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The aim of this note is to give an analogue, for an inverse semigroup S,
of the theorem for a group G which says that if ¢ is the set of normal subgroups
of G, then the map N —» (N) = {(a,b)eG x G:ab~'eN} for Ne% is a 1:1
order preserving map of ¢ onto A(G),the lattice of congruences on G. It will
be shown that if E is the semilattice of idempotents of S, P = {E,:aeJ} is a
normal partition of E, and £ is a certain collection of self conjugate inverse
subsemigroups of S, then the map K —(K) = {(a,b)e S x S: a~'a, b-'beE,
for some aeJ and ab~' e K} for Ke ¢ is a 1:1 map of £ onto the set of con-
gruences on S which induce P.

0. Introduction

The reader is assumed to be familiar with standard semigroup notation and
the elementary properties of inverse semigroups [1]. Throughout, S will denote
an inverse semigroup with E as its semilattice of idempotents. The assumption
includes a familiarity with C(E), the centralizer of E, self conjugate inverse
subsemigroups of S, and the closure Hw of a subset H of S.

Preston [3] has shown that if f: S » T is a homomorphism of S onto T
and af is idempotent in T, then af = a~'f = (aa~")f = (a~'a)f. Thus T is
inverse, (bf)~! = b~'f, and if f separates idempotents, then fo.f~! < .
Also, Preston has given a complete description of all congruences on S in terms
of kernel normal systems of S. In [4], a characterization has been given of the
smallest and largest congruences which induce a given partition P of the set E
of idempotents.

In [2], Howie has given two characterizations of y, the largest idempotent
separating congruence, neither of which depend on kernel normal systems.
Recall that these descriptions are given by

i = {(a,b)eS x S: a~'ea = b~'eb for each e € E}, or equivalently

i = {(a,b)eS x S:a"'a = b~'b and ab~!e C(E)}.
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This note will give a description of the congruences on S similar to Howie’s
second characterization of . In so doing, the closure operator w will be used
to show just which inverse subsemigroups of S can be the kernels of homo-
morphisms.

1. Kernels of groups and idempotent separating homomorphisms

The two lemmas in this section could, at least in part, be deduced respectively
from [5, see also 1, Theorem 7.12; 1, Theorem 7.54]. Full proofs will be given
here, however, for completeness.

Let f:S— G be a homomorphism of S onto a group G. Let
M = Kernelf = {aeS:af = 1g}. Let ¥ = {K<= S:M < K and K is a closed
(Kw = K) inverse subsemigroup of S}.

LemMa 1.1. The map K —» Kf for Ke X" is a 1:1 order preserving map
of A onto the set of subgroups of G. Further, K is self conjugate in S if and
only if Kf is self conjugate (normal) in G.

Proor. 1t is easy to see that if Ke X', then Kf is a subgroup of G, and
that K — Kf is order preserving.

Suppose then that H is a subgroup of G, K = Hf !, and ye Kw. Then
k <y for some keK. From k= 'k = k~'y follows that 1; = (kf)~'(y/).
Thus kf = yf and hence ye K. Thus Ke X and so K — Kf is an onto map.

Assume that K, Le X and Kf = Lf. Let ke K and let kf = mf with me L.
Then (m~'m)f = (m~'k)f and so m~'keM < L. Thus mm~'kemL c L. But
mm~'k < k and so ke Lw = L. Similarly, L = K and hence K = L. Since
the map K — Kfis 1:1 it is a simple matter to compute that K is self conjugate
in S if and only if Kf is normal in G.

Now let ¥ = {Kc S:Ec K c C(E) and K is a self conjugate inverse
subsemigroup of S}.

LemMA 1.2. The map K — (K) = {(a,b)eS x S: a~'a=b"'b and
‘ab ' e K} forKe% isal:1order preserving map of € onto the set of idempotent
separating congruences on S.

Proor. The relation (K) for K€% is obviously reflexive on S, and easily
symmetric. Suppose then that (a, b),(b,c)e(K). Then a=*a =b~'b =c¢"'cand
ab~!, bc~'eK. Thus a~'a=c !cand ac'=aa"'ac™! = (ab~')(bc"')e KK
<K, ie., (a,c)e(K). Assume now that (a, b),(x,y) e (K). Then (ax~!)(ax) =
x la=lax = x~'b~'bx = y~'b~'by (since (x,y)e(K) < u) = (by)~(by), and
further (ax)(by) " '=axy='b~'bb~' = (axy~'a~')(ab~-")eaKa 'K <« KK = K.
Thus (K) € A(S), the set of all congruences on S.

