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ON A GENERALIZATION OF ALTERNATIVE RINGS

RAYMOND V. MORGAN, JR.

1. Introduction. Bruck and Kleinfeld [3] proved that any alternative
ring with characteristic prime to 2 must satisfy the identity

(x%,9,2) = 2x - (x, v, 2),

B

where the associator (x,y,2) is defined by (x,%,2) = (xy)z — x(yz) and
x -y = 3(xy 4+ yx). Linearization of the identity (x?, v, 2) = 2x- (x, v, 2)
yields for characteristic prime to 2 an equivalent identity

(1) x-w,9,2) =x-(wy2) +w- (x,7,2).

Using the right alternative law (x,y,2) = — (¥, x, 2) and the flexible law
(x,9,2) = — (2, ¥, x) which is satisfied in any alternative ring we obtain
(2) 0 x-wz2)=x-@ w2 +w Omzs2)

and

(3) 0 ax-w) =x- (25w +w-(sx).

In this paper we study the class of rings which satisfy any two of (1),
(2), and (3) together with

4) (%, %, x) = 0.

These rings are clearly generalizations of alternative rings.

Kosier [5] studied rings satisfying (1), (3), and (4). He showed that such
rings were power-associative and have the idempotent decomposition
A=A+ Ay + Ao, wherex € A;if and only if ex + xe = 2ix and ¢® = e # 0.
He further proved that if A has no nil ideals, then A must have the Peirce
decomposition 4 = A1 + Ao+ Aor + Ao, where x € 4,; if and only if
ex = 1x and xe = jx and that the subspaces 4 ;; multiply as in the alternative
case. His main results were:

(1) if 4 is simple and e is idempotent with e £ 1, then 4 is associative or a
Cayley-Dickson algebra over its centre and

(ii) if 4 is a finite-dimensional semisimple algebra, then 4 has an identity
and is the direct sum of simple algebras.

Any ring satisfying (1), (2), and (4) is anti-isomorphic to a ring satisfying
(2), (3), and (4); thus it suffices to consider rings satisfying (1), (2), and (4).
Throughout this paper, all rings have characteristic prime to 2.
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In § 2 we show that any ring satisfying (1), (2), and (4) must be power-
associative. In § 3 we prove that if A has no nil ideals, then A has the Peirce
decomposition with the same multiplication on the subspaces as an alternative
ring. Using this result we show that if 4 is simple and e is an idempotent in
A with e # 1, then A4 is either associative or a Cayley-Dickson algebra over
its centre. In § 4 we prove that if 4 is a finite-dimensional semi-simple algebra,
then A has an identity and is the direct sum of simple algebras. Finally,
in §5 we show that certain algebras satisfying any two of (1), (2), (3)
together with (4) must have a Wedderburn decomposition.

We suppose in the remainder of this paper that the ring A satisfies (1),
(2), and (4).

2. Preliminaries. We begin this section with the following result.
THEOREM 1. 4 is power-associative.

Proof. 1dentity (4) yields x?x = xx? and this along with (1) and (2) yields
x2x? = x% = xx®. We define x"t! inductively by requiring that x! = x and
¥l = xx" for n = 1,2,... . Then we have xx? = x*7 for 1 + j = 3 and
0<7,j<3andfori4 j=4and0 < 7,j < 4. We proceed now by induction
on 7 + j. Assume that x'x? = x™/ for all 7,7 with 7+ j <#» and 0 < 7,7
and let 7+ j = # with » = 5. By (1) with y = 2" 2% 3 = x', w = x, we
have (x2, x" 2% x%) = 2x - (x, 2" 2% x') = 0 so that x" ! = x%x""? for
0 <7< mn— 2 Butnow (x% x, x"%) = 2x - (x, x, x* %) = 0 and

(x, x2, x"3) = 2x - (x,x,%"3) =0

so that x3x"% = x2"2 and x%"? = xx""! = x". Thus x" = x%"2 and we
have xixt = x" for 0 < 1 < n — 2. If 2 = n — 2, then we have also shown
that x%x"? = x" and if ¢ = # — 1, then xx"! = x® by definition. Thus we
have xx’ = x™/ for 14+ j = n and 0 < 7,7 < » and 4 is power-associative.

Let e be an idempotent in 4. It is known [1] that if 4 is commutative and
power-associative, then 4 has the decomposition 4 = 4; 4+ 43 + 4o, where
A; = {x: xe = ix} for ¢ = 1, }, 0. Define the ring A* to be the same vector
space as A but with the multiplication - defined by a - b = %(ab + ba).
If A is power-associative then powers in A and A+ coincide so that 4+ is a
commutative, power-associative ring. Hence we have the decomposition
A= A1+ Ay 4+ Ao, where 4; = {x: ex + xe = 2ix} for 2 = 0, %, 1. Albert
further showed that the subspaces 4 ; multiply as follows: 4, 4¢are orthogonal;
A+ A S A; for 1=0,1; Ay- A3y S A1+ Aoy A1 A3 S A+ Ay for
1 =0, 1. It follows from power-associativity that A; = {x: ex = xe = 1x},
1=0,1,and 43 = {x: ex + xe = x}.

