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Linear Independence of Logarithms of
Cyclotomic Numbers and a Conjecture
of Livingston

Tapas Chatterjee and Sonika Dhillon

Abstract. In 1965, A. Livingston conjectured the Q-linear independence of logarithms of values of the
sine function at rational arguments. In 2016, S. Pathak disproved the conjecture. In this article, we give
anew proof of Livingston’s conjecture using some fundamental trigonometric identities. Moreover, we
show that a stronger version of her theorem is true. In fact, we modify this conjecture by introduc-
ing a co-primality condition, and in that case we provide the necessary and sufficient conditions for
the conjecture to be true. Finally, we identify a maximal linearly independent subset of the numbers
considered in Livingston’s conjecture.

1 Introduction

In a written communication with A. Livingston in 1965, Erdés made the following
conjecture (see [9]).

Conjecture A (Erd8s) If q is a positive integer and f is a number-theoretic function
with period q for which f(n) € {-1,1} whenn =1,2,...,q-1and f(q) = 0, then

= f(n

S 10,

n=1 1
whenever the series is convergent.

In 1965, Livingston tried to settle the above conjecture. He predicted that Erd6s’
conjecture is true if one can prove the following conjecture.

Conjecture B (Livingston) Let q > 3 be a positive integer. The numbers
{log(zsin a—qﬂ) :1<a< %} u{n},
when q is odd, and
{log (Zsin %) :1<a< g} u {m,log2},

when q is even, are linearly independent over the field of algebraic numbers.
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In 2016, S. Pathak gave necessary conditions on the positive integer g under which
Conjecture B is true (for a proof, see [12]). She also observed that Livingston’s con-
jecture is not sufficient to prove Erdds conjecture. In fact, to prove Erdés’ conjecture,
we still need to prove that if f is an Erdés function, then at least one of

zz_if(a)cot(zl), Zf(a cos( a;n)

and

- l°g( I (-1 f(k)) if qis even,
"o otherwise,

is not zero (see [6,7]).
In the direction of Livingston’s conjecture, she proved the following theorems.

Theorem 1.1  Conjecture B does not hold for q > 6 and q not prime. In fact for a
composite positive integer q > 6, the numbers

. amy q
{log(Zsm?) :1<a< 2}
are Q-linearly dependent.
Theorem 1.2  Let p be an odd prime. The numbers
{log(Zsina?ﬂ) :1<a< PT_I} u{m}
are Q-linearly independent. Thus, Conjecture B is true when the modulus p is prime.

In that article [12], the author proved that Conjecture B is true when ¢ is prime
using the Dedekind determinant and provided an explicit counterexample when ¢ is
composite.

In this article, we give a new proof that involves the identities of the sine function
at rational arguments.

Observe that when ¢ is a multiple of 4, then for a/q = 1/4, we have a rational

multiple of log 2 in the set
{log(ZSin %) i1<a< g}

Also, when ¢ is a multiple of 6, for a/q = 1/6 we have log(2sin(7/6)) = 0. To avoid
these ambiguities in Conjecture B, we can rewrite Livingston’s conjecture in a more
suitable manner and ask a similar question.

Question 1 Let q > 2 be an integer. Are the numbers
1 1
{log(ZSina—qﬂ) :1<a< g,a/q + ;(Sin_l 27), o€ @} U {ﬂ, lOgZ}
linearly independent over the field of algebraic numbers?

In Section 3, we begin with a necessary and sufficient condition such that Ques-
tion 1 has an affirmative answer. In particular, our theorem is as follows.
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Theorem 1.3  Let q > 2 be an integer. Then the numbers
1 1
{log(Zsin %) :1<a< g,a/q # ;(Sinf1 27),06 € Q} u {m, log2},

are linearly independent over the field of algebraic numbers if and only if q is a prime or
qe{4,6}.

Now instead of taking all the residue classes mod g in Question 1, one can think of
asking a similar question for the co-prime residue classes mod g.

Question 2 Let g > 2 be an integer. Then are the numbers
1 1
{log(ZSin %) 11<acx< g, (a,q) =1, a/q * ;(Sin_1 27)) o€ Q} U {7‘[, lOgZ}
linearly independent over the field of algebraic numbers?

In our next theorem, we give a necessary and sufficient condition such that Ques-
tion 2 has an affirmative answer.

