m and SR�(vR)X
is that of that configuration rotated by S within e⊥m, so that R�(vR)X and SR�(vSR)X have
the same shape, which is a point in the Kendall shape space �km−1 of configurations with k
labelled vertices in R

m−1 that may be denoted by π(�(em)RX) in view of (2). It follows that
the map in (1) induces a well-defined map

φ : S
m−1 → �km−1, v �→ π(�(em)RX), (3)

where R is any choice such that Rv = em.
In order to study how the shape of the projected configuration changes as v does, we shall

require the derivative φ∗ of the map φ defined by (3). A natural way to compute this is to take
a curve γ (t) in S

m−1 whose derivative γ̇ (0) is a given vector u tangent to S
m−1 at v and then

φ∗(u) = d

dt
(φ ◦ γ )(t)|t=0

is tangent to �km−1 at the shape φ(v). Since the image of φ given by (3) involves R ∈ SO(m)
which determines v and since the quotient map q is a Riemannian submersion, it is more
convenient to represent the vector u by its horizontal lift in the tangent space to SO(m) and
replace γ by a horizontal lift γ̃ in SO(m). For this, we recall that the tangent space to SO(m) at
the identity I = Im is its Lie algebra so(m) comprising the skew-symmetric m×m matrices,
when SO(m) is regarded as a subgroup of the general linear group of all invertible matrices
with its standard Riemannian metric. Then, in the tangent space to SO(m) at the identity Im,
the vertical subspace for the quotient map q, namely the tangent space to SO(m−1), comprises
the matrices A = diag(A0, 0), where A0 ∈ so(m − 1), and so the horizontal subspace, the
orthogonal complement to the vertical subspace, is

HI =
{(

0m−1 h

−h� 0

) ∣∣∣∣ h ∈ R
m−1

}
,

where 0m−1 denotes the (m − 1) × (m − 1) zero matrix (cf. [4, p. 318]). Since stab(vR) =
R�stab(em)R, it follows that the horizontal subspace at R ∈ SO(m) is HR = R�HIR.
Then, the corresponding tangent spaces at em and vR in S

m−1 are {Hem | H ∈ HI } and
{HRvR | H ∈ HI }, respectively, where HR = R�HR (loc. cit.).

We now consider the curve v(t) = etH
R
vR in S

m−1, where H ∈ HI , with v(0) = vR
and v̇(0) = HRvR = R�Hem 	= 0 in τvR (S

m−1), the tangent space at vR to S
m−1. Then,
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R(t) = Re−tHR
is the corresponding horizontal lift into SO(m) : v(t) = R(t)�em and R(t)

rotates the projection of X onto v(t)⊥ back into e⊥m so that, in particular, all vertices of the
configuration corresponding to R(t)�(v(t))X lie in the same, standard, hyperplane e⊥m. The
projection ϕ : Skm−1 → �km−1 from the standard pre-shape sphere to the shape space is a
Riemannian submersion when restricted to the nonsingular part, the points represented by
matrices of rank at least m− 1, where indeed the image of φ lies. Then

φ(v(t)) = ϕ

(
(ψ ◦ R)(t)

‖(ψ ◦ R)(t)‖
)

by (1) and so

φ∗(v̇(0)) = ϕ∗
(

d

dt

(
(ψ ◦ R)(t)

‖(ψ ◦ R)(t)‖
)∣∣∣∣
t=0

)
. (4)

Denoting �(v)X by P(v) and P(v)/‖P(v)‖ by G(v), the pre-size-and-shape and pre-
shape, respectively, of the projected configuration onto v⊥, the following result reinterprets the
derivative

d

dt

(
(ψ ◦ R)(t)

‖(ψ ◦ R)(t)‖
)∣∣∣∣
t=0

in terms of the tangent vector
dG(v(t))

dt

∣∣∣∣
t=0
,

which is independent of the choice of R ∈ [R].
Lemma 1. For any R ∈ SO(m) such that v = vR and the curves v(t) and R(t) defined above,

d

dt

(
ψ(R(t))

‖ψ(R(t))‖
)∣∣∣∣
t=0

= R�(vR)
dG(v(t))

dt

∣∣∣∣
t=0
.

Proof. Since v(t) = vR(t), we have, by (2), ψ(R(t)) = R(t)P (v(t)). Then

dG(v(t))

dt

∣∣∣∣
t=0

= 1

‖P(v(0))‖
dP(v(t))

dt

∣∣∣∣
t=0

+ d

dt

(
1

‖P(v(t))‖
)∣∣∣∣
t=0
P(v(0)),

which, recalling that R(0) = R, so that v(0) = vR , and using the facts that ‖P(v(t))‖ =
‖ψ(R(t))‖ and P(v) = �(v)P (v), gives

R�(vR)
dG(v(t))

dt

∣∣∣∣
t=0

= R�(vR)dP(v(t))/dt |t=0

‖ψ(R(0))‖ + d

dt

(
1

‖ψ(R(t))‖
)∣∣∣∣
t=0
ψ(R(0)).

So, we only need to show that

dψ(R(t))

dt

∣∣∣∣
t=0

= R�(vR)
dP(v(t))

dt

∣∣∣∣
t=0
.

