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0. Introduction. In this paper we study some questions proposed by B. Schein [8]
regarding the semigroup of binary relations Bx for a finite set X: what is the ideal
structure of By, what are the congruences on By, what are the endomorphisms of By? For
|X|=n it is convenient to regard By as the semigroup B, of nxn (0, 1)-matrices under
Boolean matrix multiplication.

For all semigroup notation, terms, and facts used here without explanation, see [2].

1. Ideals.

DEerintTioN. The lattice generated by a poset P is the idempotent abelian semigroup
generated by P and an identity 0 subject to the relation x +y =y whenever x<y in P.

DEeFINITION. A basis for a lattice L is a set B of non-zero elements of L such that
every non-zero element of L is a finite union of elements of B, and no element x € B is a
union of elements of B\{x}.

Every finite lattice has a unique basis. Every finite distributive lattice is the lattice
generated by its basis elements regarded as a poset. See Birkhoff [1] for the theory behind
these definitions.

Proposrtion 1. The lattice of ideals in any finite semigroup is the lattice generated by
the poset of principal ideals. (Here § must be included as a non-principal ideal in order to
obtain the element 0).

Proof. This lattice is distributive, and the principal ideals form a basis.

DerINITION. A maximal chain of ideals in a semigroup S is a sequence of ideals

@=I,cI,c ... cl, =S which cannot be refined by inserting another ideal properly
between two ideals of the sequence. The length of the chain is k.

Prorosrtion 2. In any finite semigroup, the length of any maximal chain of ideals is
equal to the number of D-classes in the semigroup.

Proof. It suffices to prove that in any finite distributive lattice, the length of any
maximal chain is equal to the size of the generating poset, so the number of & -classes
equals the number of principal ideals.

Write each lattice element in the chain as a sum of poset elements in such a way that
every poset element less than a summand is also a summand. Each element of the chain
must have properly more summands than the preceding one. Unless each element has
exactly one more summand than the preceding one, the chain could be further refined.
This proves the proposition.

Glasgow Math. J. 22 (1981) 57-68.
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2. Congruences. Some facts about Boolean matrices will be used frequently in the
following proofs. The set V, of all n-tuples (vy, v,,...,0,), (v,€{0, 1}) is a semigroup
under

(vly Uz, c ey Un)+(W1: W27 R ] W“)=(01+W1, UZ+W2, MR Un+wn)
where + denotes Boolean sum, and V,, admits the operations
c(vy, vy, ...,0,)=(cvy, CV,, . . ., CV,),

awhere the products are Boolean. It is referred to as the set of n-dimensional Boolean
vectors. Occasionally we make use of the Boolean inner product v. w =Y v;w,, where the
sum and product are Boolean.

A nonempty subset W< V, is called a subspace if it is closed under addition and
multiplication by constants. All subspaces, being idempotent abelian semigroups, are
lattices, though not usually sublattices of V,. Elements of V, are sometimes called row
vectors to distinguish them from n-tuples

Uy
U,

Un

called column vectors. The row (column) rank of a Boolean matrix is the number of
elements in a lattice basis for the subspace generated by its rows (columns). (See Kim [4].)

Let J denote the Boolean matrix consisting entirely of ones. (This should not be
confused with the #-ordering defined later.)

The ith row (AB);« of a Boolean matrix product can be written as either (A;«)B or as
Y. a;B;. For this, as well as any other general result about rows of a Boolean matrix,.there
is a dual result about columns, obtained by symmetry under transpose.

An nXxn Boolean matrix is said to be nonsingular if it has row and column rank n
and is regular as a semigroup element (Plemmons [5], Kim [3]). If two Boolean matrices
X, Y of row rank n are £-equivalent, they have the same row space. But the rows of
these matrices must constitute the unique basis for this space, and differ only by
rearrangement. Thus there exists a permutation matrix P such that PX =Y.

