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We present the measurements of the decay of stationary turbulence at Reynolds numbers
based on the Taylor microscale Reλ = 493, 599, 689 produced in a large-scale von Kármán
flow using stereoscopic particle image velocimetry. First, steady-state conditions were
established, after which the impellers were simultaneously and abruptly stopped, and
the turbulent decay was measured over 10–20 impeller rotation periods. A total of 258
decay experiments were performed. The temporal evolution of the ensemble-averaged
turbulent kinetic energy (TKE) showed excellent agreement over all Reλ and exhibited
two distinct phases: a short, initial transition phase where the TKE remained almost
constant due to the inertia of the flow and lasted approximately 0.4 impeller rotations,
followed by a classical power-law decay. To extract the decay exponent n, a curve-
fitting function based on a one-dimensional energy spectrum was used, and successfully
captured the entire measured decay process. A value n = 1.62 was obtained based on
ensemble-averaged TKE. However, different decay exponents were found for individual
velocity components: n = 1.38 for the axial component consistent with various reports
in the literature and Loitsiansky’s prediction (n = 1.43), and n = 1.99 for the radial
and circumferential components indicating saturation/confinement effects. Similarly, the
longitudinal integral length scale in the axial direction grew as L ∝ t2/7, whereas it
remained nearly constant in the radial direction. Finally, the evolution of the ensemble-
averaged velocity gradients showed that after the impellers were stopped, the mean flow
pattern persisted for a short time before undergoing a large-scale reversal before the onset
of the turbulent decay.
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1. Introduction
The energy cascade, which describes the transfer of kinetic energy from the largest
scales of fluid motion to smaller scales until it is eventually converted to heat by viscous
dissipation, is a central principle of turbulence theory (Richardson 1926; Kolmogorov
1941a). In freely decaying homogeneous isotropic turbulence, the dissipation of turbulent
kinetic energy (TKE) simplifies to

dk(t)/dt = −〈ε〉, (1.1)

where 〈ε〉 is the ensemble-averaged dissipation, and k(t) = (1/2)〈ui ui 〉 is the TKE, with
ui being fluctuating velocity components (Pope 2000). However, there is no exact solution
for this simple equation as the relationship between 〈ε〉 and ui or k is not known a priori.

However, it is well established that the decay of kinetic energy of freely decaying
homogeneous isotropic turbulence is self-similar and follows a power law in time of the
form k(t) ∝ t−n . The decay in k is accompanied by the growth of the integral length
scale L , which also follows a power law, L(t) ∝ tm . There are two well-known theoretical
predictions for n and m based on the assumption that the turbulence should contain some
invariants of motion. Considering the conservation of angular momentum (Loitsiansky’s
integral) yields k ∝ t−10/7 and L ∝ t2/7 (Kolmogorov 1941b), while considering the
conservation of linear momentum results in k ∝ t−6/5 and L ∝ t2/5 (Birkhoff 1954;
Saffman 1967). Early studies of grid turbulence by Batchelor & Townsend (1948) and
Comte-Bellot & Corrsin (1966) verified the power-law scaling, after an initial transition
period close to the grid, finding that values of n varied in the range 1.15 � n � 1.29. Many
grid turbulence studies have been carried out since, including Hak & Corrsin (1974),
Warhaft & Lumley (1978), Lavoie & Antonia (2007), Krogstad & Davidson (2009) and
Sinhuber et al. (2015), to name a few, and have reported values of n close to both thoeretical
predictions. More recent studies by Hurst & Vassilicos (2007), Krogstad & Davidson
(2011), Valente & Vassilicos (2011) and Hearst & Lavoie (2014) have examined turbulence
produced by complex grids, such as fractal or multi-scale grids, which have also been
found to exhibit similar values of n in the far field. Overall, there is no conclusive evidence
supporting n = 10/7 or 6/5, but there appears to be broad agreement that the values of n
vary in the range 1 � n � 1.6.

