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ON A GENERALIZATION OF ALTERNATIVE RINGS 

RAYMOND V. MORGAN, JR. 

1. Introduction. Bruck and Kleinfeld [3] proved that any alternative 
ring with characteristic prime to 2 must satisfy the identity 

(x2, y, z) — 2x - (x, y, z), 

where the associator (x,y,z) is defined by (x, y, z) = (xy)z — x(yz) and 
x - y = %(xy + yx). Linearization of the identity (x2, y, z) = 2x • (x, y, z) 
yields for characteristic prime to 2 an equivalent identity 

(1) (x • w, y, z) = x • (w, y, z) + w • (x, y, z). 

Using the right alternative law (x, y, z) = — (y, x, z) and the flexible law 
(x, y, z) = — (z, y, x) which is satisfied in any alternative ring we obtain 

(2) (y} x - Wy z) = x • (y, w, z) + w • (y, x, z) 

and 

(3) (y, z, x • w) = x • (y, z, w) + w • (y, z, x). 

In this paper we study the class of rings which satisfy any two of (1), 
(2), and (3) together with 

(4) (x, x, x) = 0. 

These rings are clearly generalizations of alternative rings. 
Kosier [5] studied rings satisfying (1), (3), and (4). He showed that such 

rings were power-associative and have the idempotent decomposition 
A = A\ + A\ + ^4o, where x G A t if and only if ex + xe = 2ix and e2 = e ^ 0. 
He further proved that if A has no nil ideals, then A must have the Peirce 
decomposition A = Au + Aio + A0i + Aoo, where x £ Atj if and only if 
ex = ix and xe = jx and that the subspaces A tj multiply as in the alternative 
case. His main results were: 

(i) if A is simple and e is idempotent with e ^ 1, then A is associative or a 
Cayley-Dickson algebra over its centre and 

(ii) if A is a finite-dimensional semisimple algebra, then A has an identity 
and is the direct sum of simple algebras. 

Any ring satisfying (1), (2), and (4) is anti-isomorphic to a ring satisfying 
(2), (3), and (4); thus it suffices to consider rings satisfying (1), (2), and (4). 
Throughout this paper, all rings have characteristic prime to 2. 
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In § 2 we show that any ring satisfying (1), (2), and (4) must be power-
associative. In § 3 we prove that if A has no nil ideals, then A has the Peirce 
decomposition with the same multiplication on the subspaces as an alternative 
ring. Using this result we show that if A is simple and e is an idempotent in 
A with e 9^ 1, then A is either associative or a Cayley-Dickson algebra over 
its centre. In § 4 we prove that if A is a finite-dimensional semi-simple algebra, 
then A has an identity and is the direct sum of simple algebras. Finally, 
in § 5 we show that certain algebras satisfying any two of (1), (2), (3) 
together with (4) must have a Wedderburn decomposition. 

We suppose in the remainder of this paper that the ring A satisfies (1), 
(2), and (4). 

2. Pre l iminar ies . We begin this section with the following result. 

THEOREM 1. A is power-associative. 

Proof. Identity (4) yields x2x — xx2 and this along with (1) and (2) yields 
x2x2 = x3x = xx3. We define xn+1 inductively by requiring that x1 = x and 
xn+i _ xxn for ^ == 1, 2, . . . . Then we have x V = xi+j for i + j = 3 and 
0 < i, j < 3 and for i + j = 4 and 0 < i, j < 4. We proceed now by induction 
on i + j . Assume that xixi = xi+j for all i, j with i + j < n and 0 < i, j 
and let i + j = n with n ^ 5. By (1) with y = xn~2~\ z = x\ w = x, we 
have (x2, xn~2~\ x1) = 2x • (x, xn~2~\ xl) = 0 so that xn~ixi = x2xn~2 for 
0 < i < n — 2. But now (x2, x, xn~z) = 2x • (x, x, xn~z) = 0 and 

( /y* /y»2 /yW>—o\ • ^/'Y* • I /V* /Y" 'V*^—3 ) — | | 
•A' ^ */V 9 «A/ J *J*A/ \ */V t *A/ j vV y v / 

so that x*xn~z = x 2 / " 2 and x3xw~~3 = xxw-1 = xn. Thus xw = x ¥ ~ 2 and we 
have xn~ixi = xn for 0 < i < n — 2. If i = w — 2, then we have also shown 
that x2xn~2 = xw and ii i = n — 1, then xxn_1 = xw by definition. Thus we 
have xixj = xi+j for i + j = n and 0 < i, j < n and A is power-associative. 

Let e be an idempotent in A. It is known [1] that if A is commutative and 
power-associative, then A has the decomposition A = A± + A\ + A0, where 
At = {x: xe = ix\ for i = 1, J, 0. Define the ring 4̂+" to be the same vector 
space as A but with the multiplication • defined by a • b — §(«& + ba). 
If 4̂ is power-associative then powers in A and A+ coincide so that A+ is a 
commutative, power-associative ring. Hence we have the decomposition 
A = Ai + ^4i + ^40, where ^4* = {x: ex + xe = 2ix} for i = 0, -|, 1. Albert 
further showed that the subspaces A t multiply as follows: AhAo are orthogonal ; 
Ai • Ai Q At for i = 0, 1; ^ i - ^ i Ç ^ i + ^ 0 ; At • A± Q A^i + A± for 
i = 0, 1. I t follows from power-associativity that A t = {x: ex = xe = ix], 
i = 0, 1, and Ax = {x: ex + xe = x}. 

