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Abstract

Vertices arrive sequentially in space and are joined to existing vertices at random according
to a preferential rule combining degree and spatial proximity. We investigate phase
transitions in the resulting graph as the relative strengths of these two components of the
attachment rule are varied.
Previous work of one of the authors showed that when the geometric component is weak,
the limiting degree sequence mimics the standard Barabási–Albert preferential attachment
model. We show that at the other extreme, in the case of a sufficiently strong geometric
component, the limiting degree sequence mimics a purely geometric model, the on-line
nearest-neighbour graph, for which we prove some extensions of known results. We also
show the presence of an intermediate regime, with behaviour distinct from both the on-
line nearest-neighbour graph and the Barabási–Albert model; in this regime, we obtain a
stretched exponential upper bound on the degree sequence.
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1. Introduction

Stochastic models in which a network evolves via the sequential addition of new nodes, each
connected by an edge to an existing node in the graph according to some probabilistic rule, have
been the subject of an explosion of interest over the past decade or so, motivated by real-world
graphs such as those associated with social networks or the internet. The subject of this paper is
a model whose connectivity rule combines degree-based preferential attachment with a spatial
component; we describe our model in detail below. This model, previously studied in [11], is
a variant of the geometric preferential attachment model of Flaxman et al. [7], [8], which itself
can be viewed as a generalization of an earlier model of Manna and Sen [12]. A continuous
time model with a similar flavour has recently been studied by Jacob and Mörters [9].

In a sense to be explained in this paper, the behaviour of the model studied here interpolates
between pure preferential attachment (essentially the well-known Barabási–Albert model) and
a purely geometric model (the on-line nearest-neighbour graph). It was shown in [11] that for a
sufficiently weak geometric component of the attachment rule, the limiting degree distribution
coincides with that of the Barabási–Albert model, which famously has a ‘scale-free’ or ‘power-
law’ degree distribution [2], [10].
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The focus of the present paper is the complementary setting, in which the geometric com-
ponent has a significant impact. We show that in the extreme case of a dominant geometric
effect, the model behaves similarly to the on-line nearest-neighbour graph, which by contrast
has a degree distribution with exponential tails (cf. [1]). We also study an intermediate regime
in which the model behaves differently from both of the extreme cases, and in which the degree
distribution satisfies a stretched exponential tail bound. Thus, we demonstrate the existence of
nontrivial phase transitions.

In the next section we describe our models precisely and state our main results.

2. Random spatial graph models and main results

2.1. Notation

Write N := {1, 2, . . .}, Z+ := {0, 1, 2, . . .}, and R+ := [0, ∞). The vertices of our
graphs are associated with sites in S ⊂ R

d , assumed to be compact, convex, and of positive d-
dimensional Lebesgue measure. The locations of the sites are X0, X1, . . . , independent random
variables with density f supported on S. For n ∈ N, set Xn := {X0, . . . , Xn}. We assume
throughout that f is bounded away from 0 and ∞:

0 < λ0 := inf
x∈S

f (x) ≤ sup
x∈S

f (x) =: λ1 < ∞. (2.1)

We write ‖ · ‖ for the Euclidean norm on R
d , and ρ(x, y) = ‖x −y‖ for the Euclidean distance

between x and y in R
d . Denote by B(x; r) the open Euclidean d-ball centred at x ∈ R

d with
radius r > 0. Throughout we understand log x to stand for max{0, log x}. Let #A denote the
number of elements of a finite set A.

2.2. On-line nearest-neighbour graph

The on-line nearest-neighbour graph (ONG) is constructed on points arriving sequentially
in R

d by connecting each point after the first to its nearest predecessor. The ONG is a natural
and basic model of evolving spatial networks. It is a special case (or limiting case) of several
models that have appeared in the literature, including a version of the Fabrikant, Koutsoupias
and Papadimitriou (FKP) network model [1], [5] and geometric preferential attachment models
such as [7], [11], and [12] (specifically, it is the ‘α = −∞’ case of the model of Manna and
Sen [12]); one contribution of the present paper is to explore this latter connection. The name
‘on-line nearest-neighbour graph’ was apparently introduced by Penrose [16].

In the ONG on (X0, . . . , Xn), the nth edge (n ∈ N) is between Xn and its almost surely
(a.s.) unique nearest neighbour among Xn−1. In other words, writing

η1(n) := arg min
i∈{0,...,n−1}

ρ(Xn, Xi), (2.2)

the ONG on (X0, . . . , Xn) consists of the edges (i, η1(i)) for 1 ≤ i ≤ n; it is natural to view
these as directed edges when constructing the graph, but we largely treat them as undirected.
We call Xη1(n) the on-line nearest neighbour of Xn.

Let degn(i) denote the degree of vertex i in the ONG on (X0, . . . , Xn). Let NONG
n (k) denote

the number of vertices with degree at least k in the ONG on (X0, . . . , Xn):

NONG
n (k) =

n∑
i=0

1{degn(i) ≥ k}.

https://doi.org/10.1239/aap/1435236988 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1435236988


Random geometric preferential attachment graphs 567

We study the asymptotic degree sequence, i.e. the asymptotic proportion of vertices with degree
at least k (for each k); for convenience we work with n−1NONG

n (k).
Part of the statement of our main result on the ONG, Theorem 2.1 below, is that, for each

k, limn→∞ n−1
E[NONG

n (k)] exists; this was stated, apparently without proof, in [1, Section 2],
but can be justified for the ONG using stabilization arguments of Penrose [16], as we explain
in Section 6 below. Stabilization also provides an explicit description of the limit in terms
of a version of the ONG defined on an infinite Poisson point process, as we describe next; in
particular, the limit depends only on d and not on S or f .

Let H be a unit-rate homogeneous Poisson point process on R
d × [0, 1]; the [0, 1]-valued

marks play the role of time in the finite ONG. For u ∈ [0, 1], let Hu := H ∩ (Rd × [0, u]),
those Poisson points with marks in [0, u]. For x, y ∈ R

d let Bx(y) be the open ball with centre
y whose boundary includes x. Given x ∈ R

d and u ∈ [0, 1], let

ξ(x, u; H) := 1 +
∑

(y,v)∈H ,v>u

1{Hv ∩ (Bx(y) × [0, 1]) = {(y, v)}}.

By stabilization for the ONG (see [16]), ξ(x, u; H) < ∞ a.s. for any x ∈ R
d and any u ∈ (0, 1).

We call ξ(x, u; H) the degree of (x, u) in the infinite Poisson on-line nearest-neighbour graph,
defined locally by joining each point to the nearest Poisson point with mark equal to or less than
the mark of the given point; note that (x, u) itself need not be in H . Let U denote a uniform
[0, 1] random variable, independent of H .

Theorem 2.1. Let d ∈ N. Then for any k ∈ N,

lim
n→∞ n−1NONG

n (k) = lim
n→∞ n−1

E[NONG
n (k)] = P[ξ(0, U ; H) ≥ k] =: ρk, (2.3)

the first limit equality holding a.s. and in L1. Here ρk ∈ [0, 1] are nonincreasing with ρ1 = 1,
limk→∞ ρk = 0, and

∑
k∈N

ρk = 2. Moreover, there exist finite positive constants A, A′, C,
and C′ such that, for all k ∈ N,

A′e−C′k ≤ ρk ≤ Ae−Ck, (2.4)

and, more precisely,

1
2 log(1 + (22d − 1)−1) ≤ lim inf

k→∞ (−k−1 log ρk) ≤ lim sup
k→∞

(−k−1 log ρk) ≤ 1. (2.5)

Finally, there exists a constant D < ∞ for which, a.s., for all sufficiently large n,

max
0≤i≤n

degn(i) ≤ D log n. (2.6)

This result extends a result of Berger et al. [1]. Specifically, [1, Theorem 3] showed that

A′e−C′k ≤ lim inf
n→∞ n−1

E[NONG
n (k)] ≤ lim sup

n→∞
n−1

E[NONG
n (k)] ≤ Ae−Ck,

in the special case where d = 2 and f is the indicator of the unit square S = (0, 1)2. Our
proof of Theorem 2.1, which we give in Section 6 below, is based in part on the proof of
the analogous result in [1], with additional arguments required to obtain the existence of the
limit and the almost-sure convergence in (2.3). Some extra work is also needed to obtain the
quantitative bounds in (2.5): the d = 2 case of the lower bound, 1

2 log 16
15 , is contained in the

argument of [1]; the other bounds are new.

https://doi.org/10.1239/aap/1435236988 Published online by Cambridge University Press

https://doi.org/10.1239/aap/1435236988


568 J. JORDAN AND A. R. WADE

Table 1: Estimated P[ξ(0, U ; H) = k] (4dp) for 1 ≤ k ≤ 10, for d ∈ {1, 2, 100}. For each d, the
estimates are based on 500 simulations with n = 105 for f uniform on the d-dimensional torus, to avoid

finite-sample boundary effects.

