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Abstract Nevanlinna’s second main theorem is a far-reaching generalization of Picard’s theorem con-
cerning the value distribution of an arbitrary meromorphic function f . The theorem takes the form of
an inequality containing a ramification term in which the zeros and poles of the derivative f ′ appear.
We show that a similar result holds for special subfields of meromorphic functions where the derivative
is replaced by a more general linear operator, such as higher-order differential operators and differential-
difference operators. We subsequently derive generalizations of Picard’s theorem and the defect relations.
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1. Introduction

Nevanlinna theory studies the value distribution of meromorphic functions. Central to
the classical theory is the second main theorem, together with the related defect rela-
tions, which are powerful generalizations of Picard’s theorem. Nevanlinna’s second main
theorem uses the distribution of points in the closed disc |z| � r at which a meromor-
phic function f takes certain prescribed values to bound the Nevanlinna characteristic
T (r, f). The theorem incorporates information from the distribution of zeros and poles
of the derivative f ′ through a ramification term, which ensures that when we count the
preimages of the prescribed values we can ignore multiplicities.

In this paper we derive an analogue of the second main theorem in which the derivative
f �→ f ′ is replaced by an arbitrary linear operator f �→ L(f) on any subfield N of the
space of meromorphic functions such that m(r, L(f)/f) = o(T (r, f)) for r in a large
subset of (0,∞). Examples of such operators are the derivative f(z) �→ f ′(z), the shift
f(z) �→ f(z + c) and the q-difference operator f(z) �→ f(qz) as well as combinations
such as f(z) �→ f ′′(z + c1) + f(z) − 2f ′(qz + c2). We derive a generalization of Picard’s
theorem, which in essence says that if there are enough functions aj ∈ ker(L) that are
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small compared with f , then L(f) is identically zero. Analogues of the defect relations
are given and several examples are used to illustrate the strength of the results obtained.

The work presented here extends earlier work on the shift [5] and q-difference [2]
operators. Those works in turn grew out of a programme to use Nevanlinna theory as
a tool for detecting and describing difference equations of ‘Painlevé type’ [1, 6]. The
generalizations described in the present paper are motivated by preliminary studies of
differential delay equations such as

αf(z) + βf ′(z) = f(z)[f(z + 1) − f(z − 1)], (1.1)

where α and β are constants, which was obtained by Quispel et al . [11] as a reduction
of the Kac–van Moerbeke equation. Equation (1.1) is known to have a continuum limit
to the first Painlevé equation.

2. A second main theorem with general ramification-type term

Let R ∈ (0,∞], and let MR be the set of all meromorphic functions in DR = {z ∈
C : |z| < R}. Let f ∈ MR and a ∈ C. Then there exist m ∈ Z and f̃ ∈ MR such that

f(z) = (z − a)mf̃(z),

where f̃(a) ∈ C \ {0}. As in [3], we say that f̃(a) is the initial Laurent coefficient of f at
a, and define

ilc(f, a) = f̃(a).

The following theorem reduces to the second main theorem in DR by choosing g =
f ′ in the ramification-type term Ng(r, f), and by using the lemma on the logarithmic
derivative.

Theorem 2.1. Let R ∈ (0,∞], and let g ∈ MR \ {0}. If a1, . . . , aq are q � 1 different
elements of MR and if f ∈ MR \ {a1, . . . , aq}, then

(q − 1)T (r, f) + Ng(r, f) � N(r, f) +
q∑

j=1

N

(
r,

1
f − aj

)
+ R(r, f, g), (2.1)

where

Ng(r, f) = 2N(r, f) − N(r, g) + N

(
r,

1
g

)

and

R(r, f, g) =
q∑

m=1

T (r, am) +
1
2π

∫ 2π

0
log

( q∑
m=1

∣∣∣∣ g(reiθ)
f(reiθ) − am(reiθ)

∣∣∣∣ dθ

)

+
q − 1
2π

∫ 2π

0
log+ 2

l(reiθ)
dθ + (q − 1) log 2

+
q∑

m=1

log |ilc(f − am, 0)| − log |ilc(g, 0)|
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with
l(reiθ) = min

1�i<j�q
|ai(reiθ) − aj(reiθ)|.