To see this, recall that Ṙ(0) = −RHR , that v̇(0) = HRvR , and that HR is skew-symmetric.
Then,

d

dt
{R(t)�(v(t))}|t=0 = −RHR�(vR)− R{v̇(0)v(0)� + v(0)v̇(0)�}

= −RHR{I − vRv
�
R } − RHRvRv

�
R + RvRv

�
RH

R

= −R{I − vRv
�
R }HR.
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However, for H ∈ HI , we have H = eme
�
mH + Heme

�
m and so, conjugating by R, HR =

vRv
�
RH

R+HRvRv
�
R . Also, since v̇(0) is orthogonal to v(0) and ‖v(0)‖ = 1,�(v(0))�̇(v(0))

reduces to −v̇(0)v(0)�. The required result then follows from

d

dt
{R(t)�(v(t))}|t=0 = −RHRvRv

�
R = −Rv̇(0)v(0)� = R�(vR)

d�(v(t))

dt

∣∣∣∣
t=0
.

If m = 2, writing u(t) = Jv(t), where J is clockwise rotation by π/2, we have P(v) =
uu�X and so, since RJR� = J ,

RP(vR) = RuRu
�
RX = RJR�e2u

�
RX = e1u

�
RX.

On the other hand, in this case, the map q : SO(2) → S
1 is injective and the pre-shape sphere

Sk1 is the shape space �k1 . Hence, ϕ is the identity map and φ(vR) = ψ(R)/‖ψ(R)‖, so that

φ∗(v̇(0)) = d

dt

(
(ψ ◦ R)(t)

‖(ψ ◦ R)(t)‖
)∣∣∣∣
t=0
.

However, �(v)Ṗ (v) = uu̇�X. Thus, it follows from Lemma 1 and the equality Ru =
RJR�e2 = Je2 = e1 that

φ∗(v̇(0)) = R�(v)

(
dG(v(t))

dt

∣∣∣∣
t=0

)
= Ru

d

dt

(
u(t)�X

‖u(t)�X‖
)∣∣∣∣
t=0

= e1
d

dt

(
u(t)�X

‖u(t)�X‖
)∣∣∣∣
t=0
,

which recovers the result of [5] in the sense that u�X and u�X/‖u�X‖ are precisely the objects
used there in studying the shape of the projection of a randomly rotated configuration for the
case m = 2.

It is worth noting that the approach we take in this paper is not quite the same as that of [6].
We concentrate on the evolution of the shape of the projection of a given configuration onto a
fixed hyperplane after being randomly rotated, whereas Panaretos [6] studied the shape of the
projection of a given configuration onto a randomly rotated hyperplane. In terms of our current
notation, �(vR)X is the object considered in [6]. Although these two approaches result in the
same shape, it is actually represented by points in different shape spaces. For our approach,
although �(em)RX is an m × (k − 1) matrix for any R ∈ SO(m), its final row is always 0
and so, by ignoring it, the shape of �(em)RX is in effect considered in the shape space �km−1
of configurations in R

m−1 with k labelled points. While, for the approach of [6], �(vR)X
is treated as a pre-size-and-shape of a degenerate configuration in R

m and so its shape will
lie in the subspace of degenerate shapes in �km. Of course, these two spaces, �km−1 and the
subspace of degenerate shapes in �km, are locally isometric, the former being a Riemannian
double covering of the latter. The difference between these two approaches is also reflected
in the result of the lemma, as the corresponding result for the approach of [6] would require
neither the projection, nor the rotation by R.

3. The derivative of φ

Since, as already noted, ϕ is a Riemannian submersion where it concerns us, ϕ∗ maps the
horizontal subspace of the tangent space to Skm−1 atRG(v) isometrically onto the tangent space
to �km−1 at φ(v). Moreover, as R is an isometry, taking advantage of Lemma 1, we may work
directly with the derivative ofG to compute that of φ. That is, using (4), we find the horizontal
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component of the projection onto v⊥ of the derivative of G to obtain an isometric copy of
the image of the derivative of φ, instead of that image itself. For the chosen v ∈ S

m−1, let
u1, u2, . . . , um−1 ∈ S

m−1 be such that {u1, . . . , um−1, v} forms an orthonormal basis of R
m.

Then, the projection�(v)onto the hyperplane v⊥ with orthonormal basis {u1, . . . , um−1} can be
expressed as �(v) = ∑m−1

i=1 uiu
�
i . Moreover, the vectors u1, . . . , um−1 form an orthonormal

frame for the tangent space at v to S
m−1 and the linearity of φ∗ implies that it is sufficient to

find the images of these vectors to determine φ∗. However, these images form a sub-frame in
the tangent space to �km−1 at φ(v) isometric with the sub-frame in the tangent space at G(v)
formed by the horizontal components of the projection onto v⊥ of the images of the ui under
the derivative of G. These latter projected images are the tangent vectors Wi(v) at G(v) to the
pre-shape sphere of configurations in v⊥ given by