Every idempotent matrix E can be written in block triangular form by conjugating E
with a permutation matrix P. In this form all blocks above the main diagonal are zero,
each block consists entirely of zeros or entirely of ones, and the main diagonal blocks if
zero are 1Xx1. (See Schwarz [9], Rosenblatt [6].) The rank of such a matrix equals the
number of main diagonal blocks consisting of ones. In fact, choose a set of 1 entries, one
from each nonzero main diagonal block. Then the rows (columns) of these diagonal 1
entries will form a row (column) basis.

A Boolean matrix has row rank 1 if and only if it has column rank 1, if and only if all
non-zero rows are equal and some row is non-zero, if and only if it can be represented as
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x'y where x' is a Boolean column vector and y is a Boolean row vector. Products of rank
1 matrices are described by

(x'y)(v'w) = x"(yo")w = (yv)(x'w) =(y. v)x'w

where y. v is the Boolean inner product. It readily follows that any rank 1 matrices are
P-equivalent (take one of y, v to be the vector all of whose entries are one).

By the image space of a Boolean matrix A we mean {vA}, where v ranges over all
Boolean row vectors of the appropriate dimension. The image space of a Boolean vector
equals its row space {consider vectors v with exactly one 1). Two Boolean matrices are
LR, D)-equivalent if and only if they have the same row space (the same column space,
isomorphic row space). The row spaces of regular elements will be isomorphic if and only
if the row bases are isomorphic as partially ordered sets [11]. The following result was
proved in [8].

Lemma 3. Every nontrivial congruence on B, sends all matrices of rank 1 to zero.

Proof. Let w be a Boolean vector such that the Boolean inner product of w with one
of av', bv' is zero, but with the other is nonzero. Then multiplying w'w with av‘v and
bv™v we find w'v is sent to zero in the quotient semigroup. The set of all elements
sent to zero is an ideal. Since rank 1 matrices form a single &-class, every rank 1 matrix
will be in the ideal if one is. This proves the lemma.

DEFINITION. The $-ordering in a semigroup is the quasi-order x <y iff the principal
two-sided ideal generated by x is contained in the principal two-sided ideal generated by

y.

THEOREM 4. Every congruence on B, which induces a nontrivial quotient of the
symmetric group sends all regular @-classes to zero, except the D-class consisting of the
symmetric group.

Proof. Let G be the kernel of the homomorphism from the symmetric group to its
image. Then G is the symmetric group, the alternating group for n=3, or the Klein
4-group. It suffices to show all indempotents other than the identity are sent to zero. Let z
be a $-minimal idempotent other than the identity which is not sent to 0, if one exists.
Since @ -equivalent elements are sent to 9-equivalent elements, any other idempotent in
the same @-class will also have this property.

Case 1. z is nonsingular. By replacing z by a conjugate we may assume it is in
triangular form, with ones down the diagonal. Thus there will be vectors u, v with only
one 1 such that uz =u, vz>u. Let g in G send u to v. If zgz is P-equivalent to z, it will
be ¥ -equivalent. If it is #-equivalent, there will be an automorphism A of image z such
that zgzA = z, since the -class of z will be a group. But since uzgz = vz >u, no such
automorphism can exist. So zgz is less than z in the $-ordering. But zgz is sent to the
same element as z% = z. So no power of zgz will be sent to zero. So an idempotent power
of zgz contradicts the minimality of z.
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Case 2. z has rank less than n, but some element of a row basis for z is greater than
some other element of a row basis for z. Then we can find an idempotent in the same
9-class which is the direct sum of a nonsingular idempotent z, from B, for k <n and 0.
(Take a row basis for z, regard it as a poset on k elements, and take z, to be the matrix of
this poset as a binary relation.) Then the argument above applies to give a contradiction.

Case 3. z has rank less than n, and no element of a row basis for z is larger than any
other element of a row basis for z. Then the P-class contains an idempotent partial
permutation z,. By Lemma 3, the rank of this permutation is larger than 1. Let g be an
element of G which does not preserve the image of this partial permutation. Then z,gz, is
less than z, in the $-ordering. This contradiction completes the proof.