Proof. We follow parts of the proof of the second main theorem in [3]. Let z = reiθ

and choose s ∈ {1, . . . , q} such that |f(z)−as(z)| � |f(z)−am(z)| for all m ∈ {1, . . . , q}.
If q � 2, then the number s generally depends on z. In this case, moreover,

l(z) � min
1�j�q,

j �=s

|as(z) − aj(z)|

� min
1�j�q,

j �=s

{|f(z) − as(z)| + |f(z) − aj(z)|}

� |f(z) − as(z)| + |f(z) − am(z)|
� 2|f(z) − am(z)|

for all m ∈ {1, . . . , q} \ {s}, and so

log |f(z) − am(z)| = log+ |f(z) − am(z)| − log+ 1
|f(z) − am(z)|

� log+ |f(z) − am(z)| − log+ 2
l(z)

.

Therefore,

(q − 1) log+ |f(z)| �
q∑

m=1,
m�=s

(log+ |f(z) − am(z)| + log+ |am(z)|) + (q − 1) log 2

�
q∑

m=1,
m�=s

log |f(z) − am(z)| +
q∑

m=1,
m�=s

log+ |am(z)|

+ (q − 1) log+ 2
l(z)

+ (q − 1) log 2. (2.2)

Furthermore, we have

q∑
m=1,
m�=s

log |f(z) − am(z)| =
q∑

m=1

log |f(z) − am(z)| − log |g(z)| + log
∣∣∣∣ g(z)
f(z) − as(z)

∣∣∣∣. (2.3)

The last term on the right-hand side of (2.3) contains a term depending on s, which, in
turn, depends on z. We will now make (2.3) independent of s by adding a number of
terms to its right-hand side. This yields the inequality

q∑
m=1,
m�=s

log |f(z) − am(z)| �
q∑

m=1

log |f(z) − am(z)| − log |g(z)| + log
( q∑

m=1

∣∣∣∣ g(z)
f(z) − as(z)

∣∣∣∣
)

,

(2.4)
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which also holds if q = 1. We may now average over all directions θ ∈ [0, 2π). By
combining (2.2) and (2.4) we then have

(q − 1)m(r, f)

� 1
2π

∫ 2π

0

q∑
m=1

log |f(reiθ) − am(reiθ)| dθ

− 1
2π

∫ 2π

0
log |g(reiθ)| dθ +

1
2π

∫ 2π

0
log

( q∑
m=1

∣∣∣∣ g(reiθ)
f(reiθ) − am(reiθ)

∣∣∣∣
)

dθ

+
1
2π

∫ 2π

0

q∑
m=1

log+ |am(reiθ)| dθ +
(q − 1)

2π

∫ 2π

0
log+ 2

l(reiθ)
dθ + (q − 1) log 2.

(2.5)

Jensen’s formula implies that

1
2π

∫ 2π

0
log |h(reiθ)| dθ = N

(
r,

1
h

)
− N(r, h) + log |ilc(h, 0)| (2.6)

for any h ∈ MR \ {0}. By combining (2.5) and (2.6), we have

(q − 1)m(r, f) �
q∑

m=1

N

(
r,

1
f − am

)
− qN(r, f) + N(r, g) − N

(
r,

1
g

)

+
q∑

m=1

T (r, am) +
1
2π

∫ 2π

0
log

( q∑
m=1

∣∣∣∣ g(reiθ)
f(reiθ) − am(reiθ)

∣∣∣∣
)

dθ

+
q − 1
2π

∫ 2π

0
log+ 2

l(reiθ)
dθ + (q − 1) log 2

+
q∑

m=1

log |ilc(f − am, 0)| − log |ilc(g, 0)|. (2.7)

The assertion follows by adding (q − 1)N(r, f) to both sides of (2.7). �

3. Linear differential operator

We will now specialize Theorem 2.1 by choosing g to be a linear differential operator
applied to the function f , meromorphic in the complex plane. Let

