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SUMMARY

The increasing prevalence of extended-spectrum f-lactamase (ESBL)-producing Gram-negative
bacteria is a serious threat for current healthcare settings. In this study we investigated the
molecular epidemiology of ESBL-producing E. coli at the University Medical Center Gottingen
in Lower Saxony, Germany. All E. coli isolates with an ESBL phenotype were collected during
a 6-month period in 2014. Multilocus sequence typing and CTX-M characterization were
performed on 160 isolates. Of the ESBL-producing isolates 95-:6% were CTX-M positive.
Compared to recent Germany-wide studies, we found CTX-M-1 to occur in higher frequency
than CTX-M-15 (44-4% vs. 34:4%). CTX-M-14 and CTX-M-27 were detected at 9-4% and 5-0%,
respectively. The globally dominant sequence type (ST) 131, which is often associated with CTX-
M-15, occurred at a relatively low rate of 24%. Major non-ST131 sequence types were ST101
(5%), ST58 (5%), ST10 (4-4%), ST38 (4:4%), ST410 (3-8%) and ST453 (3-1%). Several of these
major sequence types were previously shown to be associated with livestock farming. Together,

our study indicates that E. coli lineage distribution in individual healthcare settings can
significantly differ from average numbers obtained in nationwide studies.
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Escherichia coli isolates from humans and livestock are
increasingly resistant to third- and fourth-generation
cephalosporins, such as cefotaxime, ceftazidime and
cefepime. The major cause of this resistance is the ex-
pression of plasmid or chromosomal located genes
encoding for either extended-spectrum-f-lactamases
(ESBLs) or for AmpC-f-lactamases [1-3]. The fre-
quency of individual ESBL genotypes and their associ-
ation with certain E. coli lineages and clones is
undergoing constant change. Over the past 20 years,
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ESBLs of the genotype CTX-M have emerged as pre-
dominant ESBLs in E. coli worldwide [4, 5]. From
the >100 different CTX-M variants described so far,
CTX-M-15 is currently the most frequent genotype
identified from ESBL-producing E. coli [6, T7].
CTX-M-15 is often associated with sequence type
(ST) 131 and serotype O25b, which is the predominant
lineage of extraintestinal pathogenic E. coli in recent
years [8, 9]. In a recent Germany-wide study, the
ESBL genotypes and multilocus sequence types of
233 ESBL-producing E. coli isolates obtained from
German hospitals and medical practices in 2011-2012
were determined [10]. Next to CTX-M-15 (50-4%),
the genotypes CTX-M-1 (28:4%) and CTX-M-14
(5:6%) were found to be the most common variants.
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Table 1. Clinical specimens of the isolates (n=160)*

ST1317% Non-STI131§||

Specimen N n (%) n (%)
Urine 79 23 (291) 56 (70-9)
Rectal swab 14 6(429) 8 (57'1)
Nasopharyngeal swab 10 0 (0) 10 (100)
Wound swab 9 0 (0) 9 (100)
Groin swab 8 3375 5(62-5)
Swab, other locations 13 2 (15-4) 11 (84:6)
Blood culture 6 1(16:7) 5(83-3)
Respiratory material 13 3231 10 (76°9)
Others 8 1(12-5) 7 (87-5)

* Median age of all patients: 72 years.

1 Median age of patients with ST131 isolates: 71 years.

1 Nine of 39 ST131 isolates were screening isolates.

§ Median age of patients with non-ST131 isolates: 72 years.
|| Twenty of 121 non-ST131 isolates were screening isolates.