The following is the associator form of the linearization of (x, x, x) = 0 
that appeared in [1]. For all x, y, and z in A we have 

(5) (x, y, z) + (x, z, y) + (y, 2, x) + (y, x, 2) + (s, x, 7) + (s, ;y, x) - 0. 
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LEMMA l. If a £ A, then (e, a, e) = 0 and for each x G Ai, ex and xe are 
in Ai. 

Proof. If a G At for i = 0, 1, clearly {e, a, e) = 0. Let a G Ai; then by 
(1), (e, a, e) = (e • e, a, e) — 2e - (e, a, e) so that (e, a, e) G Ai. Let 

m = xi + #i + x0. 
Then 

(e, e, a) = m — e{ea) = Xi + xi + x0 — xx — exi = xie + XQ. 

But ea — e(ea) = e{aé) so that e(ae) = xie + x0. Also 

(a, e, e) = (ae)e — ae = — (ea)e = — Xi — xie 

and we have (ea)e = Xi + x\e. Thus we have 

{e, a, g) = (ea)e — e(ae) = Xi + x*e — xie — x0 = X\ — x0. 

Since (e, a, e) G -4A, it follows that (e, a, e) = x± = x0 = 0. 

THEOREM 2. Suppose that A = Ai + A* + A0 with respect to the idempotent 
e of A. Then A\ and Ao are orthogonal subrings and AtAi + AiAt Ç A% for 
i = 0, 1. Furthermore, for x, y G Ai we have x2 G AI-\~AQ and (xy)i = — (yx)i. 

Proof. Let x, y G ̂ 4i- Then 

(x, y y e) = (g • x, y, e) = e • (x, y, e) + x • (0, 3/, e) = e • (x, 3', e) 

by (1) so that (x,y,e) G -4i. Also (e, x, 3/) = 2e- (e, x, y) by (1) and 
(e, x, y) = e • (e, x, y) + x • (e, e, 3/) = e • (e, x, y) by (2) ; thus (e, x, 3/) = 0. 
Let X3> = ai + a\ + ao- Then rry — e(x^) = 0, and so a0 = 0 and ai — eai = 0. 
But (x, 3/, e) = (x3>)e — xy G A\ so that 

(ii + ^ e — «1 — CL\ = aie — ai = — eai = —ai £ Ai. 

Thus ai = 0 and we have xy G A\. Similarly, x, 3> G ̂ 4o implies x;y G A0. 
Next, let x G A1 and 3' G Ai, then 

(x, y, e) = e • (x, 3/, e) + x • (e, y, e) = e - (x, y, e) 

by (1) and we have (x, y, e) G At. But by (2), 

(x, y, e) = (x, 2;y • e, e) = 2e • (x, y, e) + 2y • (x, e, e) = 2e - (x, 3;, e) 

so that (x, y, e) G Ai. Thus (x, y, e) = 0. We also have (e, x, y) = 2e • (e, x, y) 
by (1) and (x, e, y) = 2e- (x, e, 3O by (2). Hence (e, x, y) and (x, e, y) are 
in / l i . Now — (x, y, e) + (e, x, 3;) — (x, e, y) = — (x;y)e — e(x^) + X3> G Ai. 
If X3> = ai + CL\ + #o, we then have —ai + ao G -4|. Thus a± = a0 = 0 
and ry G ̂ 4|. Now xy + 3>x G A\ + A0 so that if yx = ai + ai + a0, then 
ax = 0. But (y, x, e) G ̂ 4i by (1) so that (yx)e — yx G -4^. Thus a0 G Ai 
so that a0 = 0 and we have yx G A*. Similarly, if x G A0 and y G Ai, then 
X3/ and 3>x are in Ai. 

Finally, let x,y G Ai. Then from the decomposition of commutative 
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power-associative rings, x2 = x - x G ^ 4 i + 4̂o and x • y G Ai + A0 so that 

foOï = ~ Mi-

3. Ideals and simple rings. 

THEOREM 3. Let ££ = {x G ^4*| xa, ax G 4 i /or a// a G ^4}. 77^w J$f w 

an ideal in A and x2 = 0 /or eacA x G <=£?. 

Proof. Clearly, for any z £ A and x G =£f, xs and sx are in .4i. Let x f i f . 
We consider cases when z ^ At for i = 0, J, 1. 

Case 1. Let z G ^4i. If 3/ G ̂ 4* for i = 0, 1, then since xz, zx G 4 i , by 
Theorem 2 we have y(xz), yizx), (xz)y, and (zx)y in ^4i. Let y £ Ai\ then 
(x, 2, 3/) = 2e • (x, 2, 3/) + 2x • (e, z, y) by (1). Set (x, z, y) = ai + ai + a0. 
Then a\ + a\ + a0 = 2ai + ai + 2x • (e, z, y). But x G °£?, and so 

x - (e, z, y) G Ai 

and we have a\ = a0 = 0. Thus (x, 2,3/) = (xz)y — x(Vy) G A\ and since 
x(Vy) G Ax we have (xz)3> G Ai. Now xs + sx G Ai + v40 so that 

ixz)y + (zx)y G Ai, 

and hence (sx)3/ G A*. Next (3/, x, 2) = 2e • (3/, x, 2) + 2x • (y, e, z), and so 
as before, (y, x, 2) G Ai. But by the first part of the proof with y, z 
interchanged, (yx)z G Ai so that y(xz) G Ai also. Thus, since 