S(f) = {h ∈ M∞ : T (r, h) = o(T (r, f)) as r → ∞, r �∈ E},

where E ⊂ (0,∞) is a set having finite linear measure, and set M := M∞ for brevity.
By choosing

g = f (n) + αn−1f
(n−1) + · · · + α1f

′ + α0f

in Theorem 2.1, where α0, . . . , αn−1 ∈ S(f), we can show that the remainder term in (2.1)
is small. This yields the following generalization of Nevanlinna’s second main theorem
for general linear differential operators.
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Theorem 3.1. Let L : M → M be given by

L(h) = h(n) + αn−1h
(n−1) + · · · + α1h

′ + α0h, (3.1)

where α0, . . . , αn−1 ∈ S(f), and let f ∈ M \ ker(L). If a1, . . . , aq are q � 1 different
elements of ker(L) ∩ S(f), then

(q − 1)T (r, f) + NL(f)(r, f) � N(r, f) +
q∑

j=1

N

(
r,

1
f − aj

)
+ S(r, f), (3.2)

where

NL(f)(r, f) = 2N(r, f) − N(r, L(f)) + N

(
r,

1
L(f)

)

and
S(r, f) = o(T (r, f))

as r → ∞ outside a set of finite linear measure.

Proof. It is sufficient to estimate the remainder R(r, f, g) in Theorem 2.1. Since
a1, . . . , aq ∈ S(f), it follows that

q∑
m=1

T (r, am) +
q − 1
2π

∫ 2π

0
log+ 2

l(reiθ)
dθ = o(T (r, f))

as r → ∞ such that r �∈ E. Since the term

(q − 1) log 2 +
q∑

m=1

log |ilc(f − am, 0)| − log |ilc(L(f), 0)|

is constant, it only remains to show that

1
2π

∫ 2π

0
log

( q∑
m=1

∣∣∣∣ (L ◦ f)(reiθ)
f(reiθ) − am(reiθ)

∣∣∣∣ dθ

)
= o(T (r, f)) (3.3)

when r → ∞ outside of the set E. Since aj ∈ ker(L) and L is linear, it follows that

L(f) = L(f) − L(aj) = L(f − aj)

for all j = 1, . . . , q. Therefore,

1
2π

∫ 2π

0
log

( q∑
m=1

∣∣∣∣ (L ◦ f)(reiθ)
f(reiθ) − am(reiθ)

∣∣∣∣ dθ

)
�

q∑
j=1

m

(
r,

L(f − aj)
f − aj

)
+ O(1). (3.4)

Since aj ∈ S(f) for all j = 1, . . . , q, (3.3) follows by combining (3.4) with the lemma on
the logarithmic derivative. �

A theorem similar to Theorem 3.1, but for meromorphic functions in a disc, can be
stated and proved in an almost identical way to the proof above.
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Definition 3.2. Let L : M → M be linear, and let a ∈ ker L. If the preimage of a

under f (understood as a multiset where each point is repeated the number of times
indicated by its multiplicity) is contained in the preimage of 0 under L(f), then a is said
to be (L, f)-exceptional.

Note that functions with empty preimages are automatically (L, f)-exceptional for any
L. Therefore, in particular, Picard exceptional values of f ∈ M are (f ′, f)-exceptional.
Hence, the following two corollaries of Theorem 3.1 are generalizations of Picard’s theo-
rem.

Corollary 3.3. Let f be meromorphic, and let L be an nth-order linear differential
operator with coefficients in S(f). If a1, . . . , an+2 ∈ S(f) are n + 2 distinct (L, f)-excep-
tional functions, then L(f) = 0.