Degree (k)

1 2 3 4 5 6 7 8 9 10

d = 1 0.4728 0.2675 0.1394 0.0670 0.0304 0.0132 0.0056 0.0024 0.0001 0.0000

d = 2 0.4777 0.2636 0.1369 0.0668 0.0308 0.0137 0.0060 0.0026 0.0001 0.0000

d = 100 0.4999 0.2501 0.1250 0.0625 0.0312 0.0156 0.0078 0.0039 0.0002 0.0001

Remark 2.1. In view of (2.5), it is natural to conjecture that, for each d ∈ N,

lim
k→∞(−k−1 log ρk) = μ(d) exists in (0, 1];

the upper bound of 1 comes from (2.5). In [18, Section 7.6.5] it was conjectured that one might
have μ(d) = μ = 1. The simpler, nonspatial, uniform attachment model in which vertex n is
connected uniformly at random to a vertex from {0, 1, . . . , n − 1} leads to an analogous result
with μ = log 2, as follows from [2, Section 4]. We think it unlikely that μ(d) ∈ {1, log 2}
for any d ∈ N; we conjecture, however, that limd→∞ μ(d) = log 2. Simulations suggest that
μ(1) ≈ 0.79, μ(2) ≈ 0.77, and μ(100) ≈ 0.69; cf. Table 1.

2.3. Geometric preferential attachment graph

The geometric preferential attachment (GPA) model that we study is as follows; often our
notation coincides with [11]. We define a (random) sequence of finite graphs Gn = (Vn, En),
n ∈ N. The vertex set of Gn is Vn = {0, 1, . . . , n}. For v ∈ Vn, we denote by degn(v) the
degree of v in the GPA graph Gn (viewed as an undirected graph); this notation is the same as
for degrees in the ONG, but the graph under consideration will be clear in context.

The construction uses an attractiveness function F : (0, ∞) → (0, ∞). Recall that X0,

X1, . . . are random sites in S. For simplicity, we start with G1 = (V1, E1) consisting of
vertices with labels 0 and 1 joined by a single edge, so V1 = {0, 1} and E1 = {(1, 0)}. Vertices
0 and 1 are associated with sites X0 and X1 in S, respectively.

We proceed via iterated addition of vertices to construct Gn+1 = (Vn+1, En+1) from Gn =
(Vn, En), n ∈ N. Given Gn, n ∈ N, and the spatial locations Xn of its vertices, we add a vertex
with label n + 1 at site Xn+1 ∈ S, and we add a new edge (n + 1, vn+1) where vn+1 is chosen
randomly from Vn with distribution specified by

P[vn+1 = v | Gn, Xn+1] = degn(v)F (ρ(Xv, Xn+1))

Dn(Xn+1)
, v ∈ Vn, (2.7)

where for n ∈ N and x ∈ S, Dn(x) := ∑
v∈Vn

degn(v)F (ρ(Xv, x)).
We call Gn so constructed a GPA graph with attractiveness function F . In [11], it was

assumed that
∫
S

F (ρ(x, y))f (y) dy < ∞, so F cannot blow up too rapidly at 0. In this paper,
our primary interest is in F for which this condition is not satisfied.

2.4. The strong geometric regime

For γ > 1, define Fγ for r > 0 by Fγ (r) := exp{(log(1/r))γ }. Note that Fγ (r) blows up at
0 faster than r−s for any power s. Recall that the convention log x ≡ max{0, log x} is in force,
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so Fγ (r) = 1 for r ≥ 1. Also, Fγ (r) is strictly decreasing for r ∈ (0, 1), with Fγ (r) → ∞ as
r ↓ 0.

Our main result in this setting (i) gives an almost-sure degree bound analogous to (2.6) above
for the ONG, and (ii) shows that the limiting degree sequence for the GPA graph is the same as
for the ONG, for a strong enough geometric component to the interaction (under the condition
γ > 3

2 ). Let NGPA
n (k) denote the number of vertices with degree at least k in the GPA graph Gn.

Theorem 2.2. Suppose that F = Fγ for some γ > 1.

(i) For any ν ∈ (0, 1) with ν > 2 − γ , a.s. for all sufficiently large n,

max
0≤i≤n

degn(i) ≤ exp{(log n)ν}. (2.8)

(ii) Suppose that γ > 3
2 . Then limn→∞ P[vn = η1(n)] = 1 and

lim
n→∞ n−1

E

n∑
i=1

1{vi �= η1(i)} = 0. (2.9)

Moreover, for any k ∈ N,

lim
n→∞ n−1NGPA

n (k) = lim
n→∞ n−1

E[NGPA
n (k)] = ρk, (2.10)

the first limit equality holding in L1, where ρk is as in Theorem 2.1.

We give the proof of Theorem 2.2 in Section 4.

Conjecture 2.1. We suspect the conclusion of Theorem 2.2(ii) to hold for any γ > 1.

2.5. The intermediate regime: power-law attractiveness

Take F(r) = r−s for s ∈ (0, ∞). The next result contrasts with (2.9) in the strong geometric
attraction regime, and shows that in this case, in expectation, there is a nonnegligible proportion
of vertices not connecting to their nearest neighbour.

Theorem 2.3. Suppose that F(r) = r−s for s ∈ (0, ∞). Then lim supn→∞ P[vn = η1(n)] < 1
and

lim inf
n→∞ n−1

E

n∑
i=1

1{vi �= η1(i)} > 0. (2.11)

It was proved in Theorem 2.1 of [11] that in the s ∈ (0, d) case, under certain conditions
on S and f , the degree distribution of the GPA graph converges to a power-law distribution, as
in the Barabási–Albert model: limn→∞ n−1

E[NGPA
n (k)] = rk where rk ∼ 2k−2 as k → ∞.

In contrast, the next result gives a stretched exponential upper bound for the tail of the degree
distribution when s > d .

Theorem 2.4. Suppose that F(r) = r−s for s > d. For any γ ∈ (0, (s − d)/(2s − d)), there
exists a constant C < ∞ such that, for all k,

lim sup
n→∞

n−1NGPA
n (k) ≤ Ce−kγ

, a.s. and lim sup
n→∞

n−1
E[NGPA

n (k)] ≤ Ce−kγ

.
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This result confirms the presence of a phase transition in the character of the degree distri-
bution at s = d , as intimated in [11, Section 5] and in line with d ∈ {1, 2} simulation results of
[12] (who actually conjectured that the phase transition point was s = d − 1) and [6] (who did
suggest s = d for the transition). The stretched exponential for s > d is also consistent with
the observations of [6] and [12]. We remark that as s → ∞, Theorem 2.4 provides an upper
bound of order almost e−√

k .
The rest of the paper is organized as follows. In Section 3 we collect some preparatory

lemmas. In Section 4 we deal with the strong geometric regime, culminating in the proof of
Theorem 2.2. In Section 5 we deal with the case of power-law attractiveness, and present the
proofs of Theorems 2.3 and 2.4. Finally, in Section 6 we deal with the ONG and present the
proof of Theorem 2.1.

3. Preliminaries to the proofs

First we state a basic property of the set S, under our standing assumptions. Let ωd be the
volume of the unit-radius Euclidean d-ball, and set diam(S) := supx,y∈S ρ(x, y).

Lemma 3.1. There exists δS > 0 such that, for all r ∈ [0, diam(S)],
inf
x∈S

|B(x; r) ∩ S| ≥ δSωdrd .

Proof. Since S is convex, compact, and of positive measure, there exist x0 ∈ S and
r0 > 0 such that B(x0; r0) is contained in the interior of S. It suffices to suppose that either
(i) ρ(x, x0) ≥ 2r0, or (ii) ρ(x, x0) ≤ r0/2. To see this, suppose that r0/2 < ρ(x, x0) < 2r0.
Then we may carry out the argument for case (i) after having replaced r0 by r0/4, introducing
only a constant multiplicative factor into the argument.

So now suppose that (i) holds. For r ≤ r0, let C(x, r) denote the cone with apex x, axis
passing through x0, and half-angle θ(x, r) = sin−1(r/ρ(x, x0)). Since ρ(x, x0) ≤ diam(S),
θ(x, r) ≥ θ(r) := sin−1(r/diam(S)). By construction and convexity of S, C(x, r)∩S contains
the cone segment {y ∈ C(x, r) : ρ(x, y) ≤ ρ(x, x0) cos θ(x, r)}. So, if ρ(x, x0) ≥ 2r0, then
B(x; r) ∩ S contains the cone segment {y ∈ C(x, r) : ρ(x, y) ≤ r ∧ r0}, which has volume
bounded below by cdθ(r)d−1r , provided r ≤ r0, where cd > 0 is an absolute constant.
Hence, |B(x; r) ∩ S| is bounded below by a constant multiplied by rd , for all r ≤ r0.
The same conclusion follows if r ∈ (r0, diam(S)), using the lower bound cdθ(r0)

d−1r0 ≥
c′
d(r0/diam(S))drd for c′

d > 0 not depending on r .
Finally, in case (ii), we have that B(x; r)∩S contains the ball B(x; r ∧ (r0/2)), and a similar

argument to that for part (i) completes the proof.