The physical size of the facility can also affect the turbulent decay rate due to the
continuous growth of the integral length scale to saturation, increasing values of n → 2
or greater (Smith et al. 1993; Skrbek & Stalp 2000; Hwang & Eaton 2004; Esteban et al.
2019; Panickacheril John et al. 2022). Exemplary examples of saturation are found in the
towed grid study by Smith et al. (1993) and box turbulence by Hwang & Eaton (2004)
and Esteban et al. (2019). These high values of n observed in experiments have also
been derived by invoking scaling arguments. Lohse (1994) derived expressions for the
dimensionless energy dissipation rate based on different Reynolds number scalings, Re
and Reλ, which captured the decay rate of mean vorticity observed in the towed grid
experiments of Smith et al. (1993). Using a similar approach, Panickacheril John et al.
(2022) also used the mean energy dissipation 〈ε〉 = Cε U3/L, where U and L are the
velocity and length scales characteristic of the energy injection, and Cε is a constant,
to show that the decay in a confined turbulent flow varies as k(t) ∝ t−2. This is in contrast
to the self-similarity argument of freely decaying turbulence that leads to k(t) ∝ t−1

(Batchelor 1953). We emphasise the difference between the final period of decay and
saturation. The former is associated only with very low Reynolds numbers, while the latter
can happen at any Reynolds number, depending on the size of the facility.
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Measurements of turbulent decay within closed vessels are comparatively fewer than
grid turbulence in wind tunnels or water channels (Hwang & Eaton 2004; Verschoof
et al. 2016; Ostilla-Mónico et al. 2014, 2016, 2017; Esteban et al. 2019). A recent study
by Esteban et al. (2019) investigated the temporal decay of homogeneous anisotropic
turbulence generated in a box by a random jet array with zero mean flow, and reported the
evolution of n. They observed a decay exponent n = 2.3 during the initial period typical
of values in the near-field region of grid turbulence, which reduced to n = 1.4, which is
close to 10/7 and similar to values found in the far-field region of grid turbulence. After
some time, the final decay regime emerged with decay exponent n = 1.8 due to saturation
as the growth of the integral length scale approaches the size of the box. A similarly high
value n = 1.86 was reported by Hwang & Eaton (2004) for the same reasons.

In this paper, we present measurements of the decay of high Reynolds number stationary
turbulence in a von Kármán flow. This configuration produces a large turbulent shear
flow at the midplane between two counter-rotating impellers within a closed cylindrical
vessel, and has been a subject of interest in turbulence research since the original work of
Batchelor (1951), Stewartson (1953), Picha & Eckert (1958) and Zandbergen & Dijkstra
(1987). Von Kármán flows have been particularly well suited to the experimental study of
the structure and dynamics of small-scale turbulence due to their ability to produce high
Reynolds number homogeneous turbulent fluctuations in the central region of the vessel,
as demonstrated by Ouellette et al. (2006), Worth & Nickels (2011), Lawson & Dawson
(2015), Huck et al. (2017), Knutsen et al. (2020), Debue et al. (2021) and Aligolzadeh et al.
(2023) to name but a few. However, to the best of the authors’ knowledge, no measurements
of turbulent decay have yet been reported in von Kármán flows.

To address this gap, the decay of TKE of the velocity fluctuations at Reynolds numbers
based on the Taylor microscale (λ) of Reλ = 493, 599, 689 produced in a von Kármán
flow was investigated using stereoscopic particle image velocimetry (PIV). Access to
all three velocity components allows for separate and cumulative analysis of the decay
rates. Measurements of the turbulent decay begin immediately after abruptly stopping
the impellers, and continue for 10, 15 or 20 impeller revolution periods, depending on
the initial rotation speed. We introduce a fitting function based on a one-dimensional
energy spectrum to determine the evolution of the decay exponent, which includes an
initial transition phase where the TKE remains constant for a short time after the impellers
are stopped due to inertia. Evidence is also presented of a large-scale inversion of the flow
before the onset of the turbulent decay rate.