The following is the associator form of the linearization of (x, x,x) = 0
that appeared in [1]. For all x, ¥, and z in 4 we have

(5) (x’yr Z) + (x9 Zry) + (y’ 2, x) + (:Vy X, Z) + (Z! x,y) + (z,y, x) = 0.
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LemMa 1. If a € A, then (e, a,e) = 0 and for each x € Ay, ex and xe are
m A '

Proof. 1t a € A; for ¢ = 0, 1, clearly (e,a,e) = 0. Let a ¢ 4;; then by
(1), (e,a,e) = (e-e,a,e) = 2e- (e, a,e) so that (¢, a,e) € A1 Let
e = x1 + x3 + Xo.
Then
(e,e,a) = ea — e(ea) = x1 + %3 + %9 — %1 — exy = %1€ + Xo.
But ea — e(ea) = e(ae) so that e(ae) = x3e + x0. Also
(a,e,e) = (ae)e —ae = —(en)e = —x1 — x1€

and we have (ea)e = x; + x1e. Thus we have

(e, a,e) = (ea)e — e(ae) = x1 + x16 — X3¢ — %9 = X1 — Xo.
Since (e, a, e) € Ay, it follows that (e, a, e) = x1 = xo = 0.

THEOREM 2. Suppose that A = Ay + Ay + Ao with respect to the idempotent
e of A. Then Ay and A, are orthogonal subrings and A.Ay + A 4, & Ay for
1 =0, 1. Furthermore, for x,y € Ay we have x* € A1+ Aoand (xy): = — (yx)1.

Proof. Let x,y € A1. Then
(xyyye) = (e-x,y,e) =e€- (xryye) + x- (e,y,e) =€- (xyj’,e)
by (1) so that (x,v,e) € 4;. Also (e,x,y) = 2¢- (e, x,y) by (1) and
(e,x,9) = ¢ (e,%,9) +x-(e,6,y) = ¢- (6,x,¥) by (2); thus (¢, x,y) = 0.
Letxy = a1 + a3 + ao. Thenxy — e(xy) = 0,and soao = O and a3 — eay = 0.
But (x,y,e) = (xy)e — xy € Ay so that
a1+ ae —ay —ay =ae —ar = —eay = —ay € A

Thus a3 = 0 and we have xy € A,. Similarly, x,y € 4, implies xy € A,.
Next, let x € Ay and y € A4y, then

(xyyve) =e-(x,y,e)+x-(e,y,e) =8‘(xy3’,6)
by (1) and we have (x, y, e) € 4:. But by (2),
(x,y,e) = (xy23"e:e) = 2e- (xryye) + 23" (x)eye) = 2e - (x)y’e)

so that (x, ¥, ) € Ay Thus (x, y, e) = 0. Wealso have (e, x, y) = 2¢- (e, x, y)
by (1) and (x,e,7) = 2¢- (x,¢,v) by (2). Hence (e, x,y) and (x, e, y) are
in 4;. Now —(x,y,e) + (e, x,9) — (x,e,5) = —(xy)e — e(xy) + xy € Aj.
If xy = a1+ a3 + a0, we then have —ay+ a9 € 43 Thus a1 =ay =0
and xy € Ay. Now xy + yx € Ay + A, so that if yx = a1 + a3 + ao, then
a1 = 0. But (y,x,e) € Ay by (1) so that (yx)e — yx € Ay. Thus ao € 43
so that ¢y = 0 and we have yx € A;. Similarly, if x € 4, and y € 43, then
xy and yx are in Ay

Finally, let x,y € A;. Then from the decomposition of commutative
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power-associative rings, x2 = x-x € A1+ 4o and x-y € 4, + A4, so that
(xy)y = — (yx)s.

3. Ideals and simple rings.

THEOREM 3. Let £ = {x € Ay xa,ax € Ay for all a € A}. Then L s
an ideal in A and x* = 0 for each x € &.

Proof. Clearly, for any 2 € 4 and x € %, xz and 2x are in A Letx € Z.
We consider cases when z € 4; forz = 0, 1, 1.