We next present some basic results on nearest-neighbour distances. For n ∈ N, let

Zn := ρ(Xn; Xn−1) := min
0≤i≤n−1

ρ(Xn, Xi) = ρ(Xn, Xη1(n)),

the distance from Xn to its on-line nearest neighbour. Write x+ := x 1{x > 0}.
Lemma 3.2. Let δS > 0 be the constant in Lemma 3.1. Then for r > 0,

P[Zn ≥ r] ≤ (1 − δSλ0ωdrd)n 1{r ≤ diam(S)}; (3.1)

P[Zn ≥ r] ≥ ((1 − λ1ωdrd)+)n 1{r ≤ diam(S)}. (3.2)
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Proof. Conditional on Xn, we have, for any r > 0, a.s.,

P[Zn ≥ r | Xn] = P[S ∩ B(Xn; r) ∩ Xn−1 = ∅ | Xn]
=

(
1 −

∫
S∩B(Xn;r)

f (x) dx

)n

. (3.3)

Note that P[Zn > diam(S)] = 0, so it suffices to suppose that r ≤ diam(S). Then,

δSωdrd ≤ |S ∩ B(Xn; r)| ≤ ωdrd, a.s., (3.4)

for all r ≤ diam(S), by Lemma 3.1. It follows from (3.3) and (2.1) that P[Zn ≥ r | Xn] ≤
(1 − λ0|S ∩ B(Xn; r)|)n, which, with the first inequality in (3.4), gives (3.1). Similarly, (3.2)
follows from (3.3) and (2.1) with the second inequality in (3.4).

Next we state a simple but useful result on degrees, which is basically Markov’s inequality.
Write Nn(k) for NGPA

n (k) or NONG
n (k). Either graph is a tree, so using the degree sum formula

and interchanging the order of summation we obtain

2n =
n∑

i=0

degn(i) =
n∑

i=0

∑
k≥1

1{degn(i) ≥ k} =
∑
k≥1

Nn(k).

So for any k0 ∈ N, 2n ≥ ∑k0
k=1 Nn(k) ≥ k0Nn(k0), since Nn(·) is nonincreasing. Thus,

Nn(k) ≤ 2n

k
, a.s., for any k and n. (3.5)

Finally, we introduce some notation for dealing with conditional probabilities. Let Fn :=
σ(Xn, v2, v3, . . . , vn−1), the σ -algebra generated by the sites up to and including Xn and by
the edge choices made on previous steps. Then Fn contains all the information about Gn−1 as
well as X0, . . . , Xn, and (2.7) can be expressed as

P[vn = v | Fn] = degn−1(v)F (ρ(Xv, Xn))

Dn−1(Xn)
, v ∈ {0, . . . , n − 1}. (3.6)

Also set F̃n := σ(Xn, v2, v3, . . . , vn−1, vn), which adds to Fn information about Gn.

4. Proofs for the strong geometric regime

In this section we prove our results from Section 2.4. First we outline the central idea of
the proof of Theorem 2.2, to show that Xn joins to its on-line nearest neighbour Xη1(n) with
probability 1 − o(1) (cf. Lemma 4.3). By (3.6), this probability satisfies

P[vn = η1(n) | Fn] = degn−1(η1(n))F (Zn)

Dn−1(Xn)
.

For F = Fγ , the fact that Fγ is decreasing and the degree sum formula gives

Dn−1(Xn) =
n−1∑
i=0

degn−1(i)Fγ (ρ(Xi, Xn)) ≤ 2nFγ (Wn) + degn−1(η1(n))Fγ (Zn),
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where Wn is the distance from Xn to its second nearest neighbour among Xn−1, so

P[vn = η1(n) | Fn] ≥ 1 − 2nFγ (Wn)

Fγ (Zn)
.

With probability 1 − o(1), Wn > Zn + θn where θn = o(n−1/d), so to show P[vn = η1(n)] =
1 − o(1) it suffices to show that, as n → ∞,

nFγ (Zn + θn)

Fγ (Zn)
→ 0, in probability.

Taylor’s formula shows that this holds provided γ > 2. Further progress requires control of
both the vertex degrees and the number of ‘plausible alternatives’ for vn.

Theorem 2.2(i) gives sufficient control of degrees to achieve the γ > 3/2 case of The-
orem 2.2(ii). To achieve γ > 1 (cf. Conjecture 2.1) seems to need tighter control, and a
technique that enables one to replace almost-sure upper bounds growing with n by ‘typical’
statistics, as might be available given some suitable stabilization property, such as that enjoyed
by ONG. This seems to be a challenging problem.

For ν ∈ (0, 1) and n ≥ 2 set β(n, ν) := n−1/d exp{(log n)ν}, and let

E(n, ν) := {ρ(Xvn, Xn) ≥ β(n, ν)},
the event that the edge from vertex n connects to any vertex outside B(Xn; β(n, ν)).

Lemma 4.1. Suppose that F = Fγ for some γ > 1 and that ν ∈ (0, 1) with ν > 2 − γ . Then
for any p < ∞, as n → ∞,

P[E(n, ν)] = O(exp{−γ d1−γ (1 + o(1))(log n)γ+ν−1}) = O(n−p).

Proof. Note that for any ν ∈ (0, 1),

Fγ (β(n, ν)) = exp{d−γ (log n)γ − γ d1−γ (1 + o(1))(log n)γ+ν−1}. (4.1)

We obtain from (3.1) and (2.1) that

P[Zn > β(n, ν)] = O(exp{−δSλ0ωd exp{d(log n)ν}}) = O(exp{−(log n)K}), (4.2)

for any K < ∞. Fix ν ∈ (0, 1) and choose ν′ ∈ (0, ν). Then

P[E(n, ν)] ≤ P[Zn > β(n, ν′)] + P[E(n, ν) | Zn ≤ β(n, ν′)]. (4.3)

Suppose that Zn ≤ β(n, ν′). Then, since Fγ (r) is nonincreasing in r > 0,

degn−1(η1(n))Fγ (ρ(Xη1(n), Xn)) ≥ Fγ (Zn) ≥ Fγ (β(n, ν′)),

so that Dn−1(Xn) ≥ Fγ (β(n, ν′)), given Zn ≤ β(n, ν′). On the other hand, any vertex j < n

with Xj /∈ B(Xn; β(n, ν)) has degn−1(j)Fγ (ρ(Xj , Xn)) ≤ nFγ (β(n, ν)), using the crude
bound degn−1(j) ≤ n. Hence, by (2.7) and (4.1),

P[E(n, ν) | Zn ≤ β(n, ν′)]

=
n−1∑
j=0

P[{vn = j} ∩ E(n, ν) | Zn ≤ β(n, ν′)]

≤ n2Fγ (β(n, ν))

Fγ (β(n, ν′))
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= O(exp{2 log n − γ d1−γ (1 + o(1))((log n)γ+ν−1 − (log n)γ+ν′−1)})
= O(exp{−γ d1−γ (1 + o(1))(log n)γ+ν−1}), (4.4)

provided that γ + ν − 1 > 1, i.e. ν > 2 − γ , which we can ensure by choosing ν ∈ (0, 1) close
enough to 1 since γ > 1. The result now follows from (4.2), (4.3), and (4.4).

The next result is a bound on degrees that amounts to Theorem 2.2(i), and which will also
be an ingredient in our proof of Theorem 2.2(ii).

Lemma 4.2. Suppose that F = Fγ for some γ > 1. Then for any ν ∈ (0, 1) with ν > 2 − γ ,
a.s., for all but finitely many n ∈ N, (2.8) holds.

Proof. Let γ > 1 and ν > 2 − γ . By Lemma 4.1, P[E(j, ν)] = O(j−2). Hence, by
the Borel–Cantelli lemma, for only finitely many j ∈ N does the vertex j connect to a vertex
i < j with ρ(Xi, Xj ) ≥ β(j, ν). It follows that there exists some finite random variable
Dν = 1 + ∑∞

j=1 1(E(j, ν)) such that, for all n ∈ N and all i ∈ {0, 1, . . . , n},

degn(i) ≤ Dν +
n∑

j=i+1

ξi,j ,

where we set ξi,j := 1{ρ(Xj , Xi) ≤ β(j, ν)} for i �= j and ξi,i := 0. Hence,

max
0≤i≤n

degn(i) ≤ Dν + max
0≤i≤n

n∑
j=1

ξi,j . (4.5)

For fixed i, conditional on Xi , the n − 1 terms ξi,j with j �= i in the sum on the right-hand
side of (4.5) are independent and {0, 1}-valued, and a suitable version of Talagrand’s inequality
(see, e.g. [14, p. 81]) will show that their sum is concentrated around its mean (in fact, we only
need an upper bound here). Specifically, for n ∈ N,

E

n∑
j=1

ξi,j =
n∑

j=1

P[Xi ∈ B(Xj ; β(j, ν))] = �

( n∑
j=1

β(j, ν)d
)

, (4.6)

uniformly for i ∈ {1, . . . , n}, where the implicit constants depend on S, λ0 and λ1 (we use
Lemma 3.1 here). We claim that

n∑
j=1

β(j, ν)d = exp{d(log n)ν(1 + o(1))}. (4.7)

To verify (4.7), we combine the upper and lower bounds

n∑
j=1

β(j, ν)d ≤
n∑

j=1

1

j
exp{d(log n)ν} ≤ (1 + log n) exp{d(log n)ν},

and

n∑
j=1

β(j, ν)d ≥
n∑

j=�n/2�

1

n
exp

{
d

(
log

(
n

2

))ν}
≥ 1

2
exp

{
d

(
log

(
n

2

))ν}
.
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From (4.6) and (4.7), we have E
∑n

j=1 ξi,j = exp{d(log n)ν(1+o(1))}. Talagrand’s inequality
implies that for all n,

max
0≤i≤n

P

[ n∑
j=1

ξi,j > exp{2d(log n)ν}
]

≤ O(exp{−ed(log n)ν }),

which is O(n−3), say, so that Boole’s inequality yields

P

[
max

0≤i≤n

n∑
j=1

ξi,j > exp{2d(log n)ν}
]

= O(n−2).