Theorem 1.4 Let q > 2 be an integer. Then the numbers
1 1
{log(Zsin%) :1<ax< g, (a,q) =1, a/q * ;(Sin_1 27),0( € Q} U {7T, 10g2}

are linearly independent over the field of algebraic numbers if and only if q is a prime
power or q = 6.

Now note that when g is not a prime power, the sine function satisfies the following
identity at rational arguments (for a proof see Section 3):

q-1 k
(11) 29@ ] sin (—”) -1,
k=1, q
(k.q)=1
Thus, the numbers {logsin %”} where (k, q) = 1 satisfy a non-trivial relation when
q is not a prime power. Now we can again modify Question 2 and can ask the sim-

ilar question by excluding one of the terms among the numbers {logsin %} where
(k.q) =1
Question 3  Let g > 2 be an integer. Then are the numbers
1 1
{log(Zsin%) l<ax< g, (a,q) =1, a/q * ;(Sin’l 27), o€ Q} U {71, 10g2},
linearly independent over the field of algebraic numbers?

Before doing this, note that Pei and Feng [13] gave a necessary and sufficient con-
dition on g # 2 (mod 4) such that the cyclotomic numbers

1.2) {1:? ‘ (h,q):l,Zsh<q/2}
q

are multiplicatively independent. Note that the multiplicative independence of these
cyclotomic numbers is closely related to the linear independence of the numbers

https://doi.org/10.4153/50008439519000468 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439519000468

34 T. Chatterjee and S. Dhillon

considered in Livingston’s conjecture, logsin(an/q) wherel< a < g/2and (a,q) = 1.
Since [1- (7| = 2sin an/q, therefore, the cyclotomic numbers numbers are multiplica-
tively independent if and only if logsin(an/q), where 1< a < g/2 with (a,q) =1, are
linearly independent over Q (for a proof, see Section 3).

The proposition by Pei and Feng [13] regarding the necessary and sufficient condi-
tion for multiplicatively independent cyclotomic units is also of great importance in

proving our theorems (for a proof, see [13]). We say that n is a semi-primitive root

modulo q if the order of n (mod gq) is @.

Proposition 1.5 (Pei and Feng) For a composite number q # 2 (mod 4), the system

=4, h
{1_(q\( Jq)=1,2<h<q/2}
of cyclotomic units of field Q({,) is independent if and only if one of the following con-
ditions are satisfied (here ag > 3; a1, &2, a3 > 1; p1, p2, p3 are odd primes):
(i) g=4p)";and
(a) 2 is a primitive root mod py"; or
(b) 2 is a semi-primitive root mod p}* and p; =3 (mod 4).
(i) gq=2%p{"; the order of p; (mod 2%0) is 2%~2, 2% 3 p; # -1 (mod 2*), and
(a) 2 is a primitive root mod py'; or
(b) 2 is a semi-primitive root mod py* and p; =3 (mod 4).
(iii) g = py*p52 and
(a) when p; = p, =3 (mod 4): p; is a semi-primitive root mod p3* and p, is
a semi-primitive root mod py", or vice versa.
(b) otherwise: p; and p; are primitive roots mod p5? and mod p{" respectively.
(iv) g=4py'py*(p1-Lp2—1)=2and
(a) when py = p, = 3 (mod 4): 2 is a primitive root for one p and a semi-
primitive root for another p; p; is a primitive root mod2p3?* and p; is a
semi-primitive root mod 2p}" or vice versa.
(b) when py =1,p, =3 (mod 4): 2 is a primitive root mod p5*; py and p, are
primitive roots mod p5? and mod py", respectively.
V) q=pypypss pr=p2=ps =3 (mod4): (p' —1)/2(1< i < 3) are co-prime to
each other; and
(@) i1, p2, p3 are primitive roots mod p5?, mod p3*, mod py*, respectively and
semi-primitive roots mod p3*, mod p;", mod p3?, respectively.

Note that the @ — 1 many numbers in equation (1.2) do not form a set of
multiplicatively independent units in the cyclotomic fields for any g € N. In 1966,
Ramachandra [14] exhibited a set of real independent units, popularly known as
Ramachandra units, in the cyclotomic fields defined as: suppose g = [1~_, p? and
let s be such that 1 < s < q/2 with (s, q) = 1. Define

aier Uk

1— g’ Py
WZH«“WTW?)
e V1o gPt ey
where the product is extended overalle; =0orl,i=1,2,...,kexcepte; =e; =--- =

ex = 1. Then these numbers form a set of multiplicatively independent units.
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Using the Proposition 1.5 and some trigonometric identities, we give the necessary
and sufficient condition on q = 2 (mod 4) for which the system (1.2) is multiplica-
tively independent. Our next theorem will be an important ingredient in resolving
Question 3.