Suppose that pe A(S), p separates idempotents, and let K = {ae S:ap is

dempotent in S/p}. Then K is easily a self conjugate inverse subsemigroup
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of S. Also, if ae K, then (a,a"'a)ep = u so that a(a='a) = ae C(E). Thus
Ke®.If(a,b)e(K),thena~'a = b~'band ab~'e€ K. Thus ap = (aa~'a)p =
(ab='b)p = (ab~'ba=")p(b)p = (bb~'bb~")p(bp) (since (a,b)eu) = bp, ie.,
(a,b)ep. On the other hand, if (a,b)ep, then (a~'a,b~'b)ep = H# and so
a~la = b~'b. Further, (ab~',bb~')ep and so (ab~!)p is idempotent, i..,
ab~'eK. Thus (K) = p.

Finally, suppose that K,Le¥ with (K) =(L) and keK. Then
(k,k~'k)e(K) = (L) and hence ke L. Symmetrically, L< K and hence K = L.

2. Kernels of homomorphisms

In this section, the elements K of € in Lemma 1.2 will be called full (for
E = K) central (for K <= C(E)) self conjugate inverse subsemigroups of S.

A partition P = {E,: aeJ} is called normal provided that for each o, feJ
and aeS, there exist y,6€J such that E.E; < E, and aE,a~! < E; [4, Defini-
tion 4.1]. Whenever P is normal, there is a smallest congruence ¢ on S which
induces P [4, Theorem 4.2]. It follows that if T, is the largest inverse subsemi-
group of S with E, as its set of idempotents [4, Theorem 1.5], then T,¢" is a
group # class of Sjo, say H, with identity «a.

Now let P = {E,: «e J} be a normal partition of E. Let 8(P) be the set of
congruences on S which induce P and let ¢ be the smallest element of 8(P). For
each aeJ, let T, be the largest inverse subsemigroup of S with E_ as its set of
idempotents. Let M, =EwNT, and let N, = {aeT,: E,E; < E, implies
aEgqa~' < E}. Let M(P) = U {M,:aeJ} and let N(P) = U {N,:aeJ}. Let
A(P)={KcS:M(P)c K< N(P), K is a self conjugate inverse subsemi-
group of S, and K, = KN T, is closed in T(K, = K,0 NTp)}.

THEOREM 2.1. The map K — (K) = {(a,b)eS x S:a~'a,b~'beE, for
some aeJ and ab~' € K} is a 1:1 order preserving map of A (P) onto 6(P).
Furthermore, M(P), N(P)e X' (P).

Proor. Since p — p/o (= {(ac, bo):(a,b)e p}) for peO(P) is a 1:1 order
preserving map of 6(P) onto the set of idempotent separating congruences of
S/, it is enough by Lemma 1.2 to show that K — Ko¢" for Ke #(P) is a 1:1
order preserving map of J(P) onto the set of full central self conjugate subsemi-
groups of S/o.

Since M, is the smallest closed self conjugate inverse subsemigroup of T,
which contains E, [2, Lemma 3.4], then M,c" = a by Lemma 1.1. Thus
M(P)s = E(S/s), the set of idempotents of S/o. Assume now that K e X4 (P),
and let keK, say ke K, = N,. Let feJ and let af = y. Then (ko)f =
(ko)B(ke)~ (ko) = y(ke) = Palke) = P(ke). Thus Ko', and also N(P)s",
< C(E(S/o)). Hence Ko is a full central self conjugate inverse subsemigroup] of
Slo.
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Suppose now that H is a full central self conjugate inverse subsemigroup
of Sjo and let K = H(¢'~'). Immediately, K is self conjugate and inverse.
Since (E(S/o))o" "' = M(P) by Lemma 1.1, M(P) c K. Now let ke K. Since
ko is a group element of S/o, say kec H,, then ke T,. Also if aff =y, then
(kEgk~"o = (ko)B(ke)™" = Bu = y. Thus kEzk~' < E, and so ke N,. Hence
Kc N(P). Now let K, = KNT,, ie., K, =(HNH)o" "% Since HNH, is
a subgroup of H,, then K, is closed in T, by Lemma 1.1. This completes the argu-
ment that M(P), N(P)e X (P) and K - Ko is a map of X (P) onto the set of
full central self conjugate inverse subsemigroups of S/o.

Finally, if K, Le #(P) and K¢" = L¢*, then Ko" "H, = La" N H, for
each aeJ. Thus K, = L, for each o« again by Lemma 1.1 and so K = L.
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