Now, another application of the Borel–Cantelli lemma together with (4.5) completes the proof
of the lemma, noting that ν > 2 − γ was arbitrary.

The main step remaining in the proof of Theorem 2.2 is the following.

Lemma 4.3. Suppose that F = Fγ for γ > 3
2 . Then P[vn �= η1(n)] → 0 as n → ∞.

Proof. Take a sequence θn > 0 with θn = o(n−1/d), and, given Xn and Zn, define the shells
An := B(Xn; Zn + θn) \ B(Xn; Zn). Let an := #(An ∩ Xn−1 \ {Xη1(n)}), the number of
predecessors to Xn, other than its on-line nearest neighbour, inside An.

Conditional on Xn and Zn, the points of Xn−1 \ {Xη1(n)} are independent and identically
distributed (i.i.d.) on S \ B(Xn; Zn) with conditional distribution given for measurable � ⊆
S \ B(Xn; Zn) by P[· ∈ �] = ∫

�
gn(x) dx, where

gn(x) = f (x)

P[X0 ∈ S \ B(Xn; Zn) | Xn, Zn] .

Note that, a.s.,

P[X0 ∈ S \ B(Xn; Zn) | Xn, Zn] = 1 −
∫

S∩B(Xn;Zn)

f (x) dx ≥ 1 − λ1ωdZd
n ≥ 1

2
,

provided Zn ≤ (2λ1ωd)−1/d . Moreover, S ∩ An has volume bounded above by

ωd(Zn + θn)
d − ωdZd

n ≤ Cdθn(θ
d−1
n + Zd−1

n )

for some Cd < ∞ depending only on d . Hence, conditional on Xn and Zn, each of the n − 1
points X0, . . . , Xn−1, excluding Xη1(n), lands in An with probability at most∫

S∩An
f (x) dx

P[X0 ∈ S \ B(Xn; Zn) | Xn, Zn] ≤ 2λ1Cdθn(θ
d−1
n + Zd−1

n ) + 1{Zn > (2λ1ωd)−1/d}.

It follows that

E[an | Zn] ≤ 2λ1Cdnθn(θ
d−1
n + Zd−1

n ) + n 1{Zn > (2λ1ωd)−1/d}.
Taking expectations and using (3.1) we have nP[Zn > (2λ1ωd)−1/d ] = o(1), while, for any
α > 0, by another application of (3.1), for some C < ∞,

E[Zα
n ] =

∫ ∞

0
P[Zn > r1/α] dr ≤

∫ ∞

0
exp{−Cnrd/α} dr,
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which gives E[Zα
n ] = O(n−α/d). Hence, E[an] = O(θd

n n) + O(θnn
1/d) + o(1), which is o(1)

provided θn = o(n−1/d), so that, by Markov’s inequality, P[an > 0] ≤ E[an] = o(1).
Now we condition on the whole of Fn. Again take β(n, ν) = n−1/d exp{(log n)ν}. Let E′

n

denote the event that Xn is joined to a point outside B(Xn; Zn + θn):

E′
n := {ρ(Xvn, Xn) ≥ Zn + θn}.

Also, for a constant b > 1 (which we will later choose to be large), set

E′′
n := {Zn ≤ b−1n−1/d} ∪ {Zn ≥ bn−1/d}.

Finally, define the event (for another constant C to be chosen later)

E′′′
n := {#(Xn−1 ∩ B(Xn; β(n, ν))) ≥ C exp{d(log n)ν}}.

The ball B(Xn; β(n, ν)) has volume bounded above by ωdn−1 exp{d(log n)ν}. The events
{Xj ∈ B(Xn; β(n, ν))}, 0 ≤ j ≤ n − 1 are independent each with probability at most
λ1ωdn−1 exp{d(log n)ν}, so #(Xn−1 ∩ B(Xn; β(n, ν))) is stochastically dominated by a bi-
nomial (n, λ1ωdn−1 exp{d(log n)ν}) random variable. Standard binomial tail bounds show
that, for an appropriate C < ∞, P[E′′′

n ] = o(1).
Since {an = 0} ∩ (E′

n)
c implies that Xn is joined to its on-line nearest neighbour,

P[vn �= η1(n) | Fn] ≤ P[E′
n | Fn] 1({an = 0} ∩ (E′′

n)c ∩ (E′′′
n )c)

+ 1{an > 0} + 1(E′′
n) + 1(E′′′

n ). (4.8)

For any ε > 0, Lemma 3.2 shows that we can choose b and n0 sufficiently large so that
P[E′′

n] < ε for all n ≥ n0. We have already seen that P[an > 0] = o(1) and P[E′′′
n ] = o(1).

We also claim that

P[E′
n | Fn] 1({an = 0} ∩ (E′′

n)c ∩ (E′′′
n )c) = o(1), a.s. (4.9)

The bounded convergence theorem implies that the expectation of this last quantity is also
o(1), so taking expectations in (4.8) we see that for any ε > 0, we may choose b such that
lim supn→∞ P[vn �= η1(n)] ≤ ε. This gives the statement in the lemma.

It remains to prove the claim (4.9). First, we note that

Dn−1(Xn) ≥ degn−1(η1(n))Fγ (ρ(Xη1(n), Xn)) ≥ Fγ (Zn).

On the other hand, on {an = 0}, any alternative Xj to Xη1(n) among Xn−1 is at distance at least
Zn + θn from Xn, so that for j �= η1(n),

degn−1(j)Fγ (ρ(Xj , Xn)) ≤ exp{(log n)ν}Fγ (Zn + θn), a.s.,

for all n large enough, by Lemma 4.2, provided ν ∈ (0, 1) with ν > 2 − γ .
On (E′′′

n )c ∩ {an = 0}, the contribution of points inside B(Xn; β(n, ν)), other than Xη1(n),
to Dn−1(Xn) is bounded above by C exp{2d(log n)ν}Fγ (Zn + θn), since there are at most
O(exp{d(log n)ν}) of these points, their degrees are at most O(exp{(log n)ν}), a.s., by Lem-
ma 4.2, and they are all at distance at least Zn + θn from Xn. Moreover, similarly to as in the
proof of Lemma 4.1, the contribution to Dn−1(Xn) from any points outside B(Xn; β(n, ν)) is
at most n2Fγ (β(n, ν)).
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So from (3.6) we have, on {an = 0} ∩ (E′′′
n )c, for all n large enough,

P[E′
n | Fn] ≤ C exp{2d(log n)ν}Fγ (Zn + θn) + n2Fγ (β(n, ν))

Fγ (Zn)
.

Here, similarly to (4.4),

n2Fγ (β(n, ν))

Fγ (Zn)
= O(exp{−c(log n)γ+ν−1}),

for some c > 0, as long as ν > 2 − γ . Also, we have that, on (E′′
n)c,

Fγ (Zn + θn)

Fγ (Zn)
= exp

{(
log

(
1

Zn

))γ ((
1 + log(1 + (θn/Zn))

log Zn

)γ

− 1

)}

= exp{−c′(log n)γ−1n1/dθn(1 + o(1))},
for some c′ > 0, if θn = o(n−1/d). In particular, for γ − 1 > ν, we can choose θn =
n1/d(log n)1−γ+ν+ε for some ε > 0 and 1 − γ + ν + ε < 0. The constraints γ − 1 > ν and
ν > 2 − γ entail γ > 3

2 . With this choice of θn, we thus verify (4.9).

Now we can complete the proof of Theorem 2.2.

Proof of Theorem 2.2. Part (i) is Lemma 4.2. It remains to prove part (ii). Let Rn =∑n
i=1 1{vi �= η1(i)}. Then, by Lemma 4.3, ERn = o(n), which gives (2.9). Moreover, the

obvious coupling is such that, given Xn and Gn, one can transform the GPA graph Gn into
the ONG on the same vertex sequence by the reassignment of the endpoint with smaller index
of Rn edges, so affecting the degrees of at most 2Rn vertices. Hence, with this coupling, for
any k ∈ N, n−1|NGPA

n (k) − NONG
n (k)| ≤ 2n−1Rn, which tends to 0 in L1. Now the L1 limit

statement in (2.3) yields (2.10).

5. Proofs for power-law attractiveness

5.1. Rejecting on-line nearest-neighbours

We introduce some notation on Voronoi cells that will also be used in Section 6. Let Vn(i)

denote the (bounded) Voronoi cell of Xi with respect to Xn in S, i.e.

Vn(i) := {x ∈ S : ρ(x, Xi) < min{ρ(x, Xj ) : 0 ≤ j ≤ n, j �= i}}. (5.1)

We need an elementary result showing that Voronoi cells are unlikely to be very small.