Wi(v) = �(v)
dG(vi(t))

dt

∣∣∣∣
t=0
,

where vi(t) is a curve in S
m−1 with vi(0) = v and v̇i (0) = ui . The vector Wi(v) has the

expression

Wi(v) = �(v)

{
Ṗ (vi(t))

‖P(vi(t))‖ − P(vi(t))

‖P(vi(t))‖3 〈P(vi(t)), Ṗ (vi(t))〉
}∣∣∣∣
t=0
,

which, since �(v)Ṗ (vi(t))|t=0 = −uiv�X and 〈P(vi(t)), Ṗ (vi(t))〉|t=0 = −〈X�ui,X�v〉,
gives

Wi(v) = 1

‖P(v)‖
{
G(v)

‖P(v)‖〈X�ui,X�v〉 − uiv
�X

}
. (5)

We now calculate the required horizontal components of these tangent vectors.

Proposition 1. For i = 1, . . . , m− 1, the horizontal component Wh
i (v) of

Wi(v) = �(v)
dG(vi(t))

dt

∣∣∣∣
t=0

given by (5) may be expressed as

Wh
i (v) = 1

‖P(v)‖3 θiUU
�X − 1

‖P(v)‖{uiv� − UA(i)U�}X,

where θi = 〈X�ui,X�v〉,U is them×(m−1)matrix whose ith column isui, i = 1, . . . , m−1,
and the skew-symmetric matrix A(i) is determined by

ēiθ
� − θ ē�i = A(i)
− (A(i)
)�, (6)

in which θ = U�XX�v and 
 = U�XX�U .

Proof. We need first to identify the vertical and horizontal components, with respect to
ϕ, of the relevant tangent spaces. For this, we note that, after the projection �(v), we are
working with the spaces of shapes, pre-shapes, and pre-size-and-shapes of configurations in
the hyperplane v⊥. The matrix of a configuration of k points in such a hyperplane will, in
general, be anm× k matrix of rankm− 1, which, assuming that Rv = em, the rotation R will
take to a matrix with final row 0. The operations taking these matrices to the corresponding
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matrices of pre-size-and-shapes and pre-shapes are all linear or affine and so multiplication by
R will take the matrix Y of a pre-shape in v⊥ to that, Z = RY , of a pre-shape in e⊥m which has
its final row 0. Since the projection ϕ from the standard pre-shape sphere Skm−1 to the shape
space �km−1 is the quotient by SO(m− 1), the vertical subspace of the tangent space to Skm−1
at the pre-shape Z is

{AZ | A = diag(A0, 0), A0 ∈ so(m− 1)}
(cf. [2]). This implies that the vertical subspace, of the tangent space at Y to the pre-shape
sphere of configurations in v⊥, is

{ARY | A = diag(A0, 0), A0 ∈ so(m− 1)},
as SO(m − 1)R stabilises v and, hence, also v⊥. The isometry R takes the latter space to the
former and, hence, also preserves the orthogonal, horizontal subspaces. Thus, since a tangent
vector W at G(v) is horizontal if and only if the image vector RW at RG(v) is horizontal and
that is if and only ifRW(RG(v))� is symmetric (cf. [2, p. 258]), it follows thatW is horizontal
if and only if WG(v)� or, equivalently, WP(v)�, is symmetric.

Now, G(v)G(v)� is already symmetric and so (5) leads to the conclusion that the vertical
component of Wi(v) is proportional to that of uiv�X. This in turn implies that finding the
horizontal component of uiv�X is sufficient for deducing Wh

i (v). To achieve the former, we
note that UU� = �(v) and U�U = Im−1. Thus,

uiv
�XP(v)� = uiv

�XX��(v) = Uēiθ
�U�, (7)

where ēi is the ith standard basis vector in R
m−1 and the (m− 1)-dimensional column vector

θ = U�XX�v has ith component θi = u�
i XX

�v = 〈X�ui,X�v〉. Decomposing uiv�X =
T hi + T vi into its horizontal and vertical components, the earlier argument then shows that
T hi P (v)

� must be a symmetric linear combination of the basic rank one matrices usu�
t which

we may write as
T hi P (v)

� = UB(i)U�, (8)

where the (m− 1)× (m− 1) matrix B(i) is symmetric. Similarly, since so(m− 1) is spanned
by {ese�t − et e

�
s | 1 � s < t � m− 1}, where e1, . . . , em−1 are the standard basis vectors of

R
m that span the (m− 1)-dimensional subspace e⊥m of R

m, the vertical component T vi must be
of the form

UA(i)U�P(v) = UA(i)U�UU�X = UA(i)U�X,

where A(i) is a skew-symmetric (m− 1)× (m− 1) matrix. Thus,

T vi P (v)
� = UA(i)U�XX�UU� = UA(i)
U�, (9)

where the (m − 1) × (m − 1) matrix 
 = U�XX�U has entries θij = u�
i XX

�uj =
〈X�ui,X�uj 〉. Then, (7) with (8) plus (9) gives

ēiθ
� = B(i) + A(i)
, (10)

and, since B(i) is symmetric, (6) follows. This identity between (m − 1) × (m − 1) skew-
symmetric matrices provides