2. Experiments

2.1. Apparatus and measurements
Experiments were carried out in a large dodecagonal Perspex water tank which is 2 m
high with radius 1 m, as shown in figure 1. Two counter-rotating impellers, R = 0.8 m, are
driven by stepper motors located at the top and bottom of the tank. The large size of the
facility was designed to facilitate resolved measurements by producing time and length
scales exploited in previous studies focusing on the dynamics and structure of small-scale
turbulence (Worth & Nickels 2011; Cardesa et al. 2013; Lawson & Dawson 2014, 2015;
Aligolzadeh et al. 2023). However, in the decay experiments presented herein, the baffles
were removed as this produces higher turbulence intensities for the same impeller rotation
speed.

Operating the impellers with equal but opposite rotational speeds generates a shear
flow at the midplane and induces secondary poloidal flow patterns above and below the
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Figure 1. The von Kármán swirling flow facility used in this study. (a) The key dimensions and the mean
flow pattern presented as a superposition of the primary shearing toroidal (green) and the secondary induced
poloidal (red) motions. (b) Schematic of the stereoscopic PIV measurement set-up.

midplane along the axis of rotation of the tank. Figure 1(a) illustrates schematically the
primary toroidal (green) and secondary poloidal (red) motions. In the central region of the
tank, a mean stagnation flow is produced, resulting in a region of homogeneous velocity
fluctuations with a negligible mean velocity (Lawson & Dawson 2015). To measure
the temporal decay of the turbulent fluctuations, steady-state flow conditions were first
established before the impellers were simultaneously and abruptly stopped. Velocity fields
in the middle of the tank with a field of view (FoV) 18 cm × 18 cm centred were measured
during the decay process using stereoscopic PIV whose set-up is described in the next
subsection.

A summary of the experimental conditions for the decay measurements is provided
in table 1. Velocity measurements were conducted for different initial impeller rotation
rates 2, 3 and 4 rpm, corresponding to Reynolds numbers Re = R2Ω/ν = 1.27 × 105,
1.91 × 105 and 2.54 × 105, respectively, where R is the impeller radius, Ω is the angular
velocity, and ν = 1.11 × 10−6 m2 s−1 is the kinematic viscosity of water at 16 ◦C.
The change in water temperature during the measurements was less than 0.1 ◦C. Each
measurement was repeated a minimum of 30 times. The average measurement time
was t = 300 s, corresponding to 10, 15 and 20 impeller revolutions at 2, 3 and 4 rpm,
respectively, with 400 velocity fields acquired per run. To test for convergence, 168
additional decay experiments were performed at 4 rpm, acquiring 180 velocity fields
over a shorter duration t = 126 s (8.4 revolutions). The comparison confirmed excellent
consistency across all 258 tests. Steady-state flows at 2, 3 and 4 rpm were also measured
to characterise the initial conditions of the turbulence, with 3000 velocity fields acquired
for each case at 1.5 Hz.

2.2. Measurement technique
A schematic of the stereoscopic PIV set-up is shown in figure 1(b). The coordinate system
(x, y, z) corresponds to the radial, axial and circumferential directions, with velocity
components (U, V, W ). Two 16-bit LaVision Imager sCMOS cameras (2560 × 2160
pixels, with physical pixel size 6.5 μm × 6.5 μm) fitted with Zeiss Milvus 2/100M lenses
and Scheimpflug adapters were positioned 60◦ apart on the same side of the laser sheet in
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Reynolds number, Re 1.27 × 105 1.91 × 105 2.54 × 105 2.54 × 105

Taylor-scale Reynolds number, Reλ 493 599 689 689
Impeller speed Ω (rpm) 2 3 4 4
Impeller revolution period Ti (s) 30 20 15 15
Measurement duration t/Ti 10 15 20 8.4
Number of runs N 30 30 30 168
Kolmogorov length scale η (mm) 0.250 0.185 0.150 0.150
Kolmogorov time scale τη (s) 0.056 0.031 0.020 0.020
Spatial resolution dx/η = dy/η 10.68 14.46 17.93 17.93