Lemma 5.1. For any z > 0, with δS > 0 the constant in Lemma 3.1,

P[|Vn(i)| < z] ≤ 2dλ1δ
−1
S nz. (5.2)

Proof. We follow the idea from [1, p. 311]. If no Xj with 0 ≤ j ≤ n, j �= i lies in B(Xi; r),
then S ∩ B(Xi; r/2) ⊆ Vn(i) and, hence, |Vn(i)| ≥ δSωd(r/2)d by Lemma 3.1. That is,
P[|Vn(i)| ≥ δSωd(r/2)d ] ≥ P[Xn ∩ B(Xi; r) = {Xi}]. Complementation then shows that
|Vn(i)| < z (z > 0) implies that at least one of n points Xj falls in B(Xi; 2z1/d/(ωdδS)1/d).
Now (5.2) follows from an application of Boole’s inequality:

P[|Vn(i)| < z] ≤ nP[Xj ∈ B(Xi; 2z1/d/(ωdδS)1/d)] ≤ 2dδ−1
S λ1nz.
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Take F(r) = r−s for s ∈ (0, ∞). To prove Theorem 2.3, we consider the event {vn �= η1(n)}
that Xn is joined to a point other than its nearest neighbour.

Proof of Theorem 2.3. Extending the notation of (2.2), for � ∈ N we let η�(n) be the index
of the �th nearest neighbour of Xn among Xn−1. Again set Zn = ρ(Xn, Xη1(n)) and Wn =
ρ(Xn, Xη2(n)). Then by (3.6),

P[vn �= η1(n) | Fn]
P[vn = η1(n) | Fn] ≥ P[vn = η2(n) | Fn]

P[vn = η1(n) | Fn] ≥ F(Wn)

degn−1(η1(n))F (Zn)
.

Rearranging and using the fact that F(r) = r−s , we obtain

P[vn �= η1(n) | Fn] ≥ 1

1 + degn−1(η1(n))(Wn/Zn)s
≥ (Zn/Wn)

s

2 degn−1(η1(n))
. (5.3)

Then (2.11) will follow from (5.3) together with the following two claims: first, there exist
constants k0 ∈ N and θ0 ∈ (0, 1) such that

lim inf
n→∞ P[degn(η1(n + 1)) ≤ k0] ≥ 2θ0, (5.4)

and second, that for any θ > 0 there exist constants c, C ∈ (0, ∞) such that,

P[Zn ≥ cn−1/d ] ≥ 1 −
(

θ

3

)
, and P[Wn ≤ Cn−1/d ] ≥ 1 −

(
θ

3

)
(5.5)

for all sufficiently large n. Indeed, it follows from (5.5) that P[Zn/Wn ≥ c/C] ≥ 1 − (2θ0/3)

for suitable choice of c and C, so that, by (5.3) and (5.4), P[vn �= η1(n) | Fn] ≥ (1/2k0)(c/C)s

with probability at least θ0/3 for all sufficiently large n. Then, taking expectations, we
obtain (2.11). Thus, it remains to prove the claims (5.4) and (5.5).

The idea behind (5.4) is that a large proportion of vertices have degrees bounded above by
some k0, and the union of the corresponding Voronoi cells will have volume bounded uniformly
below in expectation, so that Xn+1 will have such a vertex as its nearest neighbour with strictly
positive probability. We formalize this idea.

With In(k) := {i ∈ {0, . . . , n} : degn(i) ≤ k}, we have #In(k) = n + 1 − NGPA
n (k + 1).

Taking k0 = 9, we obtain from (3.5) that #In(k0) ≥ 4n/5 for all n. Each vertex i ∈ In(k0) is
associated with a Voronoi cell Vn(i).

Let �n(r) = #{i ∈ {0, . . . , n} : |Vn(i)| ≥ r/n}. Then

E[�n(r)] =
n∑

i=0

P

[
|Vn(i)| ≥ r

n

]
= (n + 1)P

[
|Vn(i)| ≥ r

n

]
,

by exchangeability. Here, by (5.2), P[|Vn(i)| ≥ r/n] ≥ 1 − 2dλ1δ
−1
S r . Hence, we can (and

do) choose r = r0 sufficiently small so that E[�n(r0)] ≥ 9n/10, say. Then, by Markov’s
inequality and the fact that �n(r0) ≤ 1 + n,

P

[
�n(r0) ≤ n

2

]
≤ P

[
n + 1 − �n(r0) ≥ n

2

]
≤ 1 + (n/10)

n/2
≤ 1

4
for all n ≥ 40.

So P[�n(r0) ≥ n/2] ≥ 3
4 for all n ≥ 40. On {�n(r0) ≥ n/2}, since #In(k0) ≥ 4n/5, at least

3n/10 vertices in In(k0) have Voronoi cells of volume at least r0/n, so

P

[∣∣∣∣
⋃

i∈In(k0)

Vn(i)

∣∣∣∣ ≥ 3r0

10

]
≥ 3

4
, (5.6)
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for all sufficiently large n. Hence,

P[degn(η1(n + 1)) ≤ k0] ≥ P

[
Xn+1 ∈

⋃
i∈In(k0)

Vn(i)

]
≥ λ0E

[∣∣∣∣
⋃

i∈In(k0)

Vn(i)

∣∣∣∣
]
,

which with (5.6) gives (5.4), for 2θ0 = 9r0λ0/40 > 0.
Finally, (5.5) can be verified by a similar argument to Lemma 3.2.

5.2. Stretched exponential degree estimates

Throughout this section we take F(r) = r−s for s > d. By (3.6), for 0 ≤ i ≤ n − 1,

P[vn = i | Fn] = degn−1(i)ρ(Xi, Xn)
−s

∑n−1
j=0 degn−1(j)ρ(Xj , Xn)−s

.

Define, for any x ∈ S,

ζn−1(x) := n−s/d
n−1∑
j=0

ρ(Xj , x)−s . (5.7)

Then we can write

P[vn = i | Fn] ≤ degn−1(i)ρ(Xi, Xn)
−s

ns/dζn−1(Xn)
. (5.8)

The next result gives an estimate for the probability that ζn−1(Xn) is small.

Lemma 5.2. There exist constants C0 < ∞ and u0 > 0 such that, for all t > 0,

lim sup
n→∞

P[ζn−1(Xn) ≤ t] ≤ C0 exp{−u0t
−d/(s−d)}. (5.9)

Proof. First, for fixed x ∈ S, we have the tail estimate, for r > 0,

P[ρ(Xj , x)−s > r] = P[Xj ∈ B(x; r−1/s)] ≥ λ0δSωdr−d/s,

using (2.1) and the lower bound in (3.4). Hence, ζn−1(x) stochastically dominates ζn−1 :=
n−s/d

∑n−1
j=0 ξj , where ξj ∈ R+ are i.i.d. with P[ξj > r] = λ0δSωdr−d/s . Here, ζn−1 converges

in distribution as n → ∞ to a random variable ζ with a positive stable law of index d/s ∈ (0, 1).
Hence, for all x ∈ S and any t > 0,

lim sup
n→∞

P[ζn−1(x) ≤ t] ≤ lim
n→∞ P[ζn−1 ≤ t] = P[ζ ≤ t].

Given that ζ is a random variable with a positive stable law with index α ∈ (0, 1), for
p > 0 the random variable ζ−p satisfies E[exp(uζ−p)] < ∞ for u ≥ 0 in a neighbourhood
of zero, provided p ≤ α/(1 − α); see, e.g. the proof of Lemma 1 in [3]. Hence, there
exist u0 > 0 and C0 < ∞ such that, for p = d/(s − d) > 0, E[exp(u0ζ

−p)] ≤ C0.
Thus, P[ζ ≤ t] = P[exp(u0ζ

−p) ≥ exp(u0t
−p)], and the result now follows from Markov’s

inequality.

The next result is a conditional version of (5.9), given Xn−1. The proof uses a concentration
argument based on independently ‘resampling’ sites. Let X′

0, X
′
1, . . . be an independent copy

of the sequence X0, X1, . . . . For 0 ≤ i ≤ n, let Xi
n = (X0, . . . , Xi−1, X

′
i , Xi+1, . . . , Xn), the

sites Xn but with Xi replaced by X′
i .
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Lemma 5.3. There exist constants C1 < ∞ and u1 > 0 such that, for any t > 0, a.s.,

lim sup
n→∞

P[ζn−1(Xn) ≤ t | Xn−1] ≤ C1 exp{−u1t
−d/(s−d)}.

Proof. We approximate the indicator function 1[0,t] by χn
t : R+ → [0, 1] defined by

χn
t (x) :=

⎧⎪⎨
⎪⎩

1 if x ≤ t ,

1 − (x − t)nδ if t ≤ x ≤ t + n−δ ,

0 if x ≥ t + n−δ ,

where δ > 0 is a constant to be specified later. Then

P[ζn−1(Xn) ≤ t | Xn−1] = E[1[0,t](ζn−1(Xn)) | Xn−1] ≤ E[χn
t (ζn−1(Xn)) | Xn−1],

and χn
t has the one-sided Lipschitz property χn

t (r) − χn
t (s) ≤ nδ(s − r)+. Now

E[χn
t (ζn−1(Xn)) | Xn−1] =

∫
S

f (x)χn
t (ζn−1(x)) dx = φ(Xn−1)

for some measurable φ : Sn → [0, 1]. To obtain a concentration result for φ(Xn−1), we
estimate φ(Xi

n−1) − φ(Xn−1). We introduce the notation

ζ i
n−1(x) = ζn−1(x) + n−s/d(ρ(X′

i , x)−s − ρ(Xi, x)−s), (5.10)

the change in the quantity given by (5.7) on resampling Xi . Then, for rn > 0,

φ(Xi
n−1) − φ(Xn−1) ≤

∫
B(Xi ;rn)

f (x) dx

+
∫

S\B(Xi ;rn)

f (x)(χn
t (ζ i

n−1(x)) − χn
t (ζn−1(x))) dx

≤ λ1ωdrd
n +

∫
S\B(Xi ;rn)

nδf (x)(ζn−1(x) − ζ i
n−1(x))+ dx

using the one-sided Lipschitz property of χn
t . Now, by (5.10),

(ζn−1(x) − ζ i
n−1(x))+ ≤ n−s/dρ(x, Xi)

−s ≤ n−s/dr−s
n

provided x /∈ B(Xi; rn). So, we obtain φ(Xi
n−1) − φ(Xn−1) ≤ λ1ωdrd

n + nδn−s/dr−s
n .