(
m−1

2

) = (m− 1)(m− 2)/2 independent equations for the same
number of independent, not necessarily zero entries ofA(i). Hence, we obtain the stated result.
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It is possible to render (6) for theA(i)more explicit. For any skew-symmetric (m−1)×(m−1)
matrix A = (Aij ), write µ(A) for the column vector,

µ(A) = (A12, A13, A23, A14, . . . , A34, . . . , A1m−1, . . . , Am−2m−1)
�,

comprising the
(
m−1

2

)
elements above the diagonal in A taken in the order running down

successive columns as indicated. Then, if αm is the
(
m−1

2

) × (m− 1)matrix whose ith column
is µ(A(i)), we have

Cmαm = Lm(θ), (11)

where Cm and Lm are respectively the
(
m−1

2

) × (
m−1

2

)
and

(
m−1

2

) × (m − 1) matrices defined
inductively as follows. For a j − 1 column vector x, j � 3, define

Lj+1

(
x

xj

)
=

(
Lj (x) 0(j−1)(j−2)/2×1
xj Ij−1 −x

)
(12)

with L3((x1, x2)
�) = (x2,−x1). Then,

Cj+1 =
(

Cj Lj ((θ1j , . . . , θj−1j )
�)

Lj ((θ1j , . . . , θj−1j )
�)� Ej

)
, j � 3, (13)

where Ej = θjj Ij−1 +
[j−1], 
[j−1] is the submatrix of 
 formed by the intersection of its
first j − 1 rows and columns, and the induction starts from C3 = E2 = {θ11 + θ22}I1. Note
that, since Ej is symmetric, so too, by induction, is each Cj .

That (11) is equivalent to (6) holding for each i follows from the fact that the ith column of
Cmαm is µ(A(i)
− (A(i)
)�), while that of Lm(θ) is µ(ēiθ� − (ēiθ

�)�). This may be seen
by indexing the rows of Cm and Lm(θ) and the columns of Cm by the same ordered pairs as
the elements of µ(A). Then, for 1 � p < q � m− 1 and 1 � r < s � m− 1, the element in
the pqth row and rsth column of Cm, the coefficient of A(i)rs in (A(i)
− (A(i)
)�)pq , is

C(pq)(rs) = δprθqs + δqsθpr − δpsθqr − δqrθps. (14)

The symmetry and the inductive structure of Cm, as well as its independence of the matrixA(i),
are now evident. The submatrix Em−1 comprises the entries C(pq)(rs) with s = q = m− 1 for
which expression (14) reduces to θrp + δprθm−1m−1, as required, since p and r range from 1
tom− 2. The submatrix Lm−1 comprises the entries with q < m− 1 and s = m− 1 for which
(14) becomes

δprθqm−1 − δrqθpm−1, (15)

so that the entries only involve the θim−1, 1 � i < m − 1, occurring in the last column of 
.
Writing ϑ for this column we note that the pqth entry in the rth column is δprϑq − δrqϑp =
(ērϑ

� −ϑ ē�r )pq , confirming the right-hand side of (11). Setting q = m−2 in (15) reduces it to
δprθm−2m−1−δrm−2θpm−1, as required for the lastm−3 rows ofLm((θ1m−1, . . . , θm−2m−1)

�)
since here p ranges from 1 tom− 3 and r from 1 tom− 2. Finally, for r = m− 2, s = m− 1,
and 1 � p < q < m − 2, (15) vanishes and so gives the zero column vector in the inductive
structure of Lm−1.

Returning to the remark that we made at the end of the previous section on the approach
of [6], the vector field in that approach, corresponding to Wi(v) considered in this section,
would be dG(vi(t))/dt |t=0 itself. However, since the Riemannian submersion would then be
from Skm to �km, rather than from Skm−1 to �km−1, and since we can apply the results from
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standard shape theory directly in that situation, the vertical tangent space to Skm at the pre-shape
G(v) becomes {AP(v) | A ∈ so(m)}. Hence, it follows that the difference

dG(vi(t))

dt

∣∣∣∣
t=0

−Wi(v) = −vu�
i X = −{vu�

i − u�
i v}P(v)

is a vertical tangent vector, which implies that the horizontal component of dG(vi(t))/dt |t=0
is identical with Wh

i (v).

4. The induced distribution

We now assume that the normal v to the hyperplane onto which the given configuration
is projected is uniformly distributed on S

m−1 and, using the result of the previous section,
investigate the resulting induced distribution of the shape of such a projection. Note that this
induced distribution is also the equilibrium distribution of the diffusion on φ(Sm−1) induced
by Brownian motion on the sphere S

m−1. Our main result, generalising that of [5] to the case
m > 2, is the following.