;y(xs + zx) G -4*C4i + Ao) C ^ 1 , 

we have 3>(sx) G ̂ 4| to complete Case 1. 
Case 2. Let s G Ai. Iî y £ At îor i = 0, 1, then since x G <=5f, xs, zx G -4 A, 

and so all products with y are in Ai. Let 3/ G Ai. By (1), 

(x, s, y) = 2e - (x, s, 3/) + 2x • (e, z, y) 

so that as in Case 1, (x,z,y) G ̂ 4|. Since x G <^, x(Vy) G <4i, so that 
{xz)y G -4|. Also, (z, x, 3/) = 2e • (s, x, y) + 2x • (s, e, y) by (2) so that 
(2, x, y) G -4i. But z Ç: Ai and x^ G Ai; thus by Theorem 2, z(xy) G -4i and 
hence (zx)y (z Ai. Now (3;, x, z) = 2e - (y, x, z) + 2x • (3/, e, z), and so as 
before (y, x, s) G -4 A, and since (yx)z G -^4^1 £ -4 A, it follows that;y(x2;) G ̂ 4 A. 
So far we have shown that (x,z,y), (z,x,y), and (y,x,z) are in y4i. Now 
(z,y, x) = — z(yx) + (23/)# G ^4A since x G J^7, 3>x G A\, and s G Ai. Also, 
(x, j , s) = (xy)z — xiyz) G -4i for the same reason. It then follows by (5) 
that (y, z, x) G Ai also and since (yz)x G Ai, we have yizx) G Ai. 

Case 3. Let z £ Ao. The proof here follows as in Case 2 with 2 £ i 0 instead 
of A1. 

Finally, if x G S£, then x G Ai\ thus x • x = x2 G -4i + A$. But x2 G <4i 
by definition of oêf so that x2 = 0. 

We are now ready to show that under the additional hypothesis that A 
contains no ideals «Sf with x2 = 0 for each x G «Sf that A must have a Peirce 
decomposition. 
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THEOREM 4. Suppose that A has no ideals ££ 9^ 0 such that x2 = 0 for each 
x G oêf. 77*e» /or g aw idempotent of A we have A = An + A10 + 4 01 + ioo, 
where x G Atj if and only if ex = ix and xe = jx. 

Proof. It is well known that a necessary and sufficient condition that the 
decomposition of the theorem holds in A is that 

(x, e, e) = (e, x, e) = (e, e, x) = 0 for all x G A. 

Since we already have (e, x, e) = 0 by Lemma 1 and (e, e, x) + (x, e, e) = 0 
by (5), it suffices to show that (x, e, e) = 0 for x G A\. If x G Ai, we have 

e(xe) = (e, e, x) = — (x, e, e) = (ex)e. 

We complete the proof by showing that e(xe) G ££, the ideal of Theorem 3. 
This will follow from the next lemma. 

LEMMA 2. Let A he a ring with idempotent ey and suppose that x, y G A\. 
Then 

(ocy)i = [(ex)(ye)]lt (xy)0 = [(xe)(ey)]0; 

(ex)(ey), (xe)(ye) £ Ai. 

Proof. Identity (1) and Lemma 1 yield 

(e, x, y) = 2e • (e, x, y), (x, y, e) = 2e • (x, y, e). 
Hence 

0 , x, y)i = (e, x, y)0 = (x, y, e)i = (x, y, e)0 = 0 
so that 

[(ex)y]i = (xy)i, [OOylo = 0, 

[x(ye)]i = (xy)i, [x(ye)]0 = 0. 

The lemma follows when we note that ex + xe x. 
We are now ready to determine the multiplication properties for the 

subsets A tj. Note that An — Ai, A00 = Ao so that A10 + A01 = A% and the 
properties of Theorem 2 hold for A10 and ioi-

Let x Ç A H and 3/ G A10. By (1) and (2), (x, y,e) = 0 so that {xy)e = 0. 
But i i i i £ i i ; thus (xy)0o = 0 and xy = (xy)i0. Similarly, if x G A00 

and y G -4 01, we have xy G ioi- If x G A n and y G -4 01, by (1) and (2), 
(x, e,y) = 0 so that xy = 0 and x G ioo, y G -410 yields xy = 0. Thus 
AaAjcm S= OikAim. 

Now let x G i o i and y G A n. Then by (1) and (2), (x, 3/, e) = 0 and we 
have (xy)e = xy. But xy G -410 + A 01 by Theorem 2 so that xy = (xy)oi. 
Similarly AI0A0Q Q AIQ. Thus AfjAjj C i^- . Next let x G -410 and y Ç i n . 
Then (x, y, e) = 0 by (1) and (2) so that (xy)e = xy. But again 
xy G A10 + A01 so that xy = (xy)0i. If x G -401 and y G -4 00, then xy = (xy)i0 

and we have A^Au C i ^ . 
If x, y G -4 01, then, by (2), (x, e, y) = 2e • (x, e, y), and so 

(x, e,y) G -410 + 4 01 
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so t h a t xy G Ai0 + 4.0i. By symmetry , x, y G ^4io implies X3/ G ^410 + -4 01. 
T h u s A ijA ij C 4.10 + 4. 01. If x G 4̂10 and 3> G -4 01, then by (1 ) and L e m m a 1, 
(x, y, e) = 2e • (x, y, e), and so (x3>)e 6 -410 + -4 01. Hence (ry)oo = 0 and 
we have -4 i 0 4 0 i £ An + ^410 + ^401. Similarly, A0iA1Q Q A00 + A10 + A01. 