Since s > d, we may choose δ > 0 such that (s/d) − δ > 1. Take rn = n−ν where
ν = ((s/d) − δ)/(s + d) > 0. Then we have that, for some constant C < ∞,

φ(Xi
n−1) − φ(Xn−1) ≤ Cn−d((s/d)−δ)/(s+d) ≤ Cn−d/(s+d).

A version of Talagrand’s inequality [13, Theorem 4.5] yields, for some c1 > 0,

P[|φ(Xn−1) − mn−1| ≥ r] ≤ 4 exp{−c1n
2d/(s+d)r2}, for all r > 0, (5.11)

where mn−1 is a median of φ(Xn−1). In turn, (5.11) implies, by Lemma 4.6 of [13], that |mn−1−
Eφ(Xn−1)| ≤ c2n

−d/(s+d) for some c2 < ∞. Here, Eφ(Xn−1) = E[χn
t (ζn−1(Xn))] ≥

P[ζn−1(Xn) ≤ t], which for a fixed t > 0 is bounded below uniformly in n, as can be proved
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using an analogous argument to the proof of Lemma 5.2, this time using the upper bound
in (3.4). It follows that, for some c3 > 0,

P[φ(Xn−1) ≥ 2Eφ(Xn−1)] ≤ 4 exp{−c3n
2d/(s+d)}. (5.12)

The right-hand side of (5.12) is summable in n, so the Borel–Cantelli lemma shows

P[ζn−1(Xn) ≤ t | Xn−1] ≤ φ(Xn−1) ≤ 2Eφ(Xn−1), a.s.,

for all but finitely many n. Here, for t > 0,

Eφ(Xn−1) ≤ P[ζn−1(Xn) ≤ t + n−δ] ≤ P[ζn−1(Xn) ≤ 2t]
for all large enough n. Now the statement follows from (5.9).

Choosing t = k−γ (s−d)/d with γ ∈ (0, 1) in Lemma 5.3, we obtain the key estimate

lim sup
n→∞

P[ζn−1(Xn) ≤ k−γ (s−d)/d | Xn−1] ≤ C1 exp{−u1k
γ }, a.s. (5.13)

In what follows, C2, C3, . . . represent constants not depending on n or k. We have

P[vn = i, ζn−1(Xn) > t | F̃n−1]
≤ P[ρ(Xi, Xn) ≤ Bn−1/d | F̃n−1]

+ P[vn = i, ρ(Xi, Xn) > Bn−1/d , ζn−1(Xn) > t | F̃n−1] (5.14)

for any B > 0 and any t > 0. The first term on the right-hand side of (5.14) is at most C2B
dn−1,

and the second term, by (5.8), is bounded above by

degn−1(i)

tns/d

∫
S

f (x)ρ(Xi, x)−s 1{ρ(Xi, x) > Bn−1/d} dx.

For s > d , the latter integral is bounded above by

C3

∫ ∞

Bn−1/d

ρ−sρd−1 dρ = C4B
d−sn(s/d)−1.

Hence, we obtain from (5.14) that

P[vn = i, ζn−1(Xn) > t | F̃n−1] ≤ n−1
(

C2B
d + C4

t
Bd−s degn−1(i)

)
. (5.15)

For ease of notation, let q
(n)
k be the proportion of vertices of Gn with degree at least k, so

that q(n)
k := (n + 1)−1NGPA

n (k). Then the proportion of vertices of Gn with degree k is equal to
q

(n)
k − q

(n)
k+1, so that (5.15) yields

P[degn−1(vn) = k, ζn−1(Xn) > t | F̃n−1] =
∑

i : degn−1(i)=k

P[vn = i, ζn−1(Xn) > t | F̃n−1]

≤ (q
(n−1)
k − q

(n−1)
k+1 )

(
C2B

d + C4

t
Bd−sk

)
.
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We take t = k−γ (s−d)/d for γ ∈ (0, 1), and choose B = k(γ /d)+(1/s)(1−γ ) to obtain

P[degn−1(vn) = k, ζn−1(Xn) > k−γ (s−d)/d | F̃n−1] ≤ C5(q
(n−1)
k − q

(n−1)
k+1 )kγ+(d/s)(1−γ ).

Now incorporating the case where ζn−1(Xn) is small, using (5.13), gives, a.s.,

P[degn−1(vn) = k | F̃n−1] ≤ C6e−u1k
γ + C5(q

(n−1)
k − q

(n−1)
k+1 )kβ, (5.16)

for all sufficiently large n, where we have set β = γ + (d/s)(1 − γ ). For any k, between times
n − 1 and n, the number of vertices of degree at least k either stays the same, or increases by
exactly 1 if and only if degn−1(vn) = k − 1, so that degn(vn) = k. Thus,

E[q(n)
k+1 | F̃n−1] − q

(n−1)
k+1 = 1

n + 1
(nq

(n−1)
k+1 + P[degn−1(vn) = k | F̃n−1]) − q

(n−1)
k+1 ,

and we may express (5.16) as

E[q(n)
k+1 | F̃n−1] − q

(n−1)
k+1 ≤ 1

n + 1
(C6e−u1k

γ + C5(q
(n−1)
k − q

(n−1)
k+1 )kβ − q

(n−1)
k+1 )

= 1

n + 1
(C6e−u1k

γ + q
(n−1)
k C5k

β − q
(n−1)
k+1 (1 + C5k

β)). (5.17)

If we suppose that q(n)
k ≤ τk for some τk and all sufficiently large n (which we can, of course,

always do for τk = 1) then (5.17) gives, for large enough n,

E[q(n)
k+1 | F̃n−1] − q

(n−1)
k+1 ≤ 1

n + 1
(C6e−u1k

γ + τkC5k
β − q

(n−1)
k+1 (1 + C5k

β)). (5.18)

The final step in the proof of Theorem 2.4 is an analysis of (5.18) that will enable us iteratively
to improve the bound τk; this uses the following stochastic approximation result, which is related
to Lemma 2.6 of [15] and of some independent interest.

Lemma 5.4. Let (Gn; n ∈ Z+) be a filtration. Let g be a bounded function on R+. For n ∈ Z+,
let Yn, rn, ξn be Gn-measurable random variables, with Yn ∈ R+, and

Yn+1 − Yn ≤ γn(g(Yn) + ξn+1 + rn) (5.19)

for constants γn > 0. Suppose also that

(i) E[ξn+1 | Gn] = 0 and E[ξ2
n+1 | Gn] ≤ C for some constant C < ∞;

(ii)
∑

n γn = ∞,
∑

n γ 2
n < ∞, and

∑
n γn|rn| < ∞ a.s.;

(iii) g(y) < −δ for y > y0 for constants δ > 0 and y0 ∈ R+.

Then lim supn→∞ Yn ≤ y0, a.s.

Proof. Summing (5.19) we obtain Yn − Y0 ≤ Mn + An for any n ∈ Z+, where

Mn =
n−1∑
k=0

γkξk+1 and An =
n−1∑
k=0

γk(g(Yk) + rk);
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the Gn-martingale Mn and Gn−1-measurable An constitute the Doob decomposition of the
process whose increments are the right-hand side of (5.19). By (i),

E[M2
n+1 − M2

n | Gn] = E[(Mn+1 − Mn)
2 | Gn] ≤ Cγ 2

n , a.s.,

which is summable, by (ii), so the increasing process associated with Mn is a.s. bounded.
Hence, Mn → M∞ a.s., for some finite limit M∞. Also, writing Rn = ∑n−1

k=0 γkrk , we have
Rn → R∞ a.s. for some finite limit R∞, by (ii). In particular, for any ε > 0, there exists an
a.s. finite N such that,

sup
n≥N

sup
m≥0

|Mn+m − Mn| ≤ ε

4
and sup

n≥N

sup
m≥0

|Rn+m − Rn| ≤ ε

4
.

Consider some n ≥ N for which Yn > y0. Let κn be the first time after n for which Y· ≤ y0.
Then, by summing (5.19) again, for m ≥ 0,

Y(n+m)∧κn
− Yn ≤ M(n+m)∧κn

− Mn + R(n+m)∧κn
− Rn +

(n+m)∧κn−1∑
k=n

γkg(Yk)

≤ ε

2
− δ

(n+m)∧κn−1∑
k=n

γk.