Proposition 1.6  For any composite number g = 2 (mod 4), the system

(h
{1—CZ| (hq) =1 1<h<q/2}

is multiplicatively independent if and only if q satisfies one of the following conditions:
(i) q =2p", where p is an odd prime;
(ii) q =2m, where m satisfies conditions (iii) and (v) in Proposition 1.5.

Now we are in a position to give the necessary and sufficient conditions on g such
that Question 3 has an affirmative answer.

Theorem 1.7  Let q > 2 be an integer. Then the numbers
1 1

{log (Zsin %ﬂ) il<ax< %, (a,9)=1,a/q+ ;(sin‘l 27) L€ Q} u{m, log2}
are linearly independent over the field of algebraic numbers if and only if q satisfies one
of the following conditions:

(i) q is a prime power;
(if) g =2p", where p is an odd prime and n € N;
(iii) g satisfies the conditions in Proposition 1.5;
(iv) g = 2m where m satisfies conditions (iii) and (v) in Proposition 1.5.

Now in our next theorem, we will construct a maximal linearly independent subset
of the set M defined as follows:

M = {7‘[, log2, log(ZSin%) :1<a< g}

We prove the following theorem assuming g satisfies the conditions given in Propo-
sition 1.5.

Theorem 1.8 Let q = p{'p5* be a positive integer that satisfies Proposition 1.5(iii).
Then out of the set M, the subset

13) M, = {log (ZSin %),log(Zsin plfl),log (ZSin prg[z):1<a< g, (a,q) :1}

u{m, log2}

is a maximal linearly independent subset over the field of algebraic numbers.

2 Notation and Preliminaries

This section is comprised of some of the known results in transcendental number
theory.
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An important ingredient is Baker’s theorem about the linear forms in logarithms
of algebraic numbers (see [1]).

Proposition 2.1 If ay,...,a, are non-zero algebraic numbers such that logay, . ..,
log oy, are linearly independent over the field of rational numbers, then 1,logay, . ..,
log oy, are linearly independent over the field of algebraic numbers.

The next proposition is an application of Baker’s theorem by Murty and Saradha
that will play a key role in proving our theorems (see [11]).

Proposition 2.2 Let y,...,a, be positive algebraic numbers. If ¢y, ¢y, ..., c, are
algebraic numbers with ¢y # 0, then

n
com+ Yy cjloga;
i

is a transcendental number and hence non-zero.

The next proposition, due to Chatterjee and Gun [5], about the multiplicatively in-
dependence of cyclotomic units, will be of great importance in proving our theorems.

Proposition 2.3  For any finite set ] of primes in N with p; € J and q; = p",
where m; € N, and let {4, be a primitive q;-th root of unity. Then the numbers 1 - (,,,

(1- 45/ (1= ¢,,), where
1<aj, <qi/2, (aj,qi)=1, and 1<j;<qi/2, Vpie],

are multiplicatively independent.

(For a proof see [5]).
The next lemma plays a pivotal role in establishing Proposition 1.6.

Lemma 2.4  For any positive composite number q = 2 (mod 4) with q = 2m for some
odd integer m, the system

an
S=1<log(2sin—) | (a,q) =L1<a<q/2
{log (26in 77) | }
is linearly independent over Q if and only if the system
hn
T =1{log(2sin — h, =1,1<h 2
{og(smm)‘( m) < <m/}
is linearly independent over Q.

Proof Suppose m is a composite number and the system S is linearly independent
over Q. Now for any 2 < a < ¢/2 with (a,q) =1,

(2m - 2(1)71).