Finally we show t h a t (x0i^io)io, (y 10*01)01, (tfotfoOoi, (*io3>io)io, (^10^01)10, 
and (3^01*10)01 are in *£f, the ideal of Theorem 3, and hence mus t be zero. 
Le t xtj G Aij and ykm G Akm for the remainder of this proof. 

Now from above, Xoi^io G A10 + A 01 + 4 00. By the first pa r t s of this 
proof it suffices to show t h a t (*oi3>io) 10̂ 01 and £oi(*oi;yio)io a r e m ^\ for 
Soi G 4 01. Now by (1), 

(soi, *oi, yio) = 2e • (201, *oi, >'io) + 2^oi • (e, *oi, y 10) 

and by (2), 

(201, #oi, y 10) = %e • (201, #01, yio) + 2xoi • (201, e, yio). 

T h u s 201 * (e, #oi, yio) = #01 • (201, e, 3>io) = 0. T h u s 

Soi • (e(x0iy10)) = Soi • (#01^10)10 = 0. 

Bu t Soi(xoi3^io)io G A10 + 4 01 + A 00 and (x0i^io)io2oi G -4n + 4̂ 01 + 4 i 0 . 
T h u s [s0i(xoi3/io)io]oo = [(#oi3;io)ioSoi] 11= 0. T h u s (x0i3>io)io G i f . T h e same 
procedure with 210 G 4̂10 yields 210 • (y 10*01) 01 G 4 i so t h a t (3>io*oi)oi G ^ . 

Consider now (*oryoi)oi and let s10 G 4 i 0 . Then 

(*oi, 210, 3;oi) = 2e • (xoi, S10, 3>oi) + 2x0i • (e, s10, 3>oi) 

by (1) and by (2), 

(#oi, S10, yoi) = 2e • (xoi, S10, 3/01) + 2s10 • (x0i, e, y 0 i ) . 

T h u s su, • (xoi, e, y01) = x0i • (e, sio, yoi) = #01 • [zio^oi — «(zioyoi)]. Bu t 

Sio^oi — e(z10y0i) = (210^01)01 G oSf C ^ i 

so t h a t Xoi • (e, 210, 3>oi) G A±, and hence 2 i 0 • (x0i, e, y01) G Ax. Now 

S10 • (#01 , e, 3/01) = 210 • (*oi3>oi) 

and since 210 • (*oi3>oi)io G - 4 | we mus t have 2i0 • (*oi3>oi)oi G A\. Hence 
(*oi3>oi)oi G «if. T h e same proof with 20i G A 01 yields (*io3>io)io G i f . 

Finally, *io3'oi G ^411 + ^410 + -4 01 and 3>oi*io G 4̂10 + 4̂ 01 + .4 00 with 
(#io3;oi)oi and (3/01*10)10 in i f . Bu t by Theorem 2, ( x ^ o i ^ = —(3/01*10)1 so 
t h a t (*io3>oi)oi = —(3^01X10)01 and (*io;yoi)io = — (3>oi*io)io. Hence we have 
(3^01*10)01 and (*io3>oi)io in i f . Combining these remarks we have the following 
result. 

T H E O R E M 5. Suppose that A satisfies the hypothesis of Theorem 4. Then for 
any idempotent e of A, A = An + A10 + A01 + A00, where AtjAkm C bjkAim 

except when i 7^3, i = k, j = m or i 9^ j , k = m = 2'. TTzew AiûAiù C 4^* a^d 
4^-4^ C ^ ^ . 
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These properties of the subspaces A tj are almost those of an a l ternat ive 
algebra, the only exception being AfjAu C Ajt. We proceed now to show 
t h a t if A has no ideals J with x4 = 0 for each x £ J, then A^Aa = 0. 

L E M M A 3. If A satisfies the hypothesis of Theorem 4, then the following are 
true for i ^ j , i,j = 0, 1: 

(i) (AijAi^iAjj + Atj + Ajt) = 0, 
(ii) (AtjAtJAuÇlAijAii, 

(hi) (Ajt + Aii)(AijAil) = 0, 
(iv) AjjiAijAa) C AijAa. 

Proof. Throughou t this proof, a^ G Atj and bkm G -4*/»- By (2) we have 
0 = a0o • (#oi, e, a n + aio) + e • (a0i, a0o, a n + aio) and since 

(a0i, e, a n + aio) = 0, 

0 = e • (a0i, a00, a n + aio) = e • ( (a0 ia0o)(an + aio)). But 

(aoia0o)(an + aio) G A01 

by Theorem 5, and so (a0 ia0o)(an + a i 0) = 0. Now (a0i, a0o, &oi) G ^± by (1) 
and (a0i, a0o, &oi) = (a0ia0o)&oi — aOi(aOO0oi) G -4n + A10 by Theorem 5. 
T h u s (a0ia0o)&oi £ An r\ A± = 0. Interchanging 0, 1 in the above proof 
completes (i). 