Theorem 1. If v is uniformly distributed on the sphere S
m−1 then, with respect to the volume

element on φ(Sm−1), the Radon–Nikodym derivative at φ(v), defined by (3), of the shape of
the projection of the configuration with pre-size-and-shape X is given by

1

vol(Sm−1)
√

det(〈Wh
i ,W

h
j 〉)

,

where ‖[P(v)‖4(m−1) det(〈Wh
i ,W

h
j 〉) is equal to the characteristic polynomial of

Lm(θ)
�{‖P(v)‖2C−1

m − I(m−1
2 )

}
Lm(θ) (16)

evaluated at θv‖P(v)‖2 − ∑m−1
i=1 θ

2
i . Here Wh

i ≡ Wh
i (v) is given by Proposition 1, P(v) is

the projection of X onto the hyperplane v⊥, and Lm and Cm are defined by (12) and (13) with
θij = 〈X�ui,X�uj 〉, θi = 〈X�ui,X�v〉, and θv = ‖X�v‖2.

Proof. The uniform distribution on a compact Riemannian manifold of dimension n is,
up to a normalisation constant, the volume element of the manifold that is given locally by√

det(g) dx1 · · · dxn, where g is the matrix of local coordinates of the Riemannian metric.
Since we have chosen an orthonormal basis {u1, . . . , um−1} of the tangent space to S

m−1 at v,
the corresponding matrix g(v)will be the identity. The induced metric� on φ(Sm−1) ⊆ �km−1
will then be such that

φ∗(�)(ui, uj ) = δij = �(φ∗(ui), φ∗(uj )).

However, writing ij = 〈φ∗(ui), φ∗(uj )〉 for the inner product of the image vectors with
respect to the (Kendall) Riemannian metric on φ(Sm−1) ⊆ �km−1 and noting that φ∗(ui) =
ϕ∗(RWi(v)), we have

ij = 〈Wh
i (v),W

h
j (v)〉,

since both ϕ∗, when restricted to the horizontal subspace, and the left action ofR are isometries.
As the matrix = (ij )(m−1)×(m−1) is symmetric and positive definite, it has a unique positive
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definite square root with inverse, say M = (Mij )(m−1)×(m−1), and then

〈m−1∑
�=1

M�iW
h
� (v),

m−1∑
�=1

M�jW
h
� (v)

〉
= δij = �(φ∗(ui), φ∗(uj )).

On the other hand, if we write dξi, i = 1, . . . , m − 1, for the dual forms of the φ∗(ui),
the standard volume form dvol of the Riemannian metric on φ(Sm−1) is given by dvol =√

det()dξ1 · · · dξm−1. Thus, the corresponding volume form, induced from that of S
m−1,

will be {det()}−1/2dvol and this, up to a normalisation constant, will also be the expression
for the induced distribution on φ(Sm−1) that we seek.

Recalling thatU�U = Im−1 andUU� = �(v), so thatUU�ui = ui , and using the standard
properties of the trace together with (10), the expression for 〈Wh

i ,W
h
j 〉 = tr(Wh

i (W
h
j )

�) arising
from Proposition 1 simplifies substantially to

〈Wh
i ,W

h
j 〉 = 1

‖P(v)‖2

{
δij θv − 1

‖P(v)‖2 θiθj + tr(A(i)
A(j))

}
,

where θv = ‖X�v‖2. Then, the identity

−tr(A(i)
A(j)) = (α�
mCmαm)ij = (µ(A(i)))�Cmµ(A(j))

may be established using (14) for the components of Cm and, noting that

Lm(θ)
�C−1

m Lm(θ) = α�
mCmαm,

it follows that the matrix  has the expression

 = 1

‖P(v)‖2

{
θvIm−1 − 1

‖P(v)‖2 θθ� − Lm(θ)
�C−1

m Lm(θ)

}
. (17)

However, by (15) we see that

Lm(θ)
�Lm(θ) = −θθ� +

{m−1∑
i=1

θ2
i

}
Im−1,

and so we can rewrite (17) to obtain

 = 1

‖P(v)‖4

{(
θv‖P(v)‖2 −

m−1∑
i=1

θ2
i

)
Im−1 − Lm(θ)

�(
‖P(v)‖2C−1

m − I(m−1
2 )

)
Lm(θ)

}
.

(18)
The required result then follows from

‖P(v)‖4(m−1) det() = det
{
ηIm−1 − Lm(θ)

�(‖P(v)‖2C−1
m − I(m−1

2 )

)
Lm(θ)

}
,

where η = θv‖P(v)‖2 − ∑m−1
i=1 θ

2
i .

It can be checked that the matrix in (16) is never of full rank, so that θv‖P(v)‖2 − ∑m−1
i=1 θ

2
i

is always a factor of det(〈Wh
i ,W

h
j 〉).
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Since ‖P(v)‖2 = tr(
), Theorem 1 expresses the induced distribution in terms of the inner
products and squared norms of the vectors X�ui and X�v, which we have arranged in the
matrix 
, the vector θ , and the scalar θv . Alternatively, we may express this result in terms of
the eigenvalues λ2

i , 1 � i � m, ofXX� and those λi(v)2, 1 � i � m− 1, of P(v)P (v)� that
are nonzero: since we have assumed that rank(X) = m, rank(P (v)) will be m − 1 and there
will indeed be m− 1 nonzero eigenvalues of P(v)P (v)�. Since the determinant of  that we
require is invariant under an orthogonal transformation of the basis {u1, . . . , um−1}, we assume
without loss of generality that {u1, . . . , um−1} may be chosen so that 
 is a diagonal matrix.
Under this assumption, by (14), Cm becomes the diagonal matrix with C(pq)(pq) = θpp + θqq .
The θii are then the nonzero eigenvalues of P(v)P (v)� and, if V is the orthogonal matrix
comprising U with the column v appended,