Table 1. Experimental conditions.

a backward–forward scattering configuration. A dual-cavity pulsed ND:YAG laser (Litron
Nano L 200-15 PIV, 200 mJ per pulse) served as the light source. Spherical particles
(80 μm diameter, 1.05 kg m–3 density) were used for seeding, with average size 3 × 3
pixels in the images to minimise pixel locking. To measure the decaying flow, the time
delay dt between camera frames and laser pulses was systematically increased to achieve
particle displacement of approximately 1/4 of the interrogation window in each snapshot.
This was done by cumulative increases of 0.15 ms to the starting dt of 5, 3.5 and 2 ms for 2,
3 and 4 rpm until 400 vector fields were recorded. A similar approach was used by Esteban
et al. (2019). It is worth noting that the maximum dt possible for the experimental set-up
was limited by the interframe transfer time of the cameras. The data were processed using
LaVision Davis 10, using multi-pass cross-correlation with final interrogation window
size 32 × 32 and 75 % window overlap and self-calibration. This gave a spatial resolution,
based on the interrogation window size, 2.67 mm × 2.67 mm corresponding to normalised
resolution 10η–18η as shown in table 1. The effective magnification of the cameras was
0.083 mm pixel–1. Estimating the spatial resolution following the approach of Foucaut
et al. (2004) based on a 3 dB attenuation of the spectral response due to the applied
windowing was 5.99 mm.

3. Results

3.1. Stationary turbulence
Steady-state conditions were first established before abruptly stopping the impellers
to measure the turbulent decay rates. These form the initial conditions of the decay
experiments and are therefore described briefly. The normalised mean flow and velocity
fluctuations of the highest Reynolds number case (4 rpm) are shown in figure 2,
with associated turbulent statistics in table 2. As the measurements were insufficiently
resolved for direct calculation of the small scales, the fits Reλ = 1.75 Re0.482 and
η/R = 1.98 Re−0.748 from volumetric measurements provided in Worth (2010) were used.
These fits have been well characterised in later experiments via spherical correlations from
the volumetric measurements of Lawson & Dawson (2014, 2015) in the same apparatus.

We denote ensemble averages over repeated measurements at the same normalised time
step with an overline, spatial averages over the PIV field of view with angle brackets (〈·〉)
and normalised quantities with an asterisk (∗), where units of length are normalised by
the impeller radius R, and velocities are normalised by the impeller tip velocity RΩ . The
prime symbol (′) is used to denote the root mean square (r.m.s.) of the component velocity
fluctuations such that u′

i = (u2
i )

1/2.
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Taylor-scale Reynolds
number, Reλ

493 599 689

〈U∗〉, 〈V ∗〉, 〈W ∗〉 (0.01, −0.09, −0.01) (0.02, −0.21, −0.02) (0.02, −0.15, 0.06)

〈u′∗〉, 〈v′∗〉, 〈w′∗〉 (0.35, 0.22, 0.33) (0.33, 0.22, 0.34) (0.33, 0.23, 0.34)

〈u′〉/〈v′〉, 〈u′〉/〈w′〉, 〈w′〉/〈v′〉 (1.56, 1.05, 1.49) (1.52, 0.99, 1.54) (1.39, 0.96, 1.46)

2σu/〈u′〉, 2σv/〈v′〉, 2σw/〈w′〉 (0.04, 0.04, 0.05) (0.05, 0.02, 0.04) (0.03, 0.03, 0.05)

L∗
xx , L∗

yy (0.25, 0.22) (0.29, 0.23) (0.29, 0.22)

Table 2. Turbulence statistics of the stationary flow (initial conditions).
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Figure 2. (a) Normalised mean velocities of the stationary flow, where U∗ and V ∗ vectors are shown as the
streamlines, while W ∗ is shown as colour-filled contours. (b–d) Normalised ensemble-averaged contours of the
r.m.s. of the component velocity fluctuations u′

i /〈u′
i 〉.