Proof. If L(f) �= 0, then Theorem 3.1 yields

(n + 1)T (r, f) � N(r, L(f)) − N(r, f) +
n+2∑
j=1

N

(
r,

1
f − aj

)
− N

(
r,

1
L(f)

)
+ o(T (r, f)),

(3.5)
where r → ∞ outside of an exceptional set E. Now, since L(f) is of order n, it follows
that

N(r, L(f)) − N(r, f) � nT (r, f) (3.6)

for all r > 0. Moreover, since a1, . . . , an+2 are (L, f)-exceptional, we have

n+2∑
j=1

N

(
r,

1
f − aj

)
� N

(
r,

1
L(f)

)
,

which, together with (3.6) and (3.5), yields a contradiction. Hence, L(f) = 0. �

The following example shows that n + 2 cannot be replaced by n + 1 in Corollary 3.3
in the case n = 2.

Example 3.4. The Jacobi elliptic function f(z) = sn(z, k) satisfies the differential
equation

f ′′ = 2k2f3 − (1 + k2)f, (3.7)

where k ∈ (0, 1) is the elliptic modulus. By (3.7) it follows that L(f) = f ′′ vanishes if
and only if f attains one of the values in the set

{
0,

1√
2k

√
1 + k2,− 1√

2k

√
1 + k2

}
. (3.8)

Therefore, the elements of (3.8) are three distinct (L, f)-exceptional functions, but clearly
L(f) �= 0.

In the case of entire functions, the order of the linear operator does not affect the
number of required target functions.

https://doi.org/10.1017/S0013091513000448 Published online by Cambridge University Press

https://doi.org/10.1017/S0013091513000448


Value distribution and linear operators 499

Corollary 3.5. Let f be entire, and let L be a linear differential operator with coef-
ficients in S(f). If a ∈ S(f) and b ∈ S(f) are two distinct (L, f)-exceptional functions of
f , then L(f) = 0.

Proof. Assume that L(f) �= 0. Then, since f is entire, Theorem 3.1 yields

T (r, f) � N

(
r,

1
f − a

)
+ N

(
r,

1
f − b

)
− N

(
r,

1
L(f)

)
+ o(T (r, f)), (3.9)

where r → ∞ outside of an exceptional set E. Since a and b are (L, f)-exceptional, it
follows that

N

(
r,

1
f − a

)
+ N

(
r,

1
f − b

)
� N

(
r,

1
L(f)

)
,

and so inequality (3.9) leads to a contradiction. Thus, L(f) = 0. �

Corollary 3.5 says that if there are enough points where an entire function f looks
like a solution of a linear differential equation, then f must indeed be a solution of
the equation. This statement can be made more precise by introducing deficiencies with
respect to linear differential operators. Towards this end, let a ∈ ker(L), and let

N |f=a

(
r,

1
L(f)

)
(3.10)

be the integrated counting function for those zeros of L(f) where simultaneously f = a.
Note that, even though it is required that f = a for a zero of L(f) to be counted in (3.10),
multiplicities are counted only according to multiplicities of zeros of L(f). Multiplicities
of the a-points of f do not contribute to (3.10). Using (3.10), we define the index of
multiplicity with respect to L(f) by

θL,f (a) := lim inf
r→∞

1
T (r, f)

(
N |f=a

(
r,

1
L(f)

))
, (3.11)

which reduces to the usual index of multiplicity θ(a, f) when L(f) = f ′. For a particular
operator L we will sometimes write θL(f) instead of θL,f for brevity. We also define

θL,f (∞) := lim inf
r→∞

2N(r, f) − N(r, L(f))
T (r, f)

, (3.12)

which is similarly a generalization of θ(∞, f). Note that, even though 0 � θ(a, f) � 1,
there is in principle no upper bound for θL,f (a) implied by the definition itself. Also,

−k + 1 � θL,f (∞) � 1,

where k is the degree of the highest derivative of L(f). By following the standard proof
of Nevanlinna’s deficiency relation (see, for example, [8, pp. 43–44]) and using definitions
(3.11) and (3.12), we obtain the following consequence of Theorem 3.1.
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Corollary 3.6. Let f �∈ ker(L) be a meromorphic function. Then θL,f (a) = 0, except
for at most countably many a ∈ ker(L) ∩ S(f), and

∑
a

(δ(a, f) + θL,f (a)) � 2, (3.13)

where the summation is over all elements of the set (ker(L) ∩ S(f)) ∪ {∞}.