V �XX�V =
(

 θ

θ� θv

)
(19)

has the same characteristic polynomial asXX�. Expanding these two polynomials and equating
coefficients, we obtain identities that allow us to express θj , 1 � j � m−1, and θv as functions
of symmetric polynomials in the λ2

i and those in various subsets of the λi(v)2. For example,
equating the coefficients in degree m− 2, we obtain

∑
1�i<j�m

λ2
i λ

2
j = θv

m−1∑
i=1

θii +
∑

1�i<j�m−1

θiiθjj −
m−1∑
i=1

θ2
i ,

which allows us to rewrite the parameter η in Theorem 1 as

θv‖P(v)‖2 −
m−1∑
i=1

θ2
i = η =

∑
1�i<j�m

λ2
i λ

2
j −

∑
1�i<j�m−1

λi(v)
2λj (v)

2.

Thus, the coefficients in the characteristic polynomial (16) and η, and, hence, also the Radon–
Nikodym derivative of Theorem 1, are all functions solely of the eigenvalues ofXX� and those
of P(v)P (v)�.

It follows from the expressions forCm andLm(θ) given in the previous section that replacing
X by aXmultiplies these, and also ‖P(v)‖2, by a2 and, hence, that the Radon–Nikodym deriva-
tive of Theorem 1 is independent of the size of the initial given configuration. Furthermore,
that expression is universal in the following sense. If we have two configurations whose pre-
size-and-shape are related by X1 = XS, where S ∈ SO(k − 1), then XX� and X1X

�
1 have

the same eigenvalues, and the corresponding P(v)P (v)� and P1(v)P1(v)
� also have the same

eigenvalues. Hence, the discussion of the previous paragraph implies that the expressions for
the Radon–Nikodym derivatives corresponding to X and X1 given by Theorem 1 are identical
and so its dependence on the given configuration is only via the eigenvalues of XX� and of
P(v)P (v)�. However, the domain φ(Sm−1) in �km−1 on which the expression of Theorem 1
lies does depend on the choice of S. Nevertheless, since the right action of S induces an
isometry on the shape space, the subspace φ(Sm−1) corresponding to X is isometric with that
corresponding to X1.

Recall that the pseudo-singular values decomposition of X is X = R(�, 0)S, where R ∈
SO(m), S ∈ SO(k − 1), and � is a diagonal matrix whose diagonal entries are the positive
square roots of the eigenvalues of XX� except that, when k = m+ 1, the sign of the smallest
one is the same as that of det(X). Recall also that, in terms of its pseudo-singular values
decomposition, the shape of X is determined by the pair (�/‖�‖, S). The above discussion
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implies that the expression for the Radon–Nikodym derivative gives us some information on�.
We shall see in the next section that, up to the sign of the smallest diagonal element when
k = m+1,�/‖�‖ can be determined by the extreme values of the Radon–Nikodym derivative
when m = 2 or 3.

5. Low-dimensional cases

In this section we compute explicit closed expressions for the Radon–Nikodym derivative
in the cases m = 2, 3, and 4 in order to gain more insight into the induced distribution. First,
we note that, when m = 2, as pointed out in the discussion following the proof of Lemma 1,
P(v)/‖P(v)‖ is the shape of P(v) and so, in terms of our notation, φ∗(u) = RW(vR), where
we have denoted u1 by u and W1 = Wh

1 by W . Thus, in this case, since both L2(θ) and
C2 are vacuous and since ‖P(v)‖2 = ‖u�X‖2 = θ11, the Radon–Nikodym derivative of the
distribution, induced by uniformly distributed v, of the shape of the projected configuration is
1/(2π‖W(v)‖), where

θ2
11‖W‖2 = η = θ11θv − θ2

1 = det

(
θ11 θ1
θ1 θv

)
= det{XX�}

by (18) and (19). Since det{XX�} = λ2
1λ

2
2, we recover the result of [5] that, for the casem = 2,

the Radon–Nikodym derivative is
1

2π

‖P(v)‖2

λ1λ2
,

where the λi are the positive square roots of λ2
i . Note that, in this case, for a given configuration,

the Radon–Nikodym derivative depends only on the size of the projected configuration relative
to that of the given configuration.

If w1 and w2 are the unit eigenvectors of XX� corresponding to the eigenvalues λ2
1 and λ2

2,
respectively, then v = cos sw1 +sin sw2 for some s, and the nonzero eigenvalue λ(v)2 = θ11 =
‖P(v)‖2 of P(v)P (v)� is sin2 sλ2

1 + cos2 sλ2
2 and so the above Radon–Nikodym derivative

can be expressed as
1

2π

{
λ1

λ2
sin2 s + λ2

λ1
cos2 s

}
,

which, assuming that λ1 � λ2, clearly has the maximum value λ1/λ2 and the minimum value
λ2/λ1. With the further assumption that λ2

1 + λ2
2 = 1, these two extreme values of the Radon–

Nikodym derivative determine the two eigenvalues of XX�. Hence, it is possible to recover
certain information on the shape of the initial given configuration by the nature of this Radon–
Nikodym derivative.