3. Endomorphisms

DerintTioN. An endomorphism of B, is of Type I or Type II according as it does or

does not induce a nontrivial quotient of the symmetric group.
Examples of Type II endomorphisms are automorphisms, maps sending all non-

permutation matrices to J or to 0, and two special kinds of endomorphisms on 2Xx?2
matrices. Let S, denote the symmetric group.

LemmMa 5. In a Type II endomorphism h, h(S,) =S, and either h(0)=0 or h(0)=J.

Proof. The image of S, will be contained in some #-class containing an idempotent.
Since the elements h(1)h(x) are distinct, S, will act effectively on the distributive lattice
which is the image of h(1). The only possible structure for its generating poset is that of n
points with no strict inequalities among them. Thus h(1) is a permutation matrix. Since it
is idempotent h(1)=1. So S, is sent to the #-class of I, or S,.

Then h(0) must be an element y such that PyQ =y for all permutation matrices P, Q.
The only two such elements are 0, J.

LemMA 6. For a Type II endomorphism h which is not an automorphism or a map
sending all non-permutations to h(0), let D, be a $-minimal regular 9-class which is not
sent to h(0). If h(0) =0, the image of D, consists of rank 1 matrices. If h(0) =J, the image
of D, consists of rank 2 matrices in which every row and column vector is a basis vector, for
each idempotent in h(D,).

Proof. Assume h(0)=0 and let z be an idempotent in h(D,). Assume rank z>1.

Case 1. Some row of z is properly greater than some row basis vector. Let u, v be
vectors with only one 1 such that uz corresponds to a minimal row basis vector, located in
z so that a 1 occurs on the diagonal, and vz > u. Let ug = v for some ge S,. Then uzgz is
not a minimal row in 2, so zgz is not #-equivalent to z. So zgz is not P-equivalent to z.
So some power of zgz is J less than z, and is the image of an idempotent under h, and is
nonzero, since u(zgz)"=u.

Case 2. The hypothesis of Case I is false, but some row of z contains several 1’s. Let
such a row be uz, where u has only one 1. Let g send the 1’s in uz to the locations of
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distinct row basis vectors with 1’s on the diagonal, at least one of which is equal to uz.
Then zgz is not P-equivalent to z, and no power of zgz is zero.

Case 3. Column analogues of Cases 1, 2.

Case 4. Other. Every nonzero row vector is a row basis vector (Case 1) and has only
one 1. Likewise for column vectors. Thus z is a partial permutation. For rank z > 1, again
a zgz can be found of smaller rank such that no power of zgz is zero.

Now assume h(0)=J. The image of h then will consist entirely of matrices having at
least one 1 in each row and at least one 1 in each column, since h(0)h(x)=h(x)h(0)=J
for all x in B,. Let z be an idempotent in h(D,;) and suppose that either z has rank at
least three or has rank two and has some row or column vector which is not a basis vector.
In the proofs below, vectors u, v, u;, w are to have exactly one 1.

Case 1. Suppose z has a row basis vector which is not minimal and is not equal to the
vector (1,1, ..., 1). Let v be a vector such that vz corresponds to such a row, located with
diagonal 1. Let uz correspond to a minimal row basis vector less than v, with a diagonal 1.
Let g be the transposition which interchanges u and v. Then uzgz =vz so zgz is J less
than z, and vzgz =vzz = vz, so (zgz)" is not J.

Case 2. Suppose Case 1 fails, but z has a properly dependent row vector. Let
vz =Y w;z where vz is a minimal properly dependent row, and the wz are row basis
vectors smaller than vz, with y;z=u,. Let g be the transposition which interchanges u,
and v. Then zgz is not $-equivalent to z, and since u,zgz = u,z, (zgz)" is not the matrix J.

Case 3. Suppose previous cases do not hold, there exist at least two row basis vectors
other than (1,1,...,1), and (1,1,...,1) is a row basis vector. Let uz, vz be row basis
vectors other than (1,1, ..., 1) with uz=u, vz=v, and let wz=(1,1,..., 1). Let g be the
transposition interchanging v, w. Then zgz is not @-equivalent to z, and no power of zgz
is the matrix J.