In this study we characterized ESBL-producing E. coli
isolates from a single centre, the University Medical
Center Gottingen (UMG) in south Lower Saxony,
Germany. The UMG is a maximum-care hospital
with a capacity of about 1500 beds. Annually around
60 000 patients are admitted and about 173 000 patients
are seen in the different outpatient departments.
During November 2013 and May 2014 all E. coli
isolates from UMG with a cefotaxime resistance
>2 mg/l and/or a ceftazidime resistance >4 mg/l were
collected. Species identification was performed by
MALDI-TOF mass spectroscopy (Bruker, Germany).
Antibiotic resistance was determined by VITEK 2
analysis (bioMérieux, France). The collected isolates
were adjusted for re-isolates from the same patient,
resulting in a total of 160 isolates (Table 1), 79
(49-4%) of which were isolated from urine. The me-
dian age of patients was 72 years. Multilocus sequence
typing analysis was performed as previously described by
amplification and sequencing of fragments from seven
housekeeping genes [11]. The sequence type was deter-
mined using the University of Warwick database
(http://mlst.warwick.ac.uk/mlst/dbs/Ecoli). ST131 oc-
curred with an overall frequency of 24% (n = 39) in the
collection. Table 1 shows the ST131 proportion for the
individual clinical specimens. The specimens with
the highest ST131 prevalence were rectal swabs (42-9%,
n=14), groin swabs (37-5%, n=8) and urine (29-1%,
n="79). The remaining 76% (n = 121) belonged to 51 dif-
ferent sequence types. The most prevalent non-ST131
were ST101 (5:0%, n=38), ST58 (5:0%, n=28), ST10
(4-4%, n=17), ST38 (4-4%, n="T), ST410 (3:8%, n=16)
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and ST453 (3-1%, n=5) (Table 2). A list of all identified
sequence types is provided in Supplementary Table S1.

At least four (ST10, ST38, STS8, ST410) out of
these six major sequence types have been previously
described to be associated with animals and livestock
farming [10, 12-15]. Lower Saxony is known as im-
portant livestock producing state within Germany
[16]. ST38 was also reported to be isolated frequently
from healthy humans [17]. Interestingly, the two most
abundant non-ST131 sequence types (ST101 and
ST58) were identified only at a very low frequency
in a Germany-wide surveillance study [10], indicating
that significant local differences can occur in
sequence-type distribution of ESBL-positive E. coli.
Outside Germany, CTX-M-positive ST58 were iso-
lated from various animals, e.g. dogs, rooks and
poultry [18]. The globally successful ST101 was
found to be associated with the metallo-f-lactamase
NDM-1, which confers carbapenem resistance, but
was also shown to possess less virulence factors than
ST131 [19]. ST453 was described as an emerging se-
quence type associated with extraintestinal infections,
particularly urinary tract infections throughout the
world [20].

CTX-M genotyping was performed according to
Strauss et al. [21]. In short, a blactxy multiplex poly-
merase chain reaction (PCR) with four primer pairs for
blactx-m-1, blactx-m-2, blactxnmo, and blacrxm-gns
was performed (Supplementary Table S2). PCR pro-
ducts were analysed on a 1-5% agarose gel and purified
using the Qiagen PCR purification kit (Qiagen,
Germany). After DNA sequencing of the PCR product
from both sites (Seqlab, Gottingen), the CTX-M geno-
type was determined by BLAST-N analysis in the
NCBI database. All ST131 isolates (n=39) and
94-3% (n=114) of the non-ST131 isolates were
CTX-M positive. The predominant CTX-M variants
were CTX-M-1 (44-4%, n=171), CTX-M-15 (34-4%,
n=>55), CTX-M-14 (9-4%, n=15) and CTX-M-27
(5:0%, n=28) (Fig. 1).

A high prevalence of CTX-M-1, CTX-M-14 and
CTX-M-15 is often observed in E. coli with the
ESBL phenotype and CTX-M-15 is currently the
most frequent CTX-M gene in German healthcare set-
tings [2, 10, 22]. The relatively low CTX-M-15 rate of
34-4% in our study appears to be due to the lower
ST131 proportion in our collection (24%), compared
to a ST131 rate of 35-8% in the Germany-wide
study of Pietsch et al. [10]. The widely disseminated
E. coli clone O25b:H4-ST131 frequently carries the
CTX-M-15 gene, while non-ST131 sequence types
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Table 2. CTX-M-type distribution for the most abundant sequence types (n>3) from ESBL-producing E. coli