The following result shows that, in contrast to the case m = 2, when m = 3, the Radon–
Nikodym derivative depends, for a given configuration, on the eigenvalues of P(v)P (v)�, in
addition to the dependence on the relative size of the projected configuration.

Theorem 2. If v is uniformly distributed on the sphere S
2 then, with respect to the volume

element on φ(S2), the Radon–Nikodym derivative at φ(v) of the shape of the projection of the
configuration with pre-size-and-shape X is given by

1

4π

‖P(v)‖4

λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 − λ1(v)2λ2(v)2

,

where λ2
1, λ2

2, and λ2
3 are the three eigenvalues of XX�, and λ1(v)

2 and λ2(v)
2 are the two

nonzero eigenvalues of P(v)P (v)�.
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Proof. When m = 3, C3 is just E2 = tr(
) = ‖P(v)‖2 and so (18) becomes

 = (〈Wh
i ,W

h
j 〉)2×2 = θv(θ11 + θ22)− θ2

1 − θ2
2

‖P(v)‖4 I2.

However, on the one hand, tr{(V �XX�V )−1} = tr{(XX�)−1} = λ−2
1 + λ−2

2 + λ−2
3 , where

the λ2
i are the three eigenvalues of XX�, and, on the other hand,

tr{(V �XX�V )−1} = det{(V �XX�V )−1}tr{adj(V �XX�V )}
= det{(XX�)−1}{θvθ11 + θvθ22 + θ11θ22 − θ2

1 − θ2
2 }

by (19), given our choice of u1 and u2 such that θ12 = 0. Since det(XX�) = λ2
1λ

2
2λ

2
3, we have

θvθ11 + θvθ22 + θ11θ22 − θ2
1 − θ2

2 = λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3,

and then since, with θ12 = 0, θ11 and θ22 are the nonzero eigenvalues λ1(v)
2 and λ2(v)

2 of
P(v)P (v)�,

‖Wh
i (v)‖2 = 1

‖P(v)‖4 {λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 − λ1(v)

2λ2(v)
2},

giving the stated closed form for the Radon–Nikodym derivative of Theorem 1 when m = 3.

By writing the eigenvalues of P(v)P (v)� as functions of v and the eigenvalues of XX�, it
can be checked that, if the three eigenvalues of XX� are in decreasing order, λ2

1 � λ2
2 � λ2

3,
then the maximum and minimum values of the Radon–Nikodym derivative are respectively
(λ2

1 +λ2
2)/λ

2
3 and (λ2

2 +λ2
3)/λ

2
1. These two extreme values are sufficient to determine the three

eigenvalues of XX�/‖X‖2.
As m increases, the expression for the Radon–Nikodym derivative becomes rapidly more

complex. For m = 4, we have the following result.

Theorem 3. If v is uniformly distributed on the sphere S
3 then, with respect to the volume

element on φ(S3), the Radon–Nikodym derivative at φ(v) of the shape of the projection of the
configuration in R

4 with pre-size-and-shape X is given by

1

2π2 ‖P(v)‖4
{ ∏

1�i<j�3(λi(v)
2 + λj (v)

2)∑
1�i<j�4 λ

2
i λ

2
j − ∑

1�i<j�3 λi(v)
2λj (v)2

}1/2

×
{( ∑

1�i<j�4

λ2
i λ

2
j −

∑
1�i<j�3

λi(v)
2λj (v)

2
)( ∑

1�i<j<��4

λ2
i λ

2
j λ

2
� −

3∏
i=1

λi(v)
2
)

− (‖X‖2 − ‖P(v)‖2)

4∏
i=1

λ2
i

}−1/2

,

where λ2
i , 1 � i � 4, are the four eigenvalues of XX� and λi(v)2, 1 � i � 3, are the three

nonzero eigenvalues of P(v)P (v)�.

Proof. We denote the matrix in (16) with m = 4 by � and the three eigenvalues of � by κ1,
κ2, and κ3. Since

det{L4(θ1, θ2, θ3)} = det

⎛
⎝θ2 −θ1 0
θ3 0 −θ1
0 θ3 −θ2

⎞
⎠ = 0,
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we have det(�) = 0 and at least one eigenvalue, κ3 say, is 0. Then

� =

⎛
⎜⎜⎜⎜⎝

θ33

θ11 + θ22
θ2

2 + θ22

θ11 + θ33
θ2

3 − θ33

θ11 + θ22
θ1θ2 − θ22

θ11 + θ33
θ1θ3

− θ33

θ11 + θ22
θ1θ2

θ33

θ11 + θ22
θ2

1 + θ11

θ22 + θ33
θ2

3 − θ11

θ22 + θ33
θ2θ3

− θ22

θ11 + θ33
θ1θ3 − θ11

θ22 + θ33
θ2θ3

θ22

θ11 + θ33
θ2

1 + θ11

θ22 + θ33
θ2

2

⎞
⎟⎟⎟⎟⎠

and
det(ηI3 − �) = η3 − η2tr(�)+ ηκ1κ2. (20)