Figure 2(a) presents a larger field of view than used in the decay experiments to highlight
the mean flow pattern. The streamlines show the inward radial flow and outward axial
flow from the centre of the tank resembling a stagnation flow where the mean velocity is
negligible and the flow is dominated by turbulent fluctuations that were previously shown
to be homogeneous via resolved volumetric measurements (Lawson & Dawson 2014,
2015). The colour-filled contours correspond to the mean out-of-plane velocity component
in the circumferential direction of the tank, W ∗, which captures part of the large-scale
toroidal and poloidal flow motions. The values of the mean component velocities and
fluctuations are shown in table 2. Figures 2(b), 2(c) and 2(d) plot fields of the normalised
velocity fluctuations r.m.s. in the radial, axial and circumferential directions, respectively.
The normalised r.m.s. fluctuations are close to 1, which indicates that the turbulence is
reasonably homogeneous. Further confirmation of the homogeneity for each Reλ in the
decay experiments is evaluated using the ratio 2σui /〈u′

i 〉, where the pre-factor ensures a
95 % confidence interval (Esteban et al. 2019), as well as the level of isotropy, evaluated via
r.m.s. ratios, shown in table 2. These show that the radial and circumferential components
are nearly isotropic, 〈u′〉/〈w′〉 = 0.96, but deviations appear when axial components 〈v′〉
are included. The longitudinal integral length scales of the flow (L∗

i i ) in the x and
y directions at the start of the decay experiments were calculated from the PIV data
by evaluating the area under the curve of the normalised autocorrelation functions as
described in Pope (2000).
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Figure 3. Temporal decay of (a) the TKE k∗(t∗) and (b) the contribution from different velocity
components k∗

i (t∗).

3.2. Decaying turbulence
In this subsection, we present the results of the temporal decay measurements after
abruptly stopping the impellers. For each Reynolds number shown in table 1, we first
calculate an ensemble-averaged velocity field U∗

i (x∗, t∗) over each of the 30 runs for each
non-dimensional time step during the decay. We then perform a Reynolds decomposition
to obtain component fluctuation fields for u∗, v∗, w∗ at each non-dimensional time step.
Finally, we calculate the TKE by ensemble averaging the component fluctuation square
fields, and then spatial averaging them to get a single value at each time step using
the expression k∗(t∗) = 0.5〈u∗2 + v∗2 + w∗2〉. Similarly, we evaluated the decay in TKE
for each of the velocity components k∗

x (t
∗) = 0.5〈u∗2〉, k∗

y(t
∗) = 0.5〈v∗2〉 and k∗

z (t∗) =
0.5〈w∗2〉, where k∗(t∗) = k∗

x (t
∗) + k∗

y(t
∗) + k∗

z (t∗). When plotting the decay curves for
each Reynolds number, it was found that they collapsed when plotted using normalised
values of k∗ and t∗. In other words, the decay of TKE was found to be independent of
the Reynolds numbers tested. We therefore plot the temporal evolution of the total and
component TKE averaged over all cases in figure 3 on a log-log scale.

Figure 3(a) shows that the total k∗(t∗) follows a clear and smooth pattern of decay
covering more than two decades after the impellers are stopped. The decay process is
preceded by an initial phase where k∗ is approximately constant followed by a short
transition before reaching a negative exponent power-law decay rate. As the figure is very
similar to the form of a one-dimensional energy spectrum, it was found that we could
represent this behaviour by a single fit by adopting a similar approach to modelling the one-
dimensional energy spectrum at small wavenumbers as described in Pope (2000) using the
equation

k∗
f i t = k∗

steady

(
t∗

T ∗
d

)−n
(

1 +
(

t∗

T ∗
d

)−2n
)−0.5

, (3.1)

where the fit coefficients k∗
steady , n and T ∗

d represent the steady-state energy, power-
law decay exponent and initial transition time, respectively. This ansatz eliminates
the ambiguity of the virtual origin position (Panickacheril John et al. 2022),
enabling consistent estimation of the decay exponent n. For small t∗, the function
simplifies to k∗