By (2), (a00, a0i , &oo) G A± and by (1), 

0 = 2e • (a0o, a0i, 6oo) + 2a0o • (e, a0i, b00) = (a00, a0i, 60o) + 2a0o • (e, a0i, 60o). 

T h u s (a0oa0i)&oo — a0o(a0i&oo) — a0o(a0i&oo) — (a0i&oo)a0o = 0 and since 
a0o(aoia0o) = 0 we have (a0i»oo)a0o = (a0oa0i)&oo G ^4oî 4oo by Theorem 5. 
By symmet ry we have (aioan)&n G Ai0Au to complete (ii). 

I t follows from Theorem 5 t h a t AniAiaAn) = 0 and ^40oG4oi^4oo) = 0. 
Now by (5), 

(aio, aoi, aoo) + (aio, aoo, aoi) + (aoo, aio, aoi) + (aoo, aoi, aio) + (aoi, aoo, aio) 

+ (a0i, aio, aoo) = 0. 

Bu t (aio, a0o, a0i) G i n , (a0o, aio, a0i) = 0, (a0o, a0i, aio) G A00, 

(a0i, a00, aio) G C40i-40oMio, 

and (a0i, aio, a0o) G A00 by Theorem 5, and from (i) above, (^4oi^4ooMio = 0. 
T h u s we have (aio, a0i, a0o) £ An + A00. On the other hand, 

(aio, aoi, aoo) = (aio, aoi)aoo — aio(aoiaoo) = ~aio(aoiaoo) G -4oi 

by Theorem 5. Hence ai0(a0ia0o) G (An + A00) r\ A0i = 0 and so 
A io(AoiAoo) = 0. By symmetry , -4oi(-4io^ii) = 0, which completes (iii). 

Finally, by (5), 

(an , a0i, a00) + (an, a0o, a0i) + (a0o, an, a0i) + (a0o, a0i, a n ) + (a0i, aoo, a n ) 

+ (a0i, a n , a0o) = 0. 
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B u t (an , aoo, aoi) = (a0o, an, a0 i) = 0 by Theorem 5 and by (2), 

(a00, aoi, ^i i ) = 2e ' (aoo, a01, a n ) 

while by (1), 0 = 2e • (a00, aoi, a n ) + 2a00 • (e, a0i, a n ) = 2e • (a00, a 0 i , a n ) . 
T h u s (a0o, a0i , a n ) = 0. W e also have (aoi, aoo, a n ) = 0 by (i) above and 
(a0i, an, a0o) = (aoian)a0o G 4 0 i 4 0 o by Theorem 5. T h u s we have 

(an, #oi» &oo) Ç 4 oi-4 oo 

and since a n a 0 i = 0, we have an(a 0 ia 0o) G ^40i40o. In terchanging 0, 1 yields 
4 oo ( 4 io4 n ) C AIQAU to complete the proof of the lemma. 

Denote 4 i 0 4 n + 4 0 i 4 0 o by / . By L e m m a 3 (i) and (ii) we have I A C / . 
Also by (iii) and (iv) we have ( 4 n + A0o)I Q I and 

^ io(^o i4oo) = AoiiAioAn) = 0. 
Now 

J=I + AI = I+ (An + A10 + Aoi + Aoo)I 

= I + Aio(A10An)+ 4 0 i ( 4 o i 4 o o ) . 

W e claim t h a t / is an ideal of A. Since I A C J, it suffices to show t h a t for 
i j * j , A ( 4 ij(A tJA u)) QI + AI and ( 4 tj(A tjA it))A Q I + AI. 

L E M M A 4. In A we have for i ^ j , i, j = 0, 1: 

(i) AuiAjiiAjtAjj)) = (Aji(AjiAjj))Aii = 0, 
(ii) AijiAijAu) QAijAji, 

(iii) (AijiAijAtMAji = 0, 
(iv) AuiAiÂAijAn)) QAijiAijAa), 
(v) (AijiAijAu))Au ÇZ AtjiAtjAu), 

(vi) (Aij(AijAu))Aij = 0, 
(vii) Aij(Aji(AjiAjj)) C A^A». 

Proof. T h e first three propert ies follow from Theorem 5. 

W e have (a00, a03, &01&00) = 2e • (a00, a0i , &01600) + 2a0i • (a00, e, 601&00) by 
(2) so t h a t (ûfoo, aoi, &01&00) £ 4 ^ s m c e «00(601600) = 0 by L e m m a 3 (iii). 
Bu t (a0o, a0i , boiboo) = (a0oa0i) (boiboo) — a0o(a0i(&oi^oo)) G 4 00 by Theorem 3 
so t h a t (a0o, a0i, boiboo) = 0 and we have 

a0o(a0i(&oi&oo)) = (a00a0i) (boiboo) G 4 0 i ( 4 0 i 4 0 o ) . 

By symmetry , - 4 n ( 4 i o ( 4 U o 4 n ) ) C 4 i 0 ( 4 i 0 4 n ) and we have ( iv). 
T o prove (v) we note t h a t 

(a0i, &01&00, a00) = 2e • (a0i, 601600, aco) + 2a0i • (e, boiboo, a00) 

= 2e • (a0i, 60i600, a00) 

by (1) and Theorem 5. T h u s (a0i, 601600, a0o) 6 A±. B u t (a0i, 60i60o, a00) G 400 
by Theorem 5 so t h a t (a0i, 601600, a0o) = 0, and hence 
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(a0i(6oi6oo))a0o = a0i(Ooi&oo)aoo) G -4oi(40i400) 

by Lemma 3 (ii). By symmetry, (4 io (4 io4n) )4n Ç 4 i 0 ( 4 i 0 4 n ) , completing 
(v). 