Using the equalities

{θii + θjj }θiiθjj = ‖P(v)‖2θiiθjj −
3∏
�=1

θ��

and
{θii + θjj }2 = ‖P(v)‖2{θii + θjj } + θiiθjj −

∑
1��1<�2�3

θ�1�1θ�2�2

for i 	= j , we can check that

{ ∏
1�i<j�3

(θii + θjj )

}
tr(�) =

{
2

3∏
i=1

θii − ‖P(v)‖2
∑

1�i<j�3

θiiθjj

} 3∑
i=1

θ2
i

+ ‖P(v)‖4
∑
i 	=j 	=�

θ2
i {θjj + θ��} − ‖P(v)‖2

∑
i 	=j 	=�

θ2
i θjj θ��

and that
{ ∏

1�i<j�3

(θii + θjj )

}
κ1κ2 =

2∑
i=1

θ3
i

{
‖P(v)‖2

∑
i 	=j 	=�

θ2
i θjj θ�� −

3∏
i=1

θii

3∑
i=1

θ2
i

}
.

Thus, using the relationships of θv and θi with the eigenvalues of XX� and P(v)P (v)� given
in the previous section, detailed computation using (20) gives the stated result, since 2π2 is the
volume of S

3.

6. The induced distribution of the size-and-shape

Rather than considering the distribution of the shape of the projection of a given configuration
induced by the uniform distribution on S

m−1, one may be interested in that of the size-and-
shape of the projection of a given configuration after it has been randomly rotated. Our previous
arguments for the shape of such a projection can easily be adapted to the case of its size-and-
shape. In the following, we shall merely outline the main steps of the corresponding results,
rather than repeating them in full, since they are similar to those given in the previous sections.

Firstly, the map corresponding to (3) becomes

φ̃ : S
m−1 → S�km−1, v �→ π̃(�(em)RX),

where S�km−1 denotes the (Kendall) size-and-shape space of configurations in R
m−1 with k

labelled points and π̃(�(em)RX) denotes the size-and-shape of �(em)RX. If

ϕ̃ : R
k−1
m−1 = (Rm−1)k−1 → S�km−1
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is the projection from the standard pre-size-and-shape space to the size-and-shape space, which
is similarly a Riemannian submersion when it is restricted to the nonsingular part, then a similar
argument to that for (4) gives analogously that φ̃(v(t)) = ϕ̃((ψ ◦ R)(t)) and so

φ̃∗(v̇(0)) = ϕ̃∗
(

d(ψ ◦ R)(t)
dt

∣∣∣∣
t=0

)
.

The result corresponding to that of Lemma 1 is then

dψ(R(t))

dt

∣∣∣∣
t=0

= R�(vR)
dP(v(t))

dt

∣∣∣∣
t=0

and W̃i(v) = �(v)Ṗ (ui) = −uiv�X. This in turn implies that the horizontal component of
W̃i(v) is

W̃h
i (v) = −{uiv� − UA(i)U�}X,

where the matrixA(i) is that determined by (6) as for the case of the corresponding shape of the
projection of the given configuration and, consequently, the matrix ̃ = (〈W̃h

i , W̃
h
j 〉) simplifies

slightly to become
θvIm−1 − Lm(θ)

�C−1
m Lm(θ),

where Cm and Lm(θ) are still those defined in Section 3. Thus, the Radon–Nikodym derivative
of the size-and-shape of the projection of the given configuration at φ̃(v), induced by uniformly

distributed v ∈ S
m−1 is given by 1/{vol(Sm−1)

√
det(〈W̃h

i , W̃
h
j 〉)}, where det(〈W̃h

i , W̃
h
j 〉) is

equal to the characteristic polynomial of

Lm(θ)
�C−1

m Lm(θ)

evaluated at θv .
In particular, when m = 3,

̃ = (〈W̃h
i (v), W̃

h
j (v)〉)2×2 = θvI2 − 1

θ11 + θ22

(
θ2

2 −θ1θ2

−θ1θ2 θ2
1

)
.

Hence, its determinant has the closed form given by

‖X‖2 − ‖P(v)‖2

‖P(v)‖2 {λ2
1λ

2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 − λ1(v)

2λ2(v)
2}

(
= θv‖P(v)‖6

√
det(〈Wh

i ,W
h
j 〉)

)

and so we have the following result.

Theorem 4. The Radon–Nikodym derivative, with respect to the volume element on φ̃(S2), of
the distribution of the size-and-shape of the projection of the given configuration, induced from
the uniform distribution on S

2, is

‖P(v)‖
4π

√‖X‖2 − ‖P(v)‖2

1√
λ2

1λ
2
2 + λ2

1λ
2
3 + λ2

2λ
2
3 − λ1(v)2λ2(v)2

.

Note that, when m = 2, the expression for the corresponding Radon–Nikodym derivative
can be found similarly to be 1/(2π‖W(v))‖) = 1/(2π

√
θv) = 1/(2π

√‖X‖2 − ‖P(v)‖2).
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