Case 4. Suppose some row basis vector contains more than one 1, z has rank at least
three, and previous cases do not hold (so no row vector is greater than another row
vector, and (1, 1,..., 1) is not a row). Let u, v, w, x contain exactly one 1 and be distinct
such that uz = u-+x and uz, vz, wz are distinct row basis vectors. If x is not =wvz, let g be
the transposition (xw). Then uzgz = uz + wz and vzgz = vz. If x < vz let g be the transposi-
tion (ux). Then uzgz = uzz = uz, vzgz = vz + uz.

Case 5. Column analogues of 1,2,3,4.

Case 6. Other. Every row vector is a row basis vector and likewise for columns, so z
has rank at least 3. And every row, column vector contains exactly one 1. Thus z is a
permutation. But this contradicts the hypothesis of the lemma.

Lemma 7. Let h, D, be as in Lemma 6. Let h(0) = J. Suppose h(D,) is contained in the
@-class corresponding to the four element lattice of rank 2. Then for some number ¢, h(D,)
consists of all matrices of the form

J 0
e 0 e

0 Jic

where J_ is the ¢ X ¢ matrix with all entries equal to 1, where P, Q are permutation matrices,
and ¢ = nf2.
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Proof. Every idempotent by Lemma 6 is conjugate to an element of this form. Thus
for any element, its row basis vectors must be complements of each other, and also its
column basis vectors. This implies that the other vector in the row space, (1,1,...,1),
cannot occur as a row or column vector of any element. Also the number ¢ must be
constant and equal to n/2, or some product would give elements which are not J but have
some rows consisting entirely of 1’s.

Lemma 8. Let h, D, be as in Lemma 6. Then if D, consists of matrices of rank less
than n, D, must be the 9-class containing all rank k partial permutations, for some k.

Proof. The trace semigroup of D; can be defined by a product, denoted by °, on
D;UQ given by aeb=ab if a, b, abe D,, and a o b =0 otherwise. The endomorphism h
induces a homomorphism from the trace semigroup Tr(D,) to Tr(h(D,)). The trace
semigroup of D, is O-simple and can be regarded as a Rees matrix semigroup with
sandwich matrix P indexed on the R-, £-classes of D,. Let P’ denote the matrix obtained

from P by replacing each nonzero entry by a 1.
Let T, be the subsemigroup of Tr (ID;) consisting of all matrices with at least n—k

zero rows and n—k zero columns in D, together with 0, where k is the rank of the
matrices in D,. Let P5 be the restriction of P’ to T,. By comparison with nonsingular
matrices in B, it can be observed that T, has exactly one idempotent in each R -class and
exactly one idempotent in each £-class. Thus P5 is a permutation matrix. This means that
no non-trivial partition of P4 is possible in which the blocks are all 1’s or all 0’s. Thus
distinct R-classes in T, map to distinct R-classes in h(D,). In the image semigroup, by
Lemmas 6, 7, each & -class must be preserved by a group of the form S(a)xS(n—a). So
this must be true also in T,. Thus some S(a)X S(n—a) preserves the image of each
element in T,. For k <n, either a =k or n—a = k. And the only @-class in B, of rank k
for which S(k) preserves the image of an element is the @ -class of partial permutations.

Let P._, denote the @-class in B, containing partial permutations of rank k—1.
ProposiTionN 9. Every matrix in P,_, has the form
P[Ik—l Ul] 0
v, S

where I, is the (k —1)x(k—1) identity matrix and s is a 1xX1 matrix equal to the inner
product of v, and v,, and P, Q are permutation matrices.

Proof. By deleting a dependent row and a dependent column we obtain a matrix
which must be a permutation.

PropostTiON 10. Every idempotent in P, _, is (1) the sum of I, with some 1 changed to
a zero and a matrix which has 1's only in the row of that diagonal zero but not at the
diagonal zero or (2) the sum of I, with some 1 changed to a zero and a matrix which has
1’s only in the column of that diagonal zero, off the diagonal, or (3) a conjugate of the direct
sum Jo+ 1 _,.