Next, by (2), (60i, Coi • £oo, a0i) = Coi • (Soi, £oo, a0i) + c00 • (60i, coi, a0i). 
But (ôoiï £oo, doi) G A io by Lemma 3 (i) and Theorem 5 so that 

Coi • (601, Coo, doi) G A n + A oo. 

Also, (60i, coi, doi) G A n + 40o by Theorem 5, and so by the same theorem, 
Coo • (601, Coi, a0i) G 4̂oo- Finally, (60i, CooCoi, a0i) G Au + Aoo by Theorem 5. 
Thus we have (60i, CoiCoo, a0i) G 4 n + ^40o. But (60i(coiCoo))a0i G -4oi by 
Theorem 5 and (coi£oo)#oi = 0 by Lemma 3 (i) so that 

(&oi, ôî oo, ooi) = Ooi(coi£oo))aoi G ^4oi Pi (An + Aoo) = 0. 

By symmetry, (4 io(4i 0 4n))4io = 0, which completes (vi). 
Finally, by (5), 

(a™, a0i, 60i60o) + Oio, 601600, a0i) + (601600, ai0, a0i) + (601600, «01, aio) 

+ (a0i, 601600, aio) + (aoi, O10, 601600) = 0. 

Now (aio, 601600, cio\) = 0 by Lemma 3 (iii) and (i) and (601600, aio, #oi) = 0 
by Lemma 3 (i). Also, (a0i, 60i60o, &10) = 0 by (iii) of this lemma and 
Lemma 3 (i) and (a0i, aio, 601600) = 0 by Lemma 3 (iii). But 

(601600, #01, aio) G 4oi4oo 

by Lemma 3 (i) and (ii). Therefore (aio, a0i, 601600) G 40 i40o and since 
(aioaoi) (601600) G ^4oi40o by Lemma 3 (iv) we have aio(a0i(6oi6oo)) G ^4oi40o. 
By symmetry, 4oi (4 io(4 i 0 4n)) c A\oAu completing the proof of the lemma. 

THEOREM 6. Suppose that A satisfies the hypothesis of Theorem 4. Then 
for any idempotent e of A the set 

J = 4io(4io4n) + A 10-411 + A 
01-4 00 + A01(AoiAoo) 

is an ideal of A such that x4 = 0 for each x G / . 
Proof. J is an ideal by Lemmas 3 and 4. Recall that I — 4 i 0 4 n + 40i^4oo. 

We claim that J 2 C I. Since J = Aio(A10Au) + I + 4oi(^4oi^4oo) and 
^4io(4io4n) C Au and 4.0i(40i40o) Q Aoo we have from Lemma 3 that 
J2 £ C4io(4io4n))2 + I + (4oi(40i4oo))2. But now 

(aio, 6i0a0o, x) = 2e • (aio, 6i0a0o, x) + 2ai0 • (e, 6i0a0o, x) 

by (2) for x G 4 i 0 ( 4 i 0 4 n ) and since (e, 6i0a0o, x) = 0 by Theorem 5 we have 
(aio, 6i0a0o,x) G 4 i . On the other hand, (ai0(6i0a0o))x — aio ((&ioa0o)#) G An 

by Theorem 5. Thus (aio(610 aoo))# = #io((6ioa0o)#) = 0 by Lemma 3 (i) since 
x G A11. Since |y4ioC4i<^4ii)]2 consists of finite sums of products of elements of 
the form [ai0(6i0a0o)]x, it follows that 
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UxoGWll)]2 = 0 

and by symmet ry |y4oiG4oi-<4oo)]2 = 0 so t h a t J2 C I. 
Now let x G I. I t suffices to consider x = aioan + &01&00. Then 

x2 = (aioan)2 + (a10an) (ôoi&oo) + (bo1boo)(a^a11) + (&01&00)2 Q (^i0 .4n)y40 i 

+ (A10Au)A10 + (A01Aoo)A01 + (A01A 00) A10 = 0 

by L e m m a 3 (i). T h u s if x G J , then x2 G / and so (x2)2 = x4 = 0, as was 
desired. 

T H E O R E M 7. Le/ A be a ring with characteristic A prime to 2 satisfying (1), 
(2), and (4) a?zd /e/ e be an idempotent in A. If A contains no ideals J with 
x4 = 0 for all x G / , ^ew A = An + Ai0 + A 01 + 4̂ 00, ^ e r e x G .4 i ; if and 
only if ex = ix and xe = j x <md ^1 i^4Aw £ 6^.4 im unless i ^ j , i = k, j = w, 

Proof. This theorem follows immediately from Theorems 5 and 6. 

T H E O R E M 8. Suppose that A satisfies the hypothesis of Theorem 4. Then 
A10A01 + A10 + A01 + AfnAu) is an ideal of A. 