Case 1. Let z € Ay. If y € A; for © = 0,1, then since xz,zx € 43, by
Theorem 2 we have y(xz), y(sx), (v2)y, and (zx)y in 4. Let y € 4;; then
(x,2,9) =2¢-(x,2,5) +2x- (e,2,y) by (1). Set (x,2,3) = a1 + ai + a,.
Then a1 + a3 + @ = 2a1 + a3y + 2x - (¢, 3, 5). But x € &, and so

x-(e29) € 4y

and we have a; = ao = 0. Thus (x,2,5) = (x2)y — x(zy) € Ar and since
x(zy) € Ay we have (xz)y € A;. Now xz 4 2x € 4; 4 Ay so that

(x2)y + (2x)y € A,

and hence (zx)y € 4;. Next (y,x,2) = 2¢- (y,x,2) 4+ 2x- (y,¢,2), and so
as before, (y,x,2) € A;. But by the first part of the proof with y,z
interchanged, (yx)z € A; so that y(xz) € Ay also. Thus, since

y(xz + 2x) € A3(41 4+ 4o) © A4y,

we have y(zx) € 4y to complete Case 1.
Case 2. Let 2 € Ar. If y € A, for ¢ = 0, 1, then since x € &, xz, 2x € Ay,
and so all products with y are in 4;1. Let y € 4. By (1),

(x,2,9) = 2¢- (x,2,9) + 2x- (e,3,79)

so that as in Case 1, (x,2 ) € 4;. Since x € Z, x(zy) € A}, so that
(x2)y € A1 Also, (g,%,%) = 2¢-(3,%x,9)+2x-(3,¢,¥) by (2) so that
(2,%,9) € Ay. But 3 € A; and xy € Aj; thus by Theorem 2, z(xy) € 4; and
hence (zx)y € Ai. Now (y,x,2) = 2¢- (y,x,2) + 2x - (v,¢,2), and so as
before (y, %, 2) € 43, and since (yx)z € 4341 € 43, it follows that y(xz) € A1
So far we have shown that (x, 3, ¥), (3, %,), and (y, x, 2) are in 4;. Now
(2,9,%) = —2(yx) + (2y)x € Ay since x € L, yx € 4y, and z € 4,. Also,
(%, 9, 28) = (xy)z — x(yz) € A; for the same reason. It then follows by (5)
that (y, 2, x) € 43 also and since (yz)x € A3, we have y(sx) € 4.

Case 3. Let 2 € Ay. The proof here follows as in Case 2 with z € 4, instead
of 4 1.

Finally, if x € &, then x € Ay; thus x-x = x2 € A; + A, But &? € As
by definition of . so that x? = 0.

We are now ready to show that under the additional hypothesis that 4
contains no ideals . with x2 = 0 for each x € .% that A must have a Peirce
decomposition.
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THEOREM 4. Suppose that A has no ideals & # 0 such that x* = 0 for each
x € L. Then for e an idempotent of A we have A = Ay + A1+ Aor + Aoo,
where x € Ay if and only if ex = ix and xe = jx.

Proof. It is well known that a necessary and sufficient condition that the
decomposition of the theorem holds in 4 is that
(x,e,e) = (e,x,e) = (e,e,x) =0 forallx € 4.
Since we already have (¢, x,e) = 0 by Lemma 1 and (e, ¢, x) + (x,e,¢) =0
by (5), it suffices to show that (x,e,e) = 0 for x € Ay. If x € A3, we have

e(xe) = (e,e,x) = —(x,¢e,¢) = (ex)e.

We complete the proof by showing that e(xe) € &, the ideal of Theorem 3.
This will follow from the next lemma.

LemMMA 2. Let A be a ring with idempotent e, and suppose that x,y € Aj.
Then
(xy)1 = [(ex) (ye) ]y, (xy)o = [(xe) (ey)]o;

(ex) (ey), (xe)(ye) € Ay
Proof. Identity (1) and Lemma 1 yield
(e,x,9) = 2e- (e, x,9), (x,y,€) = 2¢- (x,9,e).

Hence
(e,x,9)1= (e, %,9)0 = (x,5, €)1 = (x,5,€)g =0
so that
[(ex)y] = (x¥)1, [(ex)y]o = O,
[x(ve)ls = (xy)1, [x(ye)]o = 0.

The lemma follows when we note that ex 4+ xe = «.

We are now ready to determine the multiplication properties for the
subsets 4 ;;. Note that Ay = A1, Aoo = Ao so that A19 + Aox = A; and the
properties of Theorem 2 hold for 419 and 4 1.

Letx € Ayyand v € A By (1) and (2), (x,9,e) = 0 so that (xy)e = 0.
But 4143 © Ay; thus (xy)eo = 0 and xy = (xy)10. Similarly, if x € A
and v € Ao, we have xy € Ao. If x € Ayr and y € Aoy, by (1) and (2),
(x,e,9) =0 so that xy =0 and x € A¢, ¥y € A1o yields xy = 0. Thus
A’H.Akm g 6'ikA ime

Now let x € A¢1 and y € A11. Then by (1) and (2), (x,y,e) = 0 and we
have (xy)e = xy. But xy € Ay + Ao1 by Theorem 2 so that xy = (xy)o1.
Slmllarly Aono _(; Am. Thus AUAH g A”. Next Iet X E Am and y e Au.
Then (x,y,¢) =0 by (1) and (2) so that (xy)e = xy. But again
xy € Ayo+ Aopisothatxy = (xy)o1. lf x € Aoyandy € Ao, then xy = (xy)10
and we have 4,4, € 4 ;..