Proof. By conjugation write the idempotent in block triangular form. If some
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diagonal block has size larger than 1X1 the third case must hold. Otherwise, by rank
there will be exactly one diagonal zero. All off-diagonal 1’s must lie either in the row or in
the column of this diagonal zero. If there are off-diagonal 1’s both in the row of this zero
and in its column, there must be a product off-diagonal 1 in neither. So either the row of
the off-diagonal 1 or its column must be vacant. By reversing the conjugation we obtain
form (1) or (2). It can be observed that all the matrices described in the proposition are
idempotent.

We can classify R-, £-classes in P,_; into the following three types.
Type A: All basis vectors have exactly one 1.

Type B: Exactly one basis vector has two 1’s, the others have one 1.
Type C: More than one basis vector has two 1’s.

Provosrrion 11. All R - or £-classes of type C have exactly one indempotent which is in
an £- or R-class of type A. All R- or £-classes of type B have two idempotents for £- or
R-classes of type A and one for £- or R-classes of type B. All R- or L-classes of type A
have one idempotent for £- or R-classes of type A.

Proof. This follows from Proposition 10. Thus the matrix P’ has the form

A B C
A
B 0
C 0 0

where P'(A, A) and P'(B, B) are permutation matrices, P'(A, B) has exactly two 1’s in
each column, P'(A, C) has exactly one 1 in each column, and the matrix P’ is symmetric.
Similar results hold for the trace semigroup of the %-class which contains rank k
partial permutations in B,. Let T; be the subsemigroup of this trace semigroup consisting
of 0 and all matrices in the @-class which have at least (n—k —1) zero rows and at least
(n—k—1) zero columns. We can specialize further by assuming the row and column
spaces are of types A, B only. Then the matrix P', if partitioned into (A, A), (A, B),
(B, A) and (B, B) blocks, will be symmetric, with the (A, A) and (B, B) blocks being
permutation matrices. Also the (A, B) block will have exactly two 1’s in each column. No
non-trivial partition in which all blocks consist entirely of 1’s or entirely of zeros is
possible for this matrix. So we must have one-to-one mappings on - (£-) classes.

LemmA 12. D, consists entirely of nonsingular matrices.

Proof. Otherwise D, must be the @ -class of partial permutations of some rank k less
than n. We have a mapping from the T; above to the trace semigroup of rank 1 matrices,
or a trace semigroup of rank 2 matrices for which (1, 1, ..., 1) is both a row basis vector
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and a column basis vector, or the matrices of Lemma 7. In the last case, symmetric group
action implies the mapping on trace semigroups is epimorphic. But since the P’ matrices
are different, this is impossible.

Suppose the image consists of rank 1 matrices. Then since the (A, A) and (B, B)
blocks of P’ in the domain are permutation matrices, and are invariant under multiplica-
tion by permutation matrices, both must map to the set of rank 1 matrices with only one
non-zero entry. But this is impossible. Suppose the image consists of rank 2 matrices in
which (1,1,...,1) is both a row basis vector and column basis vector. For both types A
and B, since the P’ matrix has permutation matrices for its (A, A) and (B, B) blocks, the
number of 1’s in a row with less than n 1’s plus the number of 1’s in a column with less
than n 1’s must equal n. Symbolically we may write:

A - (al’ a2)’ a1+a2= n,
B — (by, by), b,+b,=n,

where the numbers denote the number of 1’s in rows and columns which have less than n
1’s. The condition on the (A, B) and (B, A) blocks implies a;+b,=n—1 and a,+b, =
n—1. But these contradict the equations above.

From now on we will usually assume that n=3 (the case n=2 can be treated
separately) and that h(x)=x on the symmetric group (by composing h with an au-
tomorphism).

Let x denote the element I, + E(2 1) (where E(i j) has a 1 in location (i, j) and zeros
elsewhere).