CTX-M-1 CTX-M-14 CTX-M-15 CTX-M-27
ST131 (n=39) 103 12:8 564 205
ST101 (n=28) 100 0 0 0
ST58 (n=28) 625 12:5 25 0
ST10 (n="7) 714 0 286 0
ST38 (1 =7)* 286 286 28-6 0
ST410 (1 = 6)* 0 0 83-3 0
ST453 (n=5) 100 0 0 0
ST73 (n = 4)* 25 25 0 0
ST648 (n=4) 0 0 100 0
ST744 (n=4) 75 25 0 0

Values given are percentages.

* In addition to the shown CTX-M types, one ST38 isolate was positive for CTX-M-55 and one ST410 isolate was positive for

CTX-M-17. Two ST73 isolates were CTX-M negative.

)

CTX-M-3 | 0-6% (n=1)
CTX-M-17 I 0-6% (n=1)
CTX-M-19 ' 0-6% (n=1)

CTX-M-55 ' 0-6% (n=1)
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Fig. 1. CTX-M-type distribution in ESBL-producing E. coli. Of 160 isolates 153 (95-6%) were CTX-M positive. Eight

different CTX-M variants were identified.

show, on average, lower CTX-M-15 associations [8, 9].
However, the proportion of CTX-M-1, CTX-M-15 and
CTX-M-14 in our study is similar to the results of a case-
control study performed at the Charité University
Hospital in Berlin, Germany, with patients colonized
with community-acquired ESBL-positive E. coli [23].
The individual E. coli sequence types in our study
displayed significant differences in the distribution of
the various CTX-M types (Table 2). The predominant
CTX-M variant in ST131 isolates was CTX-M-15
(56-4%, n=122), followed by CTX-M-27 (20-5%, n=
8), CTX-M-14 (12-8%, n=15) and CTX-M-1 (10-3%,
n=4). In contrast, CTX-M-1 was the predominant
genotype in non-ST131 isolates, namely in the abundant
sequence types ST101 (8/8 isolates), STS8 (5/8 isolates),
ST10 (5/7 isolates) and ST453 (5/5 isolates). An associ-
ation of ST101, ST453 and ST10 with CTX-M-1 was
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also reported in a recent Germany-wide study [10].
From the six most abundant sequence types only
ST410 shows an association with CTX-M-15 (5/6 iso-
lates). This association of ST410 and CTX-M-15 was
also observed in ESBL-positive E. coli collected from
German and Brazilian hospital patients [10, 24].
Recent data revealed genetic similarities between
human and animal CTX-M-15-positive ST410 isolates
and suggest a clonal dissemination of specific E. coli
ST410 clades [25]. The second most common CTX-M
variantin our ST131 isolates, i.e. CTX-M-27, was absent
in all non-ST131 isolates and was also found at a signifi-
cantly lower rate (1/127 isolates) in nosocomial patients
from other German hospitals [10]. CTX-M-27 differs
from CTX-M-14 by a single Asp®*°Gly substitution
that was shown to confer higher ceftazidime resistance
(minimum inhibitory concentration: 8 vs. 1 mg/l) [26].
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CTX-M-27 is the predominant allele in ST131 isolates
from Japanese hospitals. A recent study reported a
CTX-M-27 frequency of 45% in ST131 isolates collected
at 10 Japanese acute-care centres [27].

In conclusion, our single-centre study in Lower
Saxony, Germany reveals a distinct sequence-type dis-
tribution of ESBL-producing E. coli compared to the
average nationwide sequence-type distribution. This
leads as a consequence to a shift in the distribution
of CTX-M alleles, with CTX-M-1, not CTX-M-15,
as the most frequent allele. Local differences in
sequence-type frequency might reflect potential area-
dependent differences in the proportion of livestock-
associated sequence types, e.g. ST10, ST38 and
ST410. The greater abundance of these livestock-
associated sequence types found in our study once
more reveals the necessity of studying the role of trans-
mission from animals to humans or vice versa.
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