In particular, on {κn = ∞}, letting m → ∞ the left-hand side of the last display remains
bounded below by −Yn while the right-hand side tends to −∞, by (ii); hence κn < ∞ a.s., and
the process returns to the interval [0, y0] without exceeding Yn + ε. Moreover, Yn+1 − Yn ≤
ε/2 + γng(Yn) < ε, for all large enough n ≥ N , since g is bounded and γn → 0. Hence,
Yn ≤ y0 infinitely often, and, for all but finitely many such n, any exit from [0, y0] cannot
exceed y0 + ε; but starting from [y0, y0 + ε] the process returns to [0, y0] before reaching
y0 + 2ε. Hence, lim supn→∞ Yn ≤ y0 + 2ε, a.s. Since ε > 0 was arbitrary, the result follows.

Proof of Theorem 2.4. Setting

Gn = F̃n, Yn = q
(n)
k+1, γn = 1

n + 2
, rn = 0,

g(y) = C6e−u1k
γ + τkC5k

β − y(1 + C5k
β),

and

ξn+1 = (n + 2)(q
(n+1)
k+1 − E[q(n+1)

k+1 | F̃n]),
we apply Lemma 5.4 to (5.18). Note that, since NGPA

n (k) is F̃n-measurable,

ξn+1 = NGPA
n+1 (k + 1) − E[NGPA

n+1 (k + 1) | F̃n]
= NGPA

n+1 (k + 1) − NGPA
n (k + 1) − E[NGPA

n+1 (k + 1) − NGPA
n (k + 1) | F̃n],

which is uniformly bounded, since 0 ≤ NGPA
n+1 (k) − NGPA

n (k) ≤ 1, a.s. Hence, the conditions
of Lemma 5.4 are satisfied for any

y0 >
C6e−u1k

γ + τkC5k
β

1 + C5kβ
,
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and we deduce that

lim sup
n→∞

q
(n)
k+1 ≤ C6e−u1k

γ + τkC5k
β

1 + C5kβ
. (5.20)

In particular, if q
(n)
k ≤ τk for all but finitely many n, a.s., then (5.20) implies that q

(n)
k+1 ≤ τk+1

for all but finitely many n, a.s., where

τk+1 = 2C6e−u1k
γ + τkC5k

β

1 + C5kβ
. (5.21)

Defining σk > 0 via τk = 2C6σke−u1k
γ
, we obtain from (5.21), after some algebra,

σk+1 − σk =
(

1 − ak+1 + ak+1

1 + C5kβ

)
(1 − σk) − (1 − ak+1),

where ak+1 := exp{u1((k+1)γ −kγ )} = 1+γ u1k
γ−1+O(kγ−2) as k → ∞. Then, assuming

that β < 1 − γ , it is straightforward to check that

1 − ak+1 + ak+1

1 + C5kβ
∼ 1

C5kβ
as k → ∞.

Hence, we may apply Lemma 1 of [10] to see that limk→∞ σk = 1, provided β < 1 − γ , i.e.
γ < (s − d)/(2s − d). For any such γ , we thus obtain lim supn→∞ q

(n)
k ≤ τk ≤ 3C6e−u1k

γ
,

a.s., for all sufficiently large k, giving the almost sure statement in the theorem. Then the reverse
Fatou lemma yields the statement on expectations.

6. Proofs for the on-line nearest-neighbour graph

In this section we prove Theorem 2.1. Our argument extends the 2-dimensional argument
of [1, Section 3.1], which considered the uniform distribution on the square.

Recall the definition of the Voronoi cell Vn(i) from (5.1). Then

Vn+1(i) = Vn(i) ∩ {x ∈ S : ρ(x, Xi) < ρ(x, Xn+1)} ⊆ Vn(i). (6.1)

A key fact is provided by the following lemma, which will be used to show that the volume
of a Voronoi cell associated with a vertex in the ONG shrinks, on average, by a positive fraction
whenever a new vertex lands in the cell.

Lemma 6.1. Let R ⊆ S be convex, and let X be a random point in S distributed according to
the probability density f satisfying (2.1). For x0 ∈ R, let R′ = {x ∈ R : ρ(x, x0) < ρ(x, X)}.
Then there exists δ > 0 not depending on R or x0 such that

E[|R′| | X ∈ R] ≤ (1 − δ)E[|R|].

Proof. Without loss of generality, take x0 = 0 ∈ R. Partition R according to the Cartesian
orthants as R1, . . . , R2d . For each j , any two points x, y ∈ Rj have the same signs in
corresponding coordinates, so ‖x − y‖ ≤ ‖x + y‖, and, hence, (x + y)/2 is closer to x

(and to y) than to 0. Thus, given X ∈ Rj , any point x of R′′
j := {(X + y)/2 : y ∈ Rj } has

‖x − X‖ ≤ ‖x − 0‖, and, by convexity, R′′
j ⊆ Rj . Hence, given X ∈ Rj , R′ ⊆ R \ R′′

j . By
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construction, R′′
j is a translate of Rj scaled by a factor of 1

2 , so

E[|R′| | X ∈ R] ≤ |R| −
2d∑

j=1

2−d |Rj |P[X ∈ Rj | X ∈ R]

≤ |R| − 2−d

(
λ0

λ1

)
|R|−1

2d∑
j=1

|Rj |2,

using (2.1). Now, by Jensen’s inequality,
∑2d

j=1 |Rj |2 ≥ 2−d(
∑2d

j=1 |Rj |)2 = 2−d |R|2, and
the claimed result follows with δ = 2−2dλ0/λ1.

Next, we provide bounds on expectations for NONG
n (k).

Lemma 6.2. Let d ∈ N. Suppose that (2.1) holds. Then there exist finite positive constants A,
A′, C, and C′ such that, for all k ∈ N,

A′e−C′k ≤ lim inf
n→∞ n−1

E[NONG
n (k)] ≤ lim sup

n→∞
n−1

E[NONG
n (k)] ≤ Ae−Ck. (6.2)

Moreover, more precisely,

− lim inf
k→∞

(
k−1 log

(
lim inf
n→∞ n−1

E[NONG
n (k)]

))
≤ 1, (6.3)

and, in the case where f is the uniform density on S,

− lim sup
k→∞

(
k−1 log

(
lim sup
n→∞

n−1
E[NONG

n (k)]
))

≥ 1

2
log(1 + (22d − 1)−1). (6.4)

Proof. First we prove the upper bound in (6.2), using an argument based in part on [1,
Section 3.1]. Fix i ∈ Z+. Let t0 = i and for j ∈ N define recursively tj = min{t > tj−1 : Xt ∈
Vt−1(i)}, so that t1, t2, . . . are the times at which edges to Xi are created. Following [1, p. 311],
let Wj = Vtj (i).

Observe that if i has degree greater than k in the ONG on (X0, . . . , Xn), n ≥ i, then
necessarily tk ≤ n, and so also |Vn(i)| ≤ |Vtk (i)| = |Wk|, by (6.1). Hence,

P[degn(i) > k] ≤ P[|Wk| ≥ z] + P[|Vn(i)| ≤ z] for any z > 0. (6.5)

We bound each of the probabilities on the right-hand side of (6.5) in turn, and then optimize
the choice of z.

By definition, Xtj is distributed according to the density f , conditioned to fall in the convex
set Vtj −1(i) ⊆ Vtj−1(i) ⊆ S. Hence, from Lemma 6.1, it follows that E[|Wj |] ≤ (1 −
δ)E[|Wj−1|], where δ ∈ (0, 1) depends only on d and λ0/λ1, and

E[|Wj |] ≤ (1 − δ)jE[|Vi (i)|] = 1

i + 1
(1 − δ)j ,

since the vector (|Vi (0)|, . . . , |Vi (i)|) is exchangeable and its components sum to 1, so
E[|Vi (j)|] = 1/(i + 1). Markov’s inequality implies that, for any z > 0,

P[|Wj | ≥ z] ≤ 1

z

1

i + 1
(1 − δ)j . (6.6)
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The final term in (6.5) is bounded above by (5.2). Combining (6.5) with (6.6) and (5.2), we
obtain, for any z > 0, P[degn(i) > k] ≤ (1/z(i + 1))(1 − δ)k + Cnz, where C < ∞ depends
only on d, S, and λ1. The optimal bound is obtained on taking z = (1 − δ)k/2/

√
Cn(i + 1),

and we conclude

P[degn(i) > k] ≤ 2(1 − δ)k/2

√
Cn

i + 1
. (6.7)

The upper bound in (6.2) follows from (6.7), since

E[NONG
n (k)] =

n∑
i=0

P[degn(i) ≥ k] ≤ C′n(1 − δ)k/2,

for some C′ < ∞ not depending on k or n. The statement (6.4) also follows, since when
λ0 = λ1, we have from the proof of Lemma 6.1 that we may take δ = 2−2d .

To prove the lower bound in (6.2) as well as (6.3), we use a similar idea to that briefly
outlined for the analogous argument in [1, p. 311], but filling in the details takes some work,
and we must be more careful with our estimates to obtain the quantitative bound (6.3). First
note that, for j > i, the (unconditional) probability that Xj is joined to Xi is P[η1(j) = i] =
P[Xj ∈ Vj−1(i)] = 1/j . Write dn(i) := E[degn(i)]. Then, for i ∈ N,

dn(i) = 1 +
n∑

j=i+1

P[η1(j) = i] ≥
n∑

j=i

1

j
≥

∫ n

i

1

y
dy = log

(
n

i

)
.