+log (2 sin

log (2sin%) - ~log (2sin(’”‘q“)”)
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This implies that every element of S can be written as a Q-linear combination of
elements of the T and log(2sin 7). Since m is composite, by using equation (1.1) we
therefore have

m—1

(2.1) log (2 sin %) =- aZ::z log (2 sin a—’:) .
(a,m)=1

Thus, every element of the set S can be written as a linear combination of elements
of the set T. Hence, the set T is linearly independent. Now assume that the set T is
linearly independent. Suppose there exist rationals ¢y, ¢;, . . ., ¢, where r = ¢(q)/2 -1

such that b
c;lo Zsinﬂ =0,
Zl ; g( . )

where 2 < b; < g/2 with by < by <--- < b, and (b;, q) = 1. Rewriting this equation,

we get

r . (m-b)n u . 2(m-b)m
(2.2) cilog(2sin ——) =) c¢;log|2sin ————).

2t (e =) = eton (2em T
Since m is composite, by using equation (1.1) we therefore have

(m-1)/2
s an

2.3 log(2sin—) = - log(2sin — ).
(2.3) og( smm) QZ::Z og( smm)

(a,m)=1

Also observe that b, = m — 2, and rewriting equation (2.2), we get

-1
r . (m=-b)m o 2w
E ;log(2sin ——) +¢,log(2sin— ) =
i:1c og( sin p ) c og( sin q)

,-Z:Ci log (Zsin 2(;11;117,)71)

Now, substituting the value of log(2sin n/m) = log(2sin2n/q) from equation (2.3)
in the above equation, we get

r—1 - b
Y (=cr +¢i)log (2 sin M) - ¢, log (2 sin
q

i=1

(m-1n
)

iZ:c,- log (Zsin 2(m:1b,)ﬂ)

Note that both sides of equation (2.2) represent all the terms of the set T Using the fact
that the set T is linearly independent, we must have ¢, = —c,, for some t;. Considering
the coefficient of log(2 sin W), we must have —¢, + ¢, = ¢y,, that is, ¢;, = —2¢,.
Again considering the coefficient of log(2 sin W), we get ¢;, = —3c,. Repeating
this process and since T is a finite linearly independent set, we get ¢, = —rc,, that is,
¢, = 0, and hence ¢; = 0 for all i. Thus, the set S is linearly independent.

For the case when g = 2m and m is an odd prime power, by [15, theorem 8.3] the
set T U {log(2sin 7-)} is linearly independent. The rest follows from the similar path

as above. This completes the proof. ]

https://doi.org/10.4153/50008439519000468 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439519000468

38 T. Chatterjee and S. Dhillon

Now we will prove another important lemma that will play a crucial role in proving
Theorem 1.8.

Lemma 2.5 Let q be a positive integer that satisfy Proposition 1.5(iii). Then the set
am
log (2sin — 1<a<f (a,q) =1
fog 250 27) Jo
n
log2, log|2sin —- |, log{2sin — ),
( Py’ ) ( sz)
is linearly independent over the field of algebraic numbers.

Proof Suppose there exist integers dj,d,,ds, and c,, where 1< a < q/2 with
(a,q) =1such that

(2.4) (2d1)(251n(pﬂm))d2(251n( ﬁz))da h (2sin%)ca:1.

1 2 a=2,
(a.q)=1

Taking the norm on both sides, we get

(2d1r1+d272+d3r3)(piizrz)(p;lgm) -1,
where r; € N. This implies that d; = d, = d3 = 0. Thus, equation (2.4) reduces to
q/2 Ca
I (2 sin a—”) =1
a=2, q
(a,9)=1

Since the numbers 2 sin(7a/q), where 2 < a < g/2 with (a, q) =1, are multiplicatively
independent by using Theorem 1.7, we therefore get ¢, = 0 for all a. Thus, the numbers

{log(ZSln q) 1<a<f (a, q)—l}
5

are linearly independent over , and hence over Q, by using Baker’s theorem and
Proposition 2.2. u

log2, log (2 sin — I ) log(

Since we are dealing with the cyclotomic fields, one important ingredient is the
cyclotomic polynomial ®,(x) at x = 1, where @, (x) is defined as

Dy(x) = H (x—ezmk/q).
k=1,

(k.q)=1

Note that at x = 1, the cyclotomic polynomial ®,(x) satisfies the following relations:

®,(1) = p ifg=p", where pisa prime,
7711 otherwise.