LemMa 13. If h is of Type II and is not an automorphism and h(0)=0, and h(g)=g
for ge S, then h(x)=0 or h(x)=E( 1) or h(x)=E(22).

Proof. If P is the transposition (12) we have the following relations on h(x).
(1) h(x) is invariant under conjugation by elements of S, _,.

(2) h(x)*=h(x).

(3) h(x)Ph(x)=0.

The first property implies that h(x) can be partitioned in the form

a b C
d e F|,
G H K

where a, e are 1x1 and K is (n—2)X(n—2). Alsoby (1) K mustbe I,_,, J,_,, 0, 0r I’ _,
(the complement of I,_,). Also, the matrices C, F, G, H will each contain either all 1’s or
all zeros.

Condition 3 implies K is zero, and at most one of a, b, d, e is nonzero. Condition 2
and K =0 and Condition 3 imply either both C, F are zero or both G, H are zero. By
symmetry under transposition assume C, F are zero. By (3), b and d are zero. By
symmetry under conjugation by P assume e=0. If a=0 then (2) implies h(x)=0.
Assume a =1. Then (2) implies H=0. If G=0 we have h(x)=E(11). So assume G
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consists entirely of 1’s. By transposition and conjugation by P we have 4 cases. However the
resulting semigroup can always be described by

(a. B)(. 6)={(a, 8) if B#,

{ 0 otherwise.

Here a, B, v, 8 are numbers from 1 to n. The image of x will be (1,2) or (2,1). Let Q be

the transposition (2 3). Then x(QxQ)=(QxQ)x, but this relation will not be satisfied on
h(x). This contradiction rules out the case where G consists of 1's.

Lemma 14, If his of Type II and is not an automorphism and if h(x) = x for x € S,, and
h(0)=1J, then h(x) is obtained from one of the following matrices by taking a possible
transpose and a possible conjugation by (12):

| M

a&-
—
1]
:
NI
1]
—
:
T R
=
[
S S
1]
—
1]
U
I I
1
.
:
o
:
—
o=y —
[
3 o
L
[ M—— |

—
o
=;~4
(8]
—

Here 1 represents a vector containing only 1 components.

Proof. We have

(1) h(x) is invariant under congugation by S, _,,
(2) h(x)*=h(x),

3) h(x)Ph(x)=1.

Property (1) implies that h(x) can be partitioned as

a b C
[d e FJ,
G H K

where K is 0, I,_,, J._,, or I’_,, and the other blocks contain all 1’s or all 0’s. If we
replace zero blocks by 0 and nonzero blocks by 1 we must have a 3 X3 matrix which
solves (2) and (3).

We may first find all 3xX3 matrices M which satisfy M>=M, MPM =] for some
transposition P. Up to conjugation and transposition they are

1 11 1 0 0 1 00 100
1 1 1}, [1 1 1], [1 1 1, |1 1 1}.
1 11 1 0 0 1 01 111

(First show some row or column has three 1’s, make it the first column, then if M# J, the
first row has one or two 1’s. If two, M has only two zeros and by transposition and
conjugation they can be made the first two, etc.) It can next be observed that for
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P =(1 2), the solutions must be these up to transposition and conjugation by (1 2). The first
and last two forms yield those stated in the lemma. It can be observed that h(x)?>= h(x)
implies that K has only the given forms. Now we will suppose h(x) has the block form

1 00
1 1 1]
100

The semigroup of such matrices together with 0 can be described by
(n,s) if m#r,

J ifm=r

(n, m)(r, s) ={

If Q is (23) we have x(QxQ)=(QxQ)x, yet (1,2)(1, 3) or (2, 1)(3, 1) will not commute.
This contradiction rules out the second form.

Tueorem 15. All endomorphisms of B, have one of the following forms, up to

composition with an automorphism, for n=3, where x denotes the matrix having 1’s
precisely on the main diagonal and in location (2, 1).

(1) The identity.

(2) An endomorphism which induces a non-trivial quotient on the symmetric group and
sends all regular elements to a single element of the image.