Corollary 3.6 implies the usual deficiency relation by substituting L(f) = f ′. The
following continuation of Example 3.4 shows that the total deficiency sum of (3.13) can
be strictly greater than 2, if the term θL,f (∞) is omitted from (3.13). The same example
also shows that the upper bound in (3.13) can be attained.

Example 3.7. Let f(z) = sn(z, k) be a solution of (3.7). In Example 3.4 we saw that
L(f) = f ′′ vanishes if and only if f takes one of the values in the set (3.8). By a result
due to Mohon’ko (see, for example, [9, Proposition 9.2.3]), and since f also satisfies

(f ′)2 = (1 − f2)(1 − k2f2),

it follows that none of the values in (3.8) are deficient in the usual sense. (Alternatively,
this follows by the fact that elliptic functions attain all values in a period parallelogram
the same finite number of times, counting multiplicity.) Hence,

θf ′′(0) = θf ′′

(
1√
2k

√
1 + k2

)
= θf ′′

(
− 1√

2k

√
1 + k2

)
= 1,

and so ∑
a�=∞

(δ(a, f) + θf ′′(a)) � 3.

Therefore, it follows by Corollary 3.6 that θf ′′(∞) = −1, and so, again by the same
corollary, we have ∑

a

(δ(a, f) + θf ′′(a)) = 2.

4. General linear operator

By demanding that the operator L : M → M is linear, and that the target functions
a1, . . . , aq lie in the intersection of the kernel of L and the field S(f), we obtain the
following theorem, which incorporates and generalizes Nevanlinna’s second main theorem
in the complex plane, and its difference analogue from [5], as well as the q-difference
second main theorem from [2].

Theorem 4.1. Let N be a subfield of M and let f ∈ N \ ker(L), where L : M → M
is a linear operator such that

m

(
r,

L(f)
f

)
= o(T (r, f)) (4.1)
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as r → ∞ outside of an exceptional set E ⊂ (0,∞). If a1, . . . , aq are q � 1 different
elements of ker(L) ∩ S(f), then

(q − 1)T (r, f) + NL(f)(r, f) � N(r, f) +
q∑

j=1

N

(
r,

1
f − aj

)
+ S(r, f), (4.2)

where

NL(f)(r, f) = 2N(r, f) − N(r, L(f)) + N

(
r,

1
L(f)

)

and
S(r, f) = o(T (r, f))

as r → ∞ outside of E.

Theorem 4.1 implies Nevanlinna’s second main theorem in the complex plane by our
choosing L(f) = f ′ and N = M. By choosing L(f) = ∆(f) = f(z + 1) − f(z) and N
to be the field of meromorphic functions of hyper-order strictly less than 1, Theorem 4.1
reduces to the difference analogue of the second main theorem [5, 7]. Similarly, with
the choice L(f) = f(qz) − f(z), where q ∈ C \ {0, 1}, and taking N to be the field of
zero-order meromorphic functions, we obtain the q-difference version of the second main
theorem [2].

Deficiencies can be defined as above using (3.11) and (3.12), where L(f) is now any
differential operator operating on a meromorphic function f such that (4.1) is satisfied.
For instance, if L(f) = f ′(z + 1), where the hyper-order (or iterated 2-order) ς(f) of f

satisfies ς(f) = ς < 1, then by the lemma on the logarithmic derivative and its difference
analogue [7], it follows that

m

(
r,

L(f)
f

)
= m

(
r,

f ′(z + 1)
f(z)

)

� m

(
r,

f ′(z + 1)
f ′(z)

)
+ m

(
r,

f ′(z)
f(z)

)

= o

(
T (r, f ′)
r1−ς−ε

)
+ O(log(rT (r, f)))

= o(T (r, f)), (4.3)

where r → ∞ outside of an exceptional set of finite logarithmic measure, and we have
taken ε > 0 such that ς + ε < 1. Hence, (4.1) is satisfied, and so Theorem 4.1 yields a
counterpart of Corollary 3.6 under the assumption that f is a non-constant meromorphic
function of hyper-order strictly less than 1. We state this result here as a proposition.