For a proof, see [2, Lemma 7.3].
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3 Proofs of the Main Theorems

Before proving the theorems in Section 1, we will make an important observation.
Suppose g is a positive integer. Then

q-1
1+x+x2+~~+x‘1‘1=k]'[(x—(g),
1
where {, = e2il4_ For x = 1, we get
q-1 .
q: H(I_Cq)
k=1
Since, [1 - (§| = Zsin(%”), we have

q-1 kn
=297 [T sin(—).
1 k=1 ( q )
If g is not a prime power, then @, (1) = 1 where ®,(x) is the g-th cyclotomic polyno-
mial. Thus, we have
q-1 .
3.1 1= [I - (,’;\, where (, = il

k=1,
(k,q)=1

Since |1 - CL’;\ = Zsin(%), we get
q-1 k
(3.2) 2@ ] sin(<5) =1
k=1, q
(k.q)=1

3.1 Proof of Theorem 1.3

Proof When g = 6, the set

(3.3) {log(ZSina—qn) :13a<§, a/qqt%(sin‘lzia),ae(@}
contains only one element, namely, a = 2. Since log2 and log3 are linearly indepen-
dent, by Proposition 2.2 we will get the desired result. For g = 4, the set in equa-
tion (3.3) contains no element. Thus, log2 and 7 are linearly independent by using
Proposition 2.2.

When ¢ is not a prime power and gq # 6, consider the identity

2¢(4) qI:Il sin(ﬁ) =1,

where ¢(n) is the Euler-Phi function. Thus, taking log on both sides gives us a non-
trivial relation among the numbers in equation (3.3).
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Suppose ¢ is a prime power and ¢ itself is not a prime. Then for any divisor b > 1
ofgandx =1,2,...,q —1, we have (see [8])

-1

(a/b)x {
(3.4) log|1 - (qq | = Z log|1 - (:;L
us=x u(?riod b)

where {; = ¢4, Also, forany 1 < k< q -1,

e—ikn/q(({l; _ 1)

sin (X7 - .

q

Thus, for any divisor b of ¢, equation (3.4) becomes

(3.5) log (2 sin ban) = Yy log (2 sin u—qﬂ) :

u
u=x mod q/b

From here we can conclude that log(2 sin £7) where (k, q) >1and1< k < 2 can be
1

2
written as a Q-linear combination of 10g(2 sin 2% q where (r,g) =land1<r<
Now assume ¢ is a prime number; then the cyclotomic units
1-¢g
wherel<a < q/2,
q

are multiplicatively independent (see [15, Theorem 8.3]). Thus, the numbers

_(q

are also multiplicatively independent (see [10, Lemma 14]). From this, one can easily
deduce that the numbers

(q, 1 wherel<a<q/2,

1- (g wherel<a<gq/2

are multiplicatively independent. For if there exist integers ¢, such that

a \Cq a— 16i (u
M-y = -y aJI_Q) -1

Thus, by Proposition 2.3, we have ¢, = 0 for all a. Since ZSin(“TI”) = |- {3l and
1< a < q/2, taking log on both sides therefore implies that the numbers

log (2 sin %ﬂ), wherel< a < q/2,

are linearly independent over Q. Thus, by Baker’s theorem Proposition 2.1, the num-
bers are linearly independent over Q. This completes the proof. ]
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3.2 Proof of Theorem 1.4

Proof The case when g = 6 follows from Theorem 1.3.
Now suppose that g is not a prime power; then, using equation (3.2), we get

-1 km
2@ T sin(=—) =1.
k=1, q

(k.q)=1
Taking log on both sides gives a non-trivial relation among the numbers in
Theorem 1.4.
For the case when g is a prime power, then by using Proposition 1.5, the numbers

a
1

1-¢,
are multiplicatively independent. Assuming J = {q} in Proposition 2.3 implies that
the numbers

wherel<a<q/2, (a,q) =1

1-¢
1_(q,ﬁwherel<a<q/2,(a"ﬂ:1

are multiplicatively independent. Now, using a method similar to the one we used in
Theorem 1.3, the numbers

log (ZSin %) , wherel<a<q/2,(a,q) =1

are linearly independent over @, and hence over Q, by Baker’s theorem. This com-
pletes the proof. u

Remark 3.1 Note that, using Theorems 1.3 and 1.4, we can conclude that when g is
a prime power, then out of the set

{log(Zsina—;) :1<ac< g,a/q * %(sin‘lzi),(x EQ} u {mlog2},

o

the subset
{log (2sin %ﬂ) :(a,q)=1a/q+ %(sin’1 zia),(x € Q} u {m,log2},

is a maximal linearly independent subset. Also, a variant of this result has been proved
in [3] and has been extended in [4].