If x,y € Ao, then, by (2), (x,¢,v) = 2¢- (x, ¢, ¥), and so

(x,e,9) € A1+ A
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so that xy € A1 + Aoi. By symmetry, x,y € A1 implies xy € A1 + Ao
Thus4;;4:; € Ao+ Ao Ifx € Aygandy € Ay, then by (1) and Lemma 1,
(x,y,e) = 2e- (x,v,¢), and so (xy)e € A1o + Ao Hence (xy)oo = 0 and
we have A10A01 g A11 + A10 + A01~ Similarly, AolA 10 g A()() + A]() + A()l.

Finally we show that (x01y10)10, (y1ox01)01, (®o1¥o1) o1, (xmym)w, <x10y01)1o,
and (yo1%10)01 are in &, the ideal of Theorem 3, and hence must be zero.
Let x;; € A;; and Y € Ay for the remainder of this proof.

Now from above, xo1y10 € 4A10 + Ao1 + Aoo. By the first parts of this
proof it suffices to show that (xoy10)10201 and 2ze1(x01¥10)10 are in Ay for

201 € Ao1. Now by (1),
(201, Xo1, 3’10) = 2e - (201, Xo1, yw) + 2401 - (e, Xo1, ym)
and by (2),
(801, Xo1, ¥10) = 2€ + (201, Xo1, Y10) + 2%01 - (201, €, Y10).

Thus 201 ° (6, Xo1, ylo) = Xo1 °* (Zol, e, ylo) = 0. Thus
201 + (e(x01910)) = 201+ (X¥01¥10)10 = O.

But 201(90013’10)10 € A+ Ao + Ao and (x01y10)10201 €EAn+ An + 4.

ThLlS [201(96013110)10]00 = [(xmym)mzm] 11= 0 ThUS (QC()lylo)lo E g The same

procedure with 219 € Ao yields 210 ° (ymxol)m - A% so that (y10x01)01 € Z.
Consider now (x01y01)01 and let 219 € A10. Then

(x01, 210, Yo1) = 2€ - (%01, 210, Yo1) + 2%01 + (€, 210, Yo1)
by (1) and by (2),
(%01, 210, ¥01) = 2¢€ - (Xo1, 210, Yo1) + 2210 + (%01, €, Yo1)-
Thus 210 - (%01, €, Yo1) = %01+ (€, 210, Yo1) = %o1 * [210¥01 — €(210¥01)]. But
ziYo1 — e(21y01) = (ziyor)on €L & Ay
so that xo1 - (e, 310, yo1) € 43, and hence 210 - (X01, €, yo1) € A3. Now
210+ (o1, € Yo1) = 210+ (Xo1Yo1)

and since 210 * (x01y01)10 E A% we must have 210 * (xmym)m E A% Hence
(xo1vo1)o1 € Z. The same proof with zo; € Ao yields (x10¥10)10 € &

Finally, X10)01 € An+ A+ Ann and Yo1X1o € A+ Ao + Ao with
(x10¥01)01 and (Yor¥10)10 in . But by Theorem 2, (x10¥01); = — (Jor¥10)3 SO
that (x10¥01)01 = — (Yor¥10)or and (¥10¥01)10 = — (Yorx10)10. Hence we have
(yo1%10) 01 and (%16Y01)10 in £. Combining these remarks we have the following
result.

THEOREM 5. Suppose that A satisfies the hypothesis of Theorem 4. Then for
any idempotent e of A, A = A1+ A1+ Aor+ Ao, where 4 ;;Azm S 654 im
except when 1 £ j, i =%k, j=mor i #Zj, k=m=1. Then 4,,4,;C 4;; and
A ’L'jA i1 g A Jie
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These properties of the subspaces 4 ;; are almost those of an alternative
algebra, the only exception being 4;;4;; © A;,. We proceed now to show
that if 4 has no ideals J with x* = 0 for each x € J, then 4,;4,; = 0.

LeEMMA 3. If A satisfies the hypothesis of Theorem 4, then the following are
true for © # j, 1,7 = 0, 1:

(i) (Aidi)Ay+ Ay + 450 =0,

(i) (AyAa)A S Ayda,

(iii) (Aji + Aii) (A iini) = 0;

(iv) 4;;(444) € AA

Proof. Throughout this proof, a;; € 4;; and bgm € Agn. By (2) we have
0= aop- (am, e, an + alO) +e- (001y @0, @11 + @10) and since

(@01, €, @11 + a10) = 0,
0 = e- (@1, Qoo, @11 + a10) = €+ ((@01@00) (@11 + @10)). But
(@o1@00) (¢11 + @10) € A

by Theorem 5, and so (a01ae0) (@11 4 @10) = 0. Now (@01, @0, bo1) € Az by (1)
and (@o1, @oo, Do1) = (@01@00)bor — @o1(@oobor) € A11 + Ao by Theorem 5.
Thus (@01¢e0)bor € A1z N Ay = 0. Interchanging 0,1 in the above proof
completes (i).