Proof. By Theorem 5 it suffices to show t h a t ^4i0^4oi and AQIAIQ are ideals 
of An and A00, respectively. Le t au G Au, a±o G A10, and aoi G -401. Then 
by (1), (an , aio, «01) = e • (an, aio, «01) and by (2), 

(flu, «10, a0i) = 2e • (an, aio, a0i) 

so t h a t (an , aio, a0i) = 0. T h u s an (a i 0 a 0 i ) = (anaio)aoi G -4io^4oi. Also by 
(1), (aio, a0i, a n ) G - 4 | and by Theorem 5, (aio, a0i, a n ) G -411 so t h a t 
(aio, a0i, a n ) = 0 and we have (a i 0 a 0 i )an = a i 0 ( a 0 i an ) G Ai0AOi. Inter­
changing 0s and Is yields the corresponding results for 4̂ 01-^ 10. 

COROLLARY 1. AJQAQI and -4oi^4io are associative subrings of A. 

Proof. Clearly A ^A 01 and A ^A10 are subrings. Now 

(an , aio * aoi, bn) = 2(^11» ^IO^OI» bn) 

since ^4n and A 0o are orthogonal . B u t by (2), 

(an , aio * a0i , &11) = aio • (an , a0i , 611) + aoi • (an , aio, &11) = a0 i • (an, aio, &11). 

B u t (an , aio, 6n) = (flnaio)ftn — an(aio&n) = (anaio)6n by L e m m a 3 (iii) 
and (anaio)&ii G -401. T h u s a0i • (an, a10, bn) G (Au + A00) H -410 = 0 and 
we have (an, ai0a0 i , bn) = 0. Since ^4i0^4oi consists of sums of elements of 
the form ai0a0 i , we have the desired associativity of ^4i0^4oi. By symmetry , 
A QIA 10 is an associative subring also. 

COROLLARY 2. If A is simple, then either e = 1 or An = ^4io^4oi and 
4̂ 00 = A oî 410. 

W e are now in a position to s ta te our main result. 
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THEOREM 9. Let A be a simple ring satisfying (1), (2), and (4). Suppose that 
A has an idempotent e ^ 1. Then A is either an associative ring or a Cayley-
Dickson algebra over its centre. 

Proof. A ring is alternative if and only if 

(6) (x,y,z) = e(a)(a(x),a(y)1a(z)) 

for all permutations a, where e(a) = 1 or — 1 as a is even or odd. We prove 
the theorem by showing that (6) holds for all possible choices of x, y, z 
belonging to the A tj since then Albert's result is applicable [2]. 

Combining Corollaries 1 and 2 of Theorem 8 we have (xiif yiU zit) = 0, 
i = 0, 1. Suppose that Xu, yn G i n , z10 G Ai0. Then 

(sio, *ii, yn) = On, 2io, yn) = Oio» yn» *n) == On» *io, *n) = 0. 
Next by (1), 

On, y a, 3io) = e • On, yn, 210) + ffn • (e, yn, z10) = e • On, yn, Si0) 

so that (xu, yn, Sio) € Au. But (xu, yn, si0) G i i o . Thus 

On, 3>n, *io) = Cviii *n> *io) = 0. 
Replacing Sio by s0i € i o i w e find the corresponding result, and by symmetry, 
the corresponding result holds if Xn, yn are replaced by x0o, yoo G -4oo. Clearly 
On, >'ii, Soo) = On> 2oo, yn) = Ooo, Xn, yn) = 0 for s00 € ^oo and 

Ooo, 3n , yoo) = Ooo, y0 0 , zn ) = O n , Xoo, yoo) = 0 

for Xoo, yoo G iooands i i G i n . Now we examine products involving Xn G i n , 
yIO, zio G i i o . By (1), On» yio, *io) = « * On» 3>io, 2io) + *n * 0 , 3>io, *io) so 
that 0nyio)2io = (yioSio)xn. Since aiooio = —&iô io we have 

Onyio)sio = —«îoOnyio) = (yiosio)xn = — Oi0yio)xn = — 0n2io)yio 

= yioOn^io). 

Combining these we have On, yio, Sio) = eO) OOn)» °"Oio), 0"Oio)) for all 
<j. Again replacing yio, Zio by y0i, x0i we have the corresponding results. By 
symmetry we have the desired result if Xn is replaced by x0o. Let Xn G -4ii, 
y io G .4 io, and soi G Aoi. Then Oio, Xn, 20i) = On» *oi, yio) = Ooi, yio, *n) = 0 
by Theorem 7 while Ooi, xU} y10) = On» yio, *oi) = 0 by (1) and (2). Now 
(yio, soi, xn) G Ai by (1) and (yio» s0i. *n) G ^4n by Theorem 7 so that 
(yio, Soi, xn) = 0. Interchanging 0s and Is yields the corresponding result 
for xoo G A oo. 

We have reduced the proof to considering x, y, z G -4io + ^oi- First suppose 
that Xio, yio, zio G i4J0. Then by (1), 

Oio, yio, 210) = 2e • (xio, yio, sio) + 2xi0 • O, yio, zio). 

Thus equating the ^4oo-components we obtain 

Oio3>ic)sio = (yiosio)xio. 
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Similarly, (#ioSio)yio = (sioyio)#io and since ai0&io = — iioflio we have 

— (yio#io)sio = (#ioyio)sio = (yioZio)xio = — (si0yio)#io = — (#ioSio)yio 

= (210X10)3^10. 