3.3 Proof of Proposition 1.6

Proof Suppose q = 2m where m > 1is an odd positive integer. First, we will show
that to prove the numbers

-
{1_(q| (h,q) =1, 1<h<q/2}

are multiplicatively independent, it is sufficient to show that the numbers

(3.6) {1-¢ (h) =1 1< h<q/2}
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are multiplicatively independent. Suppose the numbers in equation (3.6) are multi-
plicatively independent, and, if possible, let there be integers cj, such that

-1/2 1—(;‘ Ch
qn (1_(2) =

h=2,
(h,q)=1
Since g is a composite number which is not a prime power, by using equation (3.1)
and substituting the value of 1 - {; in the above equation, we get

(1- ”)(Z"E")”“zl.

q

Note that we are not considering the negative terms in the above formula, as it is not
going to affect the multiplicative independence. Since the numbers in equation (3.6)
are multiplicatively independent, we get

q/2
( > c,-) +cp,=0foralll<h<gq/2,(hq)=1
i=2,
(i,q)=1
Solving the above system of linear homogeneous equations in the variables ¢y, it is
not difficult to see that ¢, = 0 for all h. Thus, to prove Proposition 1.6, we need to
show that the numbers

{log(Zsinhqn) | (h,q)=1L1<h< q/2}

are linearly independent over QQ, and hence by using Lemma 2.4, the above numbers
are linearly independent if and only if the numbers

(3.7) {log(Zsinh—nj) ‘ (h,m):l,l<h<m/2}

are linearly independent over Q. Since m is an odd integer, the numbers in equation
(3.7) are linearly independent over Q if and only if m is a prime power or m satisfies
conditions (iii) and (v) of Proposition 1.5. This completes the proof. ]

3.4 Proof of Theorem 1.7

Proof Suppose g does not satisfy any of the given conditions in Theorem 1.7; then
the numbers

1-{8
{1—(:| (a,q) =1, l<a<q/2}

are multiplicatively dependent by using Proposition 1.5 and 1.6. Let ¢, be integers, not
all zero, such that

a/2 1-{%\ ca a2 ane
(—2) " =a-¢) ™™ I a-&)« =1
a=2, 1_(q a=2,
(a,9)=1 (a,9)=1
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Substituting the value of 1 - {, in this equation, we get

q/2
na-ge(=e) -y
a=2, 1
(a,9)=1
Now, as we did in the proof of Proposition 1.6, the system of homogeneous equations

ca+Y;ci=0foralll<a< g/2with (a,q) = 1has a non-trivial solution if and only
if there exists an & such that ¢, # 0. Since all the ¢, are not zero, the numbers

log(2sin%) l<a<q/2, (a,q)=1

are linearly dependent where |1 - (7| = 2sin(an/q).

When ¢ is a prime power, then by using Theorem 1.4, the result holds. Suppose g
is not a prime power and g satisfies one of the conditions in Theorem 1.7. If possible,
let there be integers b, such that

a/2 a2 1-2 ba
(3.8) M a-¢)=0-¢)" 1 (%) =1
a=2, az2, \M1-(4
(a,9)=1 (a,9)=1
where
q/2

b= ) b
i=2
(i,9)=1
Now by using equation (3.1), we get

IO R L S
(I_CQ) - aI:_IZ’ (I_C’q)
(a,9)=1

Substituting the value of 1 - {, and rewriting equation (3.8), we get

a/2 (1 - ) (~bas(@)/2) +b B
a=2, 1—(,1 o

(a,9)=1

Since g satisfies one of the conditions (ii), (iii), or (iv), the above numbers are multi-
plicatively independent by using Propositions 1.5 and 1.6, and thus we get —b, ¢(q) /2+
b=0foralll< a< q/2with (a,q) = 1. Solving this linear homogeneous system of
equations as we did in Proposition 1.6, we get b, = 0 for all a. Thus, the numbers

{log(Zsina—qn) il<acx %, (a,9) :1,}

are linearly independent. Now by using the idea of norm as we did in Lemma 2.5 and
by using Proposition 2.2, the numbers

{logz,log(ZSin%) ‘l<ax %, (a,q) = 1,} u{r}

are linearly independent over Q, and hence over Q, by Baker’s Theorem. This com-
pletes the proof. ]

https://doi.org/10.4153/50008439519000468 Published online by Cambridge University Press


https://doi.org/10.4153/S0008439519000468

44 T. Chatterjee and S. Dhillon
3.5 Proof of Theorem 1.8

Proof First observe that in order to prove Theorem 1.8, by using Lemma 2.5, it is
sufficient to show that every element of the form log(2sin(dr/q)) where (d,q) > 1
can be written as an algebraic linear combination of the elements of the set M;. Let
(d,q) = b >1and m be the positive integer such that d = mb.