(3) An endomorphism which is the identity on the symmetric group and sends 0 to 0
and sends all regular singular elements to 0 and sends x to E(1,1) or E22) or 0.

(4) An endomorphism which is the identity on the symmetric group and sends 0 to J
and all singular regular matrices to J and sends x to J or to a matrix which is one of

1103 0 110 0

S el N A B L
ity T i T [t :
s e I e e LA
110 L, 110 T,

up to transposition or conjugation by (12).

This theorem is the sum of the preceding lemmas.

It can be observed that since x, a partial permutation, and S(n) generate all regular
elements, the images of these are prescribed. In some of the above cases regular elements
may go to zero and some irregular elements may not go to zero. We think that all the
cases listed are represented by actual endomorphisms, but will prove only one case below.

DEerFinmmiON. An n X n Boolean matrix A is fully indecomposable if and only if there
do not exist permutation matrices P, Q such that PAQ has the block form

-2

main diagonal blocks being square.
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This definition is equivalent to the fact that if a; =0 for (i, )eRxS, and R, S are
nonempty then |R|+|S|<n. (See Schwarz [10].)

ProrosITION 16. Let x be a Boolean matrix. Then x has permanent 1 as a matrix over
Z if and only if x is cogredient to a subtriangular matrix with 1’s down its diagonal.

Proof. We prove this by induction. If x is partly decomposable we can reduce the
problem to that for smaller matrices. But it is known that all fully indecomposable
(0, 1)-matrices have permanent at least 2. In fact by the Hall-Koenig theorem a fully
indecomposable matrix has a generalized diagonal passing through each 1 entry. (See
Ryser [7].)

ProposiTiON 17. Let x,y be Boolean matrices of permanent 1 as matrices over Z.
Suppose there is no integer i such that x has an off-diagonal 1 in column i and y has an
off-diagonal 1 in row i. Suppose further that the identity is the unique permutation contained
in x and the unique permutation contained in y. Then xy has permanent 1.

Proof. Suppose there is a non-identity permutation 7 contained in xy. The hypothesis
implies xy=x+y. Let z be a cycle of 7 which has size larger than 1. Then z consists of
off-diagonal elements contained in x or y. If z were entirely from x or entirely from vy,
then x or y would have permanent larger than 1. If z contains elements from both, let i, j
from x be followed by r, s from y in the cycle. The definition of a cycle implies j = r, and
the hypothesis of the proposition is contradicted."

ProposITION 18. Let h be the mapping B,, — B, defined as follows: if x does not have
permanent 1, h(x)=J; if x has permanent 1 and contains the identity matrix, h(x) is the
matrix M such that M(i,j)=1 iff i=j or x has an off-diagonal 1 in row i or x has an
off-diagonal 1 in column j; for other elements of permanent 1, define h(Px)= Ph(x) for
permutation matrices P. Then h is an endomorphism.

Proof. We observe that h commutes with congugation so that h(PxQ)= Ph(x)Q.
Consider h(xy). Suppose h(xy)=J. If x or y does not have permanent 1, h(xy)=
h(x)h(y). If x and y do have permanent 1, and xy does not, then Proposition 17 implies
that h(x)h(y) is J. If x and y have permanent 1 and xy has permanent 1, a computation
shows that h(x)h(y) = h(xy). If h(xy) is not J but one of x, y does not have permanent 1,
we have a product of two matrices, one of which does not have permanent 1, giving a
matrix of permanent 1. Then one of the factors must have permanent zero. Therefore it
will have an rXs block of zeros, where r+s=n-+1. The Schein rank of a matrix is the
least number of rank 1 matrices whose sum is given matrix. A matrix with an rx s block
of zeros will have Schein rank less than n. Therefore the Schein rank of the product will
be less than n. Write the product in subtriangular form. Then two diagonal 1’s will be in
the same summand of a Schein decomposition. But this is impossible because no 1’s occur
above the diagonal in the product. So a permanent 1 matrix can be factored only by
permanent 1 matrices. This proves the proposition.
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