By (2), (aco, @01, boo) € Ay and by (1),
0=2e- (doo, Qo1, boo) -+ 2aq0 - (3, @01, boo) = (aooy @o1, boo) + 2a00 - (6, @o1, boo).
Thus  (@eo@01)boo — @oo(@o1b00) — @oo(@oiboo) — (@o1boo)ass = 0 and since
aOO(GOIbOO) =0 we have (a01b00)d00 = ((loo(lm)boo c A01Aoo by Theorem 5.
By symmetry we have (@10¢11)b11 € 410411 to complete (ii).

It fOllOWS from Theorem 5 that An(A10A11) = 0 and Aoo(Aoleo) = 0
Now by (5),

(@10, @o1, @00) + (@10, @00, @01) + (@00, @10, @o1) + (@oos @o1, @10) + (o1, oo, @10)
+ (ao1, @10, ago) = 0.
But (a10, @00, @01) € A11, (@00, @10, @01) = 0, (@00, @01, @10) € Aoo,
(@01, @00, @10) € (A01400)A 10,

and (a@o1, @10, @00) € Aoo by Theorem 5, and from (i) above, (4014 00)A10 = 0.
Thus we have (a0, Go1, @00) € A11 + Aoo. On the other hand,

(awy Qo1, aoo) = (am, 6101)(100 - 010(0010?00) = —(110(001000) € An

by Theorem 5. Hence a10(ao1¢o0) € (A1x + Aoo) N A =0 and so
A10(40nd o) = 0. By symmetry, Ag1(4d10d11) = 0, which completes (iii).
Finally, by (5),

(@11, @o1, @00) + (@11, @00, Go1) + (@oo, @11, @o1) + (@oo, @o1, @11) + (@o1, Goo, C11)

4+ (@1, @11, ae) = 0.
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But (a1, ago, @01) = (oo, @11, ao1) = 0 by Theorem 5 and by (2),
(@00, @o1, @11) = 2e + (@oo, do1, @11)

while by (1), 0 = 2e - (a, ao1, a11) + 2a00 - (e, @o1, a11) = 2e - (a0, Go1, @11)-
Thus (a0, @o1, a11) = 0. We also have (ao1, ago, @¢11) = 0 by (i) above and
(ao1, @11, @oo) = (ao1@11)@00 € Ao1doo by Theorem 5. Thus we have

(@11, @o1, @oo) € Aol oo

and since a11¢o1 = 0, we have a11(e¢o01@00) € Ao1doo. Interchanging 0, 1 yields
Apo(A10411) & 410411 to complete the proof of the lemma.

Denote A10411 + Ao1doo by I. By Lemma 3 (i) and (ii) we have 74 C 1.
Also by (iii) and (iv) we have (411 + 4o)I C I and

AIO(AOIAOO) = AOI(AIOAII) = 0~
Now

J=I+AIl =1+ (Au+ 4w+ Adu+ 4oo)!
=1 + AIO(A10A11)+ AOI(AOIAOO)-

We claim that J is an ideal of 4. Since I4 C I, it suffices to show that for
’L’ #]’, A(A“’(A”Aii)) g I + AI and (A ij(A ”A”))A g I + AI.

LEMMA 4. In A we have for © # j, 1,7 = 0, 1:
(i) Aii(A:ii(AﬂAjj)) = (Aji(AjiA]'j))Aii =0,
(i) A:;(A:4:0) S A4,

(iii) (445(44;4:0))4;: =0,

(iv) A1(A ;A A44)) € A4 G440,
V) (A4;(AA0))A S Ay(AgA),

(vi) (A:(A4:;44))445 = 0,

(vii) 44;(A4;:(A5:A55)) S A4

Proof. The first three properties follow from Theorem 5.

We have (aoo, o1, b01b00) = 2e- (aoo, @ot, boiboo) + 2a01 - (doo, e, bo1boo) by
(2) SO that ((100, ao1, b[)lbog) E A% since (loo(bolboo) =0 by Lemma 3 (111)
But (aoo, Qo1 bo1b00) = (aooam) (bmboo) - (loo(am(b«nboo)) € Ao by Theorem 3
so that (a@o, @o1, bo1beo) = 0 and we have

000(001(17011700)) = (dooam) (bmboo) S A01(A01Aoo)-

BY symmetry, A (A IO(A 104 11)) C Ay (A 104 11) and we have (1V)
To prove (v) we note that
(001, bo1boo, aoo) = 2e- (aon bo1boo, dco) 4+ 2a0; - (e, boiboo, @oo)
= 2e¢ - (ao1, bo1boo, @ao)

by (1) and Theorem 5. Thus (o1, botboo, @o0) € Az. But (ao1, bosboo, @o0) € Ao
by Theorem 5 so that (a1, bo1beo, @) = 0, and hence
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(6101(17011700))000 = 001((b01boo)(100) € Am(A 01/100)
by Lemma 3 (11). By symmetry, (A 10(A 104 11))A uC Alo(A mA 11), completing
).
Next, by (2), (bo1, co1- Coo, @o1) = o1+ (Do, Cooy @01) + Coo + (Bo1, Co1y @o1).
But (bo1, €oo, @01) € A1 by Lemma 3 (i) and Theorem 5 so that
o1+ (boy, oo, @o1) € A1 + Aoo.