f i t = k∗
steady , whilst for large t∗, it follows a classical power-law decay:
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k∗
f i t = k∗

steady(t
∗/T ∗

d )−n . Fitting this function to the measured data shown by the solid
line in figure 3(a) yields decay exponent n = 1.62 and transition time T ∗

d = 2.58, which
corresponds to 2.58/2π = 0.41 impeller rotations. The decay exponent n = 1.62 indicates
a faster decay than the theoretical predictions by Birkhoff and Saffman (n = 6/5 = 1.2)
and Loitsiansky (n = 10/7 ≈ 1.43), but it lies within the range of self-similarity (n = 1)
and scaling arguments (n = 2).

By decomposing the decay of TKE into contributions from individual velocity
components, we can assess whether the decay rate is isotropic or anisotropic. Figure 3(b)
shows the temporal decay of radial, axial and circumferential components. The axial
component (k∗

y) decays more slowly than the radial (k∗
x ) and circumferential (k∗

z )
components, which have similar decay rates. The corresponding decay exponents were
found to be ny = 1.38 and nx = nz = 1.99. The value ny = 1.38 is in good agreement
with Loitsiansky’s prediction and values reported in grid turbulence studies (Comte-Bellot
& Corrsin 1966; Van Atta & Chen 1969; Sirivat & Warhaft 1983; Mohamed & Larue
1990; Hearst & Lavoie 2014), stationary turbulence (Esteban et al. 2019), and numerical
simulations (Ishida et al. 2006; Thornber et al. 2007; Meldi et al. 2011; Meldi & Sagaut
2017; Yu et al. 2021). In contrast, nx = nz = 1.99 closely matches the saturation decay
exponent (n = 2) predicted by Skrbek & Stalp (2000) and observed in the experiment of
Esteban et al. (2019), which was attributed to confinement effects. The decay exponents
for different velocity components indicate a classical unsaturated decay regime in the axial
direction, where the component flow is moving away in the normal direction relative to
the shear layer produced by the large poloidal vortices, and a saturated decay regime in the
radial and circumferential directions, where the component flow is moving parallel to the
shear layer. It is worth further comment that the turbulent decay rate along the symmetry
axis of rotation follows Loitsiansky’s prediction, which is based on the conservation of
angular momentum. Although Loitsiansky assumed isotropy, our results in figure 3(b)
suggest that rate of turbulent decay in von Kármán flows may feature a preferred direction
(the axial direction) that is normal to the applied angular momentum of the impellers. A
possible explanation for this is that the geometry may impose a directional preference that
selectively conserves of angular momentum in specific component directions, leading to
different decay exponents.

The evolutions of the longitudinal integral length scales in the radial (L∗
xx ) and axial

(L∗
yy) directions are plotted in Figure 4(a). The autocorrelation function ρi (r∗, t∗) =∫

FoV u∗
i (x∗, t∗) u∗

i (x∗ + r∗, t∗) dx∗
/∫

FoV u∗
i (x∗, t∗) u∗

i (x∗, t∗) dx∗ was calculated for
each snapshot, where r∗ is the normalised separation vector. An exponential function of
the form exp(−r∗/L∗

i i ) was fitted to the ensemble-averaged autocorrelation function ρi
along the i direction of the separation vector to estimate L∗

i i (Reynolds & Castro 2008).
During the initial phase, the length scales are preserved, after which the growth in the axial
direction follows a power law with exponent my ≈ 2/7 = 0.29, which is also consistent
with Loitsiansky’s prediction m = 2/7 = 0.286. This is in contrast to the radial integral
length scale, which remains nearly constant, mx ≈ 0. Both the decay rates and growth
of integral length scales demonstrate classical behaviour in axial components, while the
radial direction exhibits a saturation or confinement effect.