Ifb = pf‘p? where t; # a; and t; # a,, then by using equation (3.5), we get

bmmn i, umn
(3.9) log (2 sin p ) ; log (2 sin . )
u=m mod q/b
Since f; # a; and t; # a, (m, q) =1, and hence (u, q) = 1. Now if u does not assume
the value 1, then all the numbers on the right hand side in equation (3.9) belong to
the set M;. If it does, then, by using equation (2.1), we get the desired result.

Now when b = p{' or p5?, without loss of generality assume that b = p32. Then
by using (3.9), we get u = m + p;"k where 0 < k < b — 1. Suppose there exists a u
such that (u,q) < p5*; then (u, q) = p;' p7 where t, # a; and t, # a,. Thus, by using
similar ideas as above, we can write the number log sin u7/q on the right-hand side
of equation (3.9) as a linear combination of the set M;. Suppose for some u we have
(u,q) > p5?%; then u has to be unique, since 0 < k < b —1; that is, there can be at
most one u on the right-hand side of equation (3.9) such that (u,g) > p5*. In fact,
the choice of k = (p32t —m)/py", where t = p;“* mod py"* gives us the unique value.

Observe that when b = p3?2, if we vary m, then for each m, we can get at most
one u satisfying (1, q) > p3?. Then we will show that out of these numbers we can
choose one of them as the representative and write the rest of the numbers as linear
combinations of the representative and the elements in the set M;.

For this, first choose m =1, that is, d = p5?. Then by equation (3.9), we have

dn 1 urm
(3.10) log (2 sin . ) ; log (2 sin . )
u=1 mod p;!

Let u; = 1+ p*k for some 0 < k < b—1be the unique element on the right-hand side of
equation (3.10) such that (uy,q) > p3?. Assume that u; = p52f; for some #;. Then we
have p32f; =1 (mod p;*). Now, substituting the value d = u; in equation (3.10) and
repeating the same process for d = u, we get a unique u, of the form u, = t; + p{'k
for some 0 < k < b —1such that p5* divides u, and assume u, = p5*t,. Then

Pt =t (mod pi).

Thus, we get t, = ¢ mod p{"'. Without loss of generality, let us assume t, = ;. Again

repeat this process for log(2 sin %ﬂ)’ that is, for d = u, in equation (3.10), and con-

tinuing in this manner, we will get a least positive integer n such that u, = p3*t}

and
(T . (UnT
sin ( —- ) = sin{ ——
(2) -an(2)
and ] = £1mod p{". Since g satisfies (iii)(a) or (iii)(b) in Proposition 1.5 and p3*#; =1
(mod p{"), wehave n > ¢(pi*)/2. Thus, after n iterations we can extract all the u such
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that (4, q) > p3?, and without loss of generality, we can take m = 1to be the represen-
tative that is the element log 2 sin p3*7/q = log 2 sin 7/ p{*. Thus, every element of the
form log(2sin % , where (d, q) = p3?, can be written as an algebraic linear combina-

tion of the elements in equation (1.3). This gives us the desired form. The case when
b = p;* can be done in a similar way. Thus, every element on the right-hand side of
equation (3.9) can be written as a linear combination of the elements in the set M,
and hence the number on the left-hand side can be written in the desired form.

Now we are left with the case where b = p{'p} and 0 < r < a,. Then by (3.9) we
have u = m + p5* "k, where 0 < k < b —1, and (m, p,) = 1 and hence (u, p,) = L. If
possible, let u = pft where (t,p)) = 1. If a < a, then (u,q) = p{'py where t; # a,
and t, # a,. Thus, by our first case, we can write log 2 sin u7r/q in the desired form. If
a > ay, then (u, q) = p*, and thus, again by our earlier case, we get the desired form.
Similarly, we can prove the case when b = p]p3? where 0 < r < a;. This completes the
proof. ]
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