Also, (bo1, co1, @o1) € A1 + Aoo by Theorem 5,and so by the same theorem,
Coo * (bol, Co1,y (101) € AU(). Finally, (b()l, Co0Co1, (101) E Au + Aoo by Theorem 5.
Thus we have (b01, C01C00, am) € A1 + Ag. But (bm(CmCoo))dol € An by
Theorem 5 and (coico0)@nn = 0 by Lemma 3 (i) so that

(box, co1€00, @o1) = (bo1(co1600) )01 € Aor M (A11 + Aoo) = 0.

By symmetry, (410(410411))A10 = 0, which completes (vi).
Finally, by (5),

(010, o1, bmboo) + ((llo, bo1boo, (l01) + (bmboo, Q10 (101) + (b(nboo, o1, alo)
+ (001, bo1boo, (110) + ((101, @10, bmboo) = 0.

Now (@10, bo1boo, @o1) = 0 by Lemma 3 (iii) and (i) and (boibeo, @10, @o1) = 0
by Lemma 3 (i). Also, (o1, boiboo, @10) = 0 by (iii) of this lemma and
Lemma 3 (i) and (@o1, @10, b01b00) = 0 by Lemma 3 (iii). But

(borboo, @o1, @10) € Aord oo

by Lemma 3 (i) and (ii). Therefore (a1, @o1, b01b00) € Ao1d oo and since
((lloam) (b()]boo) € A01Aoo by Lemma 3 (IV) we have a]o(am(bmboo)) € A01A 00-
By symmetry, Ao1(410(A10411)) € 410411 completing the proof of the lemma.

THEOREM 6. Suppose that A satisfies the hypothesis of Theorem 4. Then
for any idempotent e of A the set

J = AIO(AIOAII) + AIOAll + AOIAOO + AOI(AOIAOO)
is an ideal of A such that x* = 0 for each x € J.

Proof. J is an ideal by Lemmas 3 and 4. Recall that I = 410411 + A01d 0.
We claim that J2C I. Since J = A1w(410dn1) + I + Aui(4A0udoo) and
A10(A10411) € A1 and A(4dadoo) € Ao we have from Lemma 3 that
J2 C (Alo(A1oA11))2 + I+ (A01(A01A00))2. But now

(6110, 100, x) = 2e - (am, b10@00, x) + 2a10 - (6, 1000, x)

by (2) for x € A1(4A10411) and since (e, biotoo, ) = 0 by Theorem 5 we have
(@10, b1o@oo, ) € Az. On the other hand, (a10(b10200))x — @10 ((b10@00)x) € An
by Theorem 5. Thus (@10(b10 @00))x = @10((h10@00)x) = 0 by Lemma 3 (i) since
x € A Since [A10(410411)]? consists of finite sums of products of elements of
the form [a10(b10200)]x, it follows that
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[A10(410d1)]* =0
and by symmetry [4o1(401d00)]? = 0 so that J2 C I.
Now let x € I. It suffices to consider ¥ = a10a11 + bo1bos. Then
x? = (a10011)® + (a10a11) (borboo) + (Dorboo) (@s0211) + (Dorboo)? S (A1ed11) Ao
+ (A10d11)A10 + (Aadoo)do + (Aode)de =0

by Lemma 3 (i). Thus if x € J, then %2 € I and so (x2)? = x* = 0, as was
desired.

THEOREM 7. Let A be a ring with characteristic A prime to 2 satisfying (1),
(2), and (4) and let e be an idempotent tn A. If A contains no ideals J with
xt=0forall x € J, then A = A11 + Ao+ Aor + Aoo, where x € 4y, if and
only if ex = 1x and xe = jx and A ;A S 644 i unless 1 5% §, 1 = k, j = m,
and then (4,;)* C A,

Proof. This theorem follows immediately from Theorems 5 and 6.

TrEOREM 8. Suppose that A satisfies the hypothesis of Theorem 4. Then
A10A01 + Alo -|— A01 + A01A10 1s an ideal Of A.

Proof. By Theorem 5 it suffices to show that A10401 and 41410 are ideals
of A1; and A, respectively. Let a11 € A11, a10 € A1, and a1 € Agi. Then
by (1), (a1, a1, @o1) = € (a1, @10, @o1) and by (2),

(011, Q10 d01) = 2e- ((111, Q1o a01)

so that (a1, @10, @o1) = 0. Thus a11(10¢01) = (en@i0)an € Ade. Also by
(1), (a1, @o1, @11) € Ay and by Theorem 5, (@10, o1, @11) € A1 so that
(dm, ao1y (111) =0 and we have ((110(101)(111 = am(amau) e A10A401. Inter-
changing Os and 1s yields the corresponding results for 4914 1o.