Now by (2), (>io, yjé, z10) = 2e • (x10, yio, z10) + 2yi0 • (xi0, e, si0) so 
t h a t equat ing <4n-components we have #io(yioSio) = — yio(#ic2io). Similarly, 
#io(si0yio) = zio(x1Qy10) so we have 

—yio(sio#io) = yio(#ioSio) = — #io(yioSio) = #io(sioyio) = Sio(#ioyio) 

= — «îoCyio^io). 

Combining these results yields (#10, yio, Sio) = €(<r)(o-(#io), <r(y 10), <r(zio)) 
for all a. T h e case Xoi, you 201 € A 01 is proved in the same way. Finally, we 
consider #10, y 10 £ A i 0 and 201 6 A 01. T h e n 

(soi, #10, yio) = — (201, yio, #10) = (yio, #10, s0i) = — (#10, yio, s0i) 

since s0i(#ioyio) = — s0i(yio#io) = (yio#io)s0i = — (#ioyio)s0i. Consider 

(#10, 201, y 10) + (201, #10, y 10) = W10 G -410. 

W e show t h a t Xoi^io = ^io#oi = 0 for all x0i € A 01. T h e n 

Aw10 + ^io^4 C yl10 + A 01 

so t h a t W10 belongs to the ideal <£? of Theorem 3 and hence mus t be zero. 

#01^10 = #oi(#io, Soi, yio) + #oi(s0i, #10, yio) 

= #oi(#io, s0i, yio) — #oi(s0i(#ioyic)) 

= #0l(#10, 20 l ,yic) — (#loyio)(#OlS0l), 

since tfioyio € A0i and aoi(&oi£oi) = £01 (#01601) from the preceding case. Bu t 
now by (1) we have 

(#01 • #10, Soi, yio) = #01 • (#10, Soi, yio) + #10 • (#01, Soi, yio) 

and since #oi • #10 £ ^411 + A 00, we mus t have 

#01 • (#10, Soi, yio) + #10 • (#01, Soi, yio) = 0. 

T h u s the ^4oo-component of this sum mus t be zero and we have 

0 = #oi(#io, Soi, yio) + (#01, Soi, yio)#io 

= #oi(#io, Soi, yio) + [(#oiS0i)yio]#io 

= #01 (#10, SOI, y io) + (yiO#lo) (#0l20l) 

= #01 (#10, Sol, y io) — (#loyio) (#0lS0l) 

= #01^10. 
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In a similar fashion we have WioXoi = 0. Hence from our preceding remarks, 
î^io = 0 and (xio, Zoi, yio) = — (soi, #io, 3>io). Interchanging Xio and 3>i0 we 
obtain (3/10, £01, #io) = — (201, y 10, Xio). Combining these results we have 
(̂ 10, ^10, 201) = e(o-)(o-(xio), o-(;y 10), o-^oi)) for all a. By symmetry, the results 
are true if x0i, y 01 G A 01 and Zio G A10 and the theorem is true. 

4. Semisimple algebras. Let A be a finite-dimensional algebra over a 
field F of characteristic not equal to 2 satisfying (1), (2), and (4). We define 
the radical N of A to be the maximal nil ideal of A. This makes sense since 
A is power-associative by Theorem 1. A is said to be semisimple if N = 0 ^ A. 

THEOREM 10. 7/ 4̂ is simple, A has an identity element. 

Proof. Since A is non-nil and power-associative, it follows that A has an 
idempotent e [7]. If e is not the identity element, then by Theorem 9, A is 
alternative and hence has an identity element [2]. 

THEOREM 11. For any principal idempotent e of A, A10 + A01 + 4̂ 00 Q N. 
If A is also semisimple, A has an identity element and is the direct sum of simple 
algebras. 

Proof. The proof of this theorem is essentially the same as that of the 
corresponding results given in [4] and we do not repeat it here. 

5. Wedderburn decomposition. Rodabaugh [6] has shown that an 
algebra A satisfying (1), (3), and (4) over a splitting field F of characteristic 
not equal to 2 or 3 and having neither nodal subalgebras nor ideals ££ with 
x G ^ implying x2 = 0 has a Wedderburn decomposition. He further showed 
that the condition of no ideals ^£ with x2 = 0 for each x G ^ cannot be 
removed. 

THEOREM 12. Let A be an algebra satisfying (1), (2), and (4) over a splitting 
field F of characteristic not equal to 2 or 3. 7/^4 contains neither nodal subalgebras 
nor ideals J with x in J implying x4 = 0, then A has a Wedderburn decomposition. 

Proof. Rodabaugh [6, Theorem 4.1] has shown that under these hypotheses 
it suffices to show that A has the decomposition of Theorem 7 and that the 
set A iô 4 01 + 4̂10 + 4̂ 01 + ^4oî 4io be an alternative ideal. The latter condition 
follows from the proof of Theorem 9. Hence A has a Wedderburn 
decomposition. 

THEOREM 13. Let A be an algebra satisfying (1), (2), and (4) over a splitting 
field F of characteristic not equal to 2 or 3. If A contains no nodal subalgebras 
and if A — N contains no simple ideals of degree 2, then A has a Wedderburn 
decomposition. 

Proof. The proof is essentially the same as that given in [6, Theorem 5.2] for 
algebras satisfying (1), (3), and (4) and we do not repeat it here. 
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