Let θ > 1. For k ∈ Z+, let Hθ
n,k := N∩[1, e−θkn]. Then for any i ∈ Hθ

n,k , dn(i) ≥ log(n/i) ≥
θk. It follows that

E[NONG
n (k)] ≥

∑
i∈Hθ

n,k

P[degn(i) ≥ k] ≥
∑

i∈Hθ
n,k

P[degn(i) ≥ θ−1dn(i)]. (6.8)

Let w ∈ (1, ∞), to be specified later. Then w > 1 > 1/θ , and

wdn(i)P[degn(i) ≥ θ−1dn(i)] ≥ E[degn(i) 1{degn(i) ≥ θ−1dn(i)}]
− E[degn(i) 1{degn(i) > wdn(i)}]

≥ (1 − θ−1)dn(i) − E[degn(i) 1{degn(i) > wdn(i)}], (6.9)

using the fact that E[X 1{X ≥ x}] ≥ E[X] − x for any x ≥ 0 and any nonnegative random
variable X. By the Cauchy–Schwarz inequality, the final term in (6.9) satisfies

E[degn(i) 1{degn(i) > wdn(i)}] ≤ (E[degn(i)
2]P[degn(i) > wdn(i)])1/2. (6.10)

We claim that, given θ > 1, there exists w = w(θ) ∈ (1, ∞) such that

sup
i∈Hθ

n,k

(E[degn(i)
2]P[degn(i) > wdn(i)])1/2 ≤ e−θk for all n, k ∈ N. (6.11)

Given (6.11), which we verify at the end of this proof, we obtain from (6.9), (6.10), and (6.11)
that, for any n ∈ N and any k ∈ N,

w inf
i∈Hθ

n,k

P[degn(i) ≥ θ−1dn(i)] ≥ (1 − θ−1) − e−θk sup
i∈Hθ

n,k

1

dn(i)

≥ (1 − θ−1) − e−θk

θk
, (6.12)
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using the fact that dn(i) ≥ θk for i ∈ Hθ
n,k . To prove the lower bound in (6.2), it is enough to

fix θ = 2. Then (6.12) becomes, for any n ∈ N and any k ∈ N,

w inf
i∈H 2

n,k

P
[
degn(i) ≥ 1

2dn(i)
] ≥ 1

2 (1 − e−2) ≥ 3
8 ,

say, where w = w(2) is constant. Hence, from (6.8) we obtain, for all n, k ∈ N,

E[NONG
n (k)] ≥ w−1

∑
i∈H 2

n,k

3

8
≥ 3

8w
(e−2kn − 1),

which gives lim infn→∞ n−1
E[NONG

n (k)] ≥ (3/8w)e−2k .
To prove (6.3), we adapt the preceding argument. For any θ > 1, there exists k0 ∈ N such

that, for all k ≥ k0, the final expression on the right-hand side of (6.12) exceeds (1−θ−1)/2 > 0,
say. Then, similarly to before, we obtain, for all k ≥ k0 and n ∈ N,

E[NONG
n (k)] ≥ w−1

∑
i∈Hθ

n,k

(
1 − θ−1

2

)
≥ w−1

(
1 − θ−1

2

)
(e−θkn − 1).

First letting n → ∞ and then k → ∞, it follows that

lim sup
k→∞

(
−k−1 log(lim inf

n→∞ n−1
E[NONG

n (k)])
)

≤ θ.

Since θ > 1 was arbitrary, (6.3) follows.
It remains to establish the claim (6.11). To this end, an application of (6.7) shows that, for

constants C1, C2 < ∞ and c > 0, for all n ∈ N and 1 ≤ i ≤ n,

E[degn(i)
2] =

∞∑
k=0

P[degn(i) >
√

k] ≤ C1

√
n

i

∞∑
k=0

e−c
√

k ≤ C2

√
n

i
.

Another application of (6.7) shows that, for some constant C3 < ∞, for any w > 0,

P[degn(i) > wdn(i)] ≤ C3

√
n

i
e−cw log(n/i) = C3

(
n

i

)(1/2)−cw

.

Hence, we obtain, for all 1 ≤ i ≤ n,

(E[degn(i)
2]P[degn(i) > wdn(i)])1/2 ≤ C4

(
i

n

)(cw−1)/2

,

where C4 < ∞ is constant. Taking w > 3/c, we have, for any i ∈ Hθ
n,k ,

C4

(
i

n

)(cw−1)/2

≤ C4e−θke−(cw−3)θk/2,

since i/n ≤ e−θk for i ∈ Hθ
n,k . In particular, for all k ∈ N, we can choose w (depending on c,

C4, and θ ) such that C4e−(cw−3)θk/2 ≤ C4e−(cw−3)θ/2 ≤ 1. This verifies (6.11).

Next we have a concentration result for NONG
n (k).
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Lemma 6.3. Let d ∈ N. Suppose that (2.1) holds. Then

lim sup
n→∞

n−1 sup
k∈N

|NONG
n (k) − E[NONG

n (k)]| = 0, a.s. (6.13)

Proof. We use the resampling idea described before Lemma 5.3 and a modification of the
Azuma–Hoeffding inequality. Set Dn,i = E[NONG

n (k) | Gi] − E[NONG
n (k) | Gi−1], where

Gi = σ(X0, X1, . . . , Xi). In words, −Dn,i is equal to the expected (conditional on Gi) change
in NONG

n (k) on independently resampling Xi , and Dn,i , 1 ≤ i ≤ n is a martingale difference
sequence with

∑n
i=1 Dn,i = NONG

n (k) − E[NONG
n (k)].

We bound |Dn,i | in terms of degn(i) and degi
n(i), the degree of vertex i in the ONG on Xn

and Xi
n, respectively. On replacement of Xi by X′

i , the degree of vertex i may change, leading
to a change of ±1 in NONG

n,i (k) compared to NONG
n (k). The degrees of at most degn(i) − 1

other vertices increase (namely, those vertices that gain incoming edges that were previously
connected to Xi), while the degrees of at most degi

n(i) − 1 vertices decrease (namely, those
vertices that lose incoming edges reassigned to X′

i).
Hence, |Dn,i | ≤ degn(i) + degi

n(i). Now, for any r > 0,

P[|Dn,i | > r] ≤ P

[
degn(i) >

r

2

]
+ P

[
degi

n(i) >
r

2

]
= 2P

[
degn(i) >

r

2

]
,

since degi
n(i) and degn(i) are identically distributed. Hence, by (6.7), P[|Dn,i | > D log n] =

O(n−5), uniformly in i, choosing sufficiently large D ∈ (0, ∞); note that this bound is also
uniform in k. By a modification of the Azuma–Hoeffding inequality due to Chalker et al. [4,
Lemma 1], it follows that

P[|NONG
n (k) − E[NONG

n (k)]| > r] ≤
(

1 + 4n

r

)
n−4 + 2 exp

{
− r2

32D2n(log n)2

}

for any r > 0. Taking r = n3/4, say, shows that P[|NONG
n (k) − E[NONG

n (k)]| > n3/4] =
O(n−3), uniformly in k ∈ {1, . . . , n}, while for k > n, NONG

n (k) = 0 a.s. Hence,

∞∑
n=1

∑
k∈N

P[|NONG
n (k) − E[NONG

n (k)]| > n3/4] ≤ C

∞∑
n=1

n−2 < ∞.

The Borel–Cantelli lemma now yields (6.13).

Proof of Theorem 2.1. Penrose [16, Section 3.4] showed that functionals such as counts
of vertices of a given degree in the ONG satisfy stabilization (a form of local dependence).
This guarantees a law of large numbers of the form n−1NONG

n (k) → P[ξ(0, U ; H) ≥ k]
in probability: concretely, one may apply results of [19] or [17]. The bounded convergence
theorem gives n−1

E[NONG
n (k)] → P[ξ(0, U ; H) ≥ k], and Lemma 6.3 then shows that

convergence in probability can be replaced by almost sure convergence. The L1 convergence
follows from the bounded convergence theorem again. Thus, (2.3) holds.

Then, applying Lemma 6.2 with (2.3), (2.4) follows from (6.2). Given (2.3), the upper bound
in (2.5) follows from (6.3). Similarly, the lower bound in (2.5) follows from (6.4), noting that
the limit ρk is independent of the choice of f .

It is easy to see that ρk is nonincreasing with ρ1 = 1. Since
∑

k∈N
NONG

n (k) = 2n, twice
the number of edges in the ONG, dividing both sides of this last equality by n and letting
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n → ∞ we must have
∑

k∈N
ρk = 2; hence, also limk→∞ ρk = 0. For the final statement of

the theorem, we have from (6.7) that for any k > 0,

P

[
max

0≤i≤n
degn(i) > k

]
≤ (n + 1) max

0≤i≤n
P[degn(i) > k] ≤ Cn3/2e−ck

for some absolute constants c, C ∈ (0, ∞). Taking k = D log n, we can choose D ∈ (0, ∞)

for which this last bound is O(n−2); the Borel–Cantelli lemma then gives (2.6).
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