COROLLARY 1. Aj0do1 and Aol are associative subrings of A.
Proof. Clearly 410401 and 4014 10 are subrings. Now
(@11, @10 * @o1, bu1) = § (a1, G10@or, b11)
since 411 and Ago are orthogonal. But by (2),
(an, Q19 * Qo1 bu) = a0 (au, @01, bu) + ao - (du, @10, b11) = ado1* (au, 10, bu)-

But ((111, aio, bu) = (dndm)bu - a11(a10b11) = ((Zudm)bu by Lemma 3 (lll)
and (¢11¢10)011 € Ao1. Thus a1+ (@11, @10, b11) € (A1 + 4oo) N Ao = 0 and
we have (@11, @10¢01, b11) = 0. Since 410401 consists of sums of elements of
the form aieae1, we have the desired associativity of A10401. By symmetry,
Ao1d 10 is an associative subring also.

COROLLARY 2. If A is simple, then either ¢ =1 or Ay = A1l and
Ao = Aol 1o

We are now in a position to state our main result.
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THEOREM 9. Let A be a simple ring satisfying (1), (2), and (4). Suppose that
A has an idempotent e # 1. Then A is either an associative ring or a Cayley-
Dickson algebra over its centre.

Proof. A ring is alternative if and only if

(6) (®,9,2) = e(0)(e(x), 0(¥), o(2))
for all permutations ¢, where e¢(c) = 1 or —1 as o is even or odd. We prove
the theorem by showing that (6) holds for all possible choices of x, v, z
belonging to the 4 ;; since then Albert’s result is applicable [2].

Combining Corollaries 1 and 2 of Theorem 8 we have (x4, Vi 2::) = 0,
i = 0, 1. Suppose that %11, y11 € A11, 210 € A10. Then

(210, X11, y11) = (%11, 210, Y11) = (210, Y11, ¥11) = (Y11, 810, ¥11) = 0.
Next by (1),
(%11, Y11, 210) = €+ (¥11, Y11, 210) + %11+ (€, Y11, B10) = €+ (X11, Y11, Z10)
so that (x11, Y11, 210) € A11- But (%11, Y11, 210) € A10. Thus
(xu, Vi1, 210) = (yu, X11, 210) = (.

Replacing 219 by 201 € A1 we find the corresponding result, and by symmetry,
the corresponding result holds if %11, 11 are replaced by xgo, Yoo € Aoo. Clearly
(xu, Vi1, Zao) = (xu, 200, yu) = (Zoo, X11, yu) = 0 for 2 € A¢o and

(%00, 211, Y00) = (%00, Yoo, 211) = (211, Xoo, Yoo) = O

for xo6, Yoo € Aooand 211 € A11. Now we examine products involving x11 € 41,
Y10, 210 € A10. By (1), (%11, ¥10, 210) = €+ (%11, Y10, 210) + %11 * (€, Y10, 210) SO
that (%11710)210 = (Y10%10)%11. Since a1bro = —b10a10 we have

(x11y10)21o = —Zlo(xnym) = (ylozw)xu = '—(Zloylo)xn = —(xnzm)ym
= ym(xuzm).

Combining these we have (x11, ¥10, 210) = €(o) (0(*11), ¢ (¥10), 0(210)) for all
o. Again replacing 10, 310 by ¥o1, o1 we have the corresponding results. By
symmetry we have the desired result if %13 is replaced by xg. Let x1; € A1y,
Y10 € Ao, and 801 € Ao1. Then (y10, X11, 501) = (xu, 201, 3’10) = (201,3’10, xn) =0
by Theorem 7 while (201, X11, ¥10) = (*¥11, ¥10, 201) = 0 by (1) and (2). Now
(ym, 201, OCu) E A% by (].) and (ylo, 201 xu) E An by Theorem 7 so that
(Y10, 201, x11) = 0. Interchanging Os and 1s yields the corresponding result
fOl‘ Xo0 6 A()().

We have reduced the proof to considering x, v, 2 € A10 + A1 First suppose
that x10, Y10, 210 € A1o. Then by (1),

(xmy Y10, 210) = 2e- (xlo, Y10, Z10) + 2%10 - (e, Y10y 210)-
Thus equating the 4 -components we obtain

(xlcylc)zm = (walo)xm-
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Similarly, (xmzm)ym = (Zloym)xm and since alobm = '—bloalo we have
- (ymxlo)zm = (xloylo)zm = (ymzlo)xm = — (Zloylo)xlo = — (xlozm)ylo
= (Zloxm)ylo-

Now by (2), (x10, Y10, 210) = 2¢ - (%10, Y10, 210) + 2910 - (%10, €, 210) SO
that equating Ai;-components we have x10(¥10210) = —¥10(X10%10). Similarly,
%10(210¥10) = 210(X10¥10) SO we have