Finally, we examine the evolution of the mean velocity gradients. Near the
stagnation point, the stationary mean flow can be approximated by uniform velocity
gradients: U∗

i (x∗, y∗) = 〈∂U∗
i /∂x∗〉(x∗ − x∗

0 ) + 〈∂U∗
i /∂y∗〉(y∗ − y∗

0 ), where (x∗
0 , y∗

0 ) is
the stagnation point (Lawson & Dawson 2015; Knutsen et al. 2020). In figure 4(b), we
plot the normalised decay of the ensemble-averaged velocity gradients 〈∂U∗/∂x∗〉(t∗) and
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Figure 4. (a) Temporal evolution of longitudinal integral length scales L∗
xx and L∗

yy from the PIV data.
(b) Temporal decay of the mean velocity gradients.

〈∂V ∗/∂y∗〉(t∗). During the initial phase (early t∗), the gradient signs match the stationary
flow pattern under steady flow conditions (inset i) and their magnitudes decrease until
t∗ ≈ 4, after which the gradients then reverse sign (inset ii) implying a large-scale flow
inversion. The gradients then reach a local maximum and decay towards zero (inset iii).
These results show that after the impellers are stopped, the stationary mean flow persists
due to inertia, undergoes a flow reversal, and then decays. Comparing the timing of these
transitions with the decay rates in figure 3 strongly suggests that the power-law decay
begins only after the large-scale flow reversal. The underlying mechanisms of this reversal
currently remain unclear. However, it is conjectured that the flow reversal is likely triggered
by the interaction between the inertia of the upper and lower toroidal flows when the
impellers are suddenly stopped, and the viscous drag imparted by the stationary impellers
to ensure conservation of angular momentum.

4. Conclusion
In this paper, the decay of stationary turbulence at Reynolds numbers based on the
Taylor microscale Reλ = 493, 599, 689 produced in a von Kármán flow was investigated
using stereoscopic PIV. To characterise the initial conditions of the decay experiments,
measurements were obtained to characterise the turbulence under steady flow conditions
(constant impeller rotation speeds). To initiate the decay experiments, the impellers were
stopped and the turbulent decay was measured over 10–20 impeller rotation periods. A
total of 258 decay experiments were performed. To the best of the authors’ knowledge,
this is the first reporting of turbulent decay measured in a von Kármán flow.

The decay in TKE showed excellent agreement over all Reλ and exhibited two
distinct phases. After stopping the impellers, the inertia of the flow resulting in an
initial plateau where the TKE was constant and lasted ≈ 0.4 impeller rotations, followed
by a transition to a power-law decay. A fitting function, based on a one-dimensional
energy spectrum, was used and successfully captured the entire measured decay process,
eliminating any ambiguities encountered when defining the virtual start point. A power-
law decay exponent n = 1.62 was obtained for the ensemble average at all Reλ. However,
different decay exponents were found when considering the velocity components. The
decay exponent of the axial velocity component, which is normal to the applied angular
momentum of the impellers, was ny = 1.38, consistent with various reports in the literature
and Loitsiansky’s theoretical prediction n = 1.43, which is based on the conservation of
angular momentum. The radial and circumferential components yielded nx = nz = 1.99,
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indicative of saturation/confinement effects. This raises the possibility that the geometry
of von Kármán flows may impose a directional preference in the turbulent decay rate
that selectively conserves angular momentum in specific component directions, leading
to different decay exponents. Similar behaviour in the growth of the longitudinal integral
length scales was also observed as L∗

yy ∝ t∗2/7 (my = 2/7), whilst L∗
xx remained nearly

constant.
Finally, the evolution of the ensemble-averaged velocity gradients showed that after the

impellers were stopped, the mean flow pattern persisted for a short time before undergoing
a large-scale reversal before the turbulent decay. Although the mechanisms behind this
large-scale flow reversal remain unclear, we conjecture that it is likely triggered by the
interaction between the inertia of the upper and lower toroidal flows and the viscous drag
imparted by the stationary impellers to conserve angular momentum. Further studies are
needed to identify whether such large scale reorganisations observed herein are a general
feature of not only von Kármán flows but also other rotating flows such as toroidal flows
or Ekman flow.
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