Proposition 4.2. Let f be a non-constant meromorphic function such that ς(f) < 1.
Then θf ′(z+1)(a) = 0, except for at most countably many a ∈ C, and

∑
a∈C∪{∞}

(δ(a, f) + θf ′(z+1)(a)) � 2.
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Proposition 4.2 is, of course, just one example of the type of results that can be
obtained this way. For instance, if L(f) = f ′(qz + c), where q ∈ C \ {0, 1}, then we can
obtain a counterpart of Proposition 4.2 under the stricter assumption that f is of zero
order by using a q-difference analogue of the lemma on the logarithmic derivative [2] in
a calculation similar to (4.3).

Proposition 4.2 implies some rather surprising constraints for possible value distribu-
tion patterns of finite-order meromorphic functions.

Example 4.3. Let a ∈ C, and let f be a meromorphic function of finite order such
that all of its a-points are simple, and moreover, if f(z) = a, then f ′(z + 1) = 0 with
multiplicity k � p � 2. Then the Valiron deficiency

∆(a, f) = 1 − lim inf
r→∞

1
T (r, f)

N

(
r,

1
f − a

)
(4.4)

satisfies
∆(a, f) � 1 − 2

p
. (4.5)

Namely, by (4.4) it follows that

T (r, f) � 1
1 − ∆(a, f) − ε

N

(
r,

1
f − a

)
, (4.6)

where ε > 0 and r is sufficiently large. By the assumption on the locations or zeros of f

and its derivative function, we have

N |f=a

(
r,

1
f ′(z + 1)

)
� pN

(
r,

1
f − a

)
, (4.7)

and so, by (4.6) and (4.7), it follows that

θf ′(z+1)(a) � (1 − ∆(a, f) − ε)p. (4.8)

On the other hand, since

N(r, f ′(z + 1)) � 2N(r, f(z + 1)) � 2N(r, f(z)) + o

(
N(r, f)
r1−ε

)

for all r outside of an exceptional set of finite logarithmic measure by [7, Lemma 8.3] (see
also [6, Lemma 2.1] and [4, Theorem 2.2]), it follows that θf ′(z+1)(∞) � 0. Therefore,
Proposition 4.2 yields

θf ′(z+1)(a) � 2. (4.9)

Inequality (4.5) follows by combining (4.8) and (4.9), and by letting ε tend to zero.
Meromorphic functions satisfying the assumptions on the a-points of f and the zeros of
f ′ can be constructed, for instance, by using Hadamard products.

The next, final example shows that certain elliptic functions are maximally deficient
with respect to the second-order linear difference operator. In the same way as in Exam-
ple 3.4, the maximal deficiency sum over all finite targets turns out to be equal to 3,
instead of the usual 2.
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Example 4.4. The autonomous form of the difference Painlevé II equation,

f(z + 1) + f(z − 1) =
αf(z) + β

1 − f(z)2
, α, β ∈ C, (4.10)

which is known as the McMillan map [10], can be solved in terms of elliptic functions.
By writing (4.10) in the form

f(z + 1) − 2f(z) + f(z − 1) =
2(f − γ1)(f − γ2)(f − γ3)

1 − f(z)2
,

where γ1, γ2 and γ3 are the roots of the equation 2x3 +(α−2)x+β = 0, we can see that
∆2f(z) = 0 if and only if f attains one of the values γ1, γ2 or γ3. Suppose that α and β

are chosen so that γ1, γ2 and γ3 are distinct. Now, similarly to Example 3.4, we have

θ∆2f (γ1) = θ∆2f (γ2) = θ∆2f (γ3) = 1,

and so
∑
a∈C

(δ(a, f) + θ∆2f (a)) = 3

and θ∆2f (∞) = −1. Thus, the maximal deficiency sum∑
a∈C∪{∞}

(δ(a, f) + θ∆2f (a)) = 2

is attained.
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