—ym(zloxlo) = ylo(xmzlo) = _xlo(ymzlo) = xlo(zmyw) = Zlo(xwym)
= -Zlo(yloxlo)-

Combining these results yields (%10, Y10, 210) = €(0) (0 (X10), ¢ (V10), o (210))
for all ¢. The case %01, Yo1, 201 € Ao1 is proved in the same way. Finally, we
consider X190, Y10 € 410 and 201 € A¢1. Then

(201y %10, ¥10) = — (201, Y10, ¥10) = (Y10, %10, 201) = — (¥10, Y10, Z01)
since 201(X10¥10) = —201(¥10X10) = (Y10%10)201 = — (¥10¥10)201. Consider
(%10, Z01, ¥10) + (201, 10, Y10) = W10 € A1o.
We show that xp w10 = wiexor = 0 for all x¢1 € Ao1. Then
Awio + wied € 410+ Aa
so that wio belongs to the ideal .# of Theorem 3 and hence must be zero.
Xo1Wie = Xo1(X10, Zo1, Y10) + %01 (201, X10, Y10)
= %01(¥10, 201, ¥10) — Xo1(201(*¥10¥10))
= %o01(%10, 201, Y1) — (X10¥10) (X¥01201),

since x10¥10 € Ao1 and @o1(boicor) = co1(@oibo1) from the preceding case. But
now by (1) we have

(%01 * X10, 201, ¥10) = Xo1 * (¥10, Z01, ¥10) + ¥10 * (K01, 201, Y10)
and since xo1 * %10 € A11 + Ao, we must have
%01+ (X10, Z01, Y10) + %10 * (Xo1, 201, Y10) = O.
Thus the A g-component of this sum must be zero and we have
0 = x01(%10, Z01, ¥10) + (Xo1, 201, ¥10)%10

= %01(%X10, 201, ¥10) + [(*¥01201)¥10]%10

= Xo01(%10, Zo1, ¥10) + (Y10%10) (X01201)

= %01(%X10, Z01, ¥10) — (¥10¥10) (¥01301)

= Xo01Wio.
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In a similar fashion we have wipxy; = 0. Hence from our preceding remarks,
Wi = 0 al’ld (xlo, 201, ym) = —(201, xm,ym). Interchanging X10 and Y10 wWe
obtain (¥10, 201, X10) = — (201, ¥10, ¥10). Combining these results we have
(%10, Y10, 201) = €(0) (0 (®10), o (¥10), 0 (201)) for all ¢. By symmetry, the results
are true if xo1, y01 € Ao1 and 210 € A10 and the theorem is true.

4. Semisimple algebras. Let 4 be a finite-dimensional algebra over a
field F of characteristic not equal to 2 satisfying (1), (2), and (4). We define
the radical V of A to be the maximal nil ideal of 4. This makes sense since
A is power-associative by Theorem 1. 4 is said to be semisimple if N = 0 = A4.

TueoreM 10. If A is simple, A has an identity element.

Proof. Since A is non-nil and power-associative, it follows that 4 has an
idempotent e [7]. If e is not the identity element, then by Theorem 9, 4 is
alternative and hence has an identity element [2].

THEOREM 11. For any principal idempotent e of A, Ao+ Ao + Ao & N.
If A is also semisimple, A has an identity element and 1is the direct sum of simple
algebras.

Proof. The proof of this theorem is essentially the same as that of the
corresponding results given in [4] and we do not repeat it here.

5. Wedderburn decomposition. Rodabaugh [6] has shown that an
algebra A4 satisfying (1), (3), and (4) over a splitting field F of characteristic
not equal to 2 or 3 and having neither nodal subalgebras nor ideals ¥ with
x € % implying x2 = 0 has a Wedderburn decomposition. He further showed
that the condition of no ideals ¥ with x2 = 0 for each x € .# cannot be
removed.

THEOREM 12. Let A be an algebra satisfying (1), (2), and (4) over a splitting
field F of characteristic not equal to 2 or 3. If A contains neither nodal subalgebras
nor ideals J with x in J implying x* = 0, then A has a Wedderburn decomposition.

Proof. Rodabaugh [6, Theorem 4.1] has shown that under these hypotheses
it suffices to show that 4 has the decomposition of Theorem 7 and that the
set A10do1 + A0 + Ao1 + A4 10 be an alternative ideal. The latter condition
follows from the proof of Theorem 9. Hence A has a Wedderburn
decomposition.

THEOREM 13. Let A be an algebra satisfying (1), (2), and (4) over a splitting
field F of characteristic not equal to 2 or 3. If A contains no nodal subalgebras
and if A — N contains no simple ideals of degree 2, then A has a Wedderburn
decomposition.

Proof. The proof is essentially the same as that given in [6, Theorem 5.2] for
algebras satisfying (1), (3), and (4) and we do not repeat it here.
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