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A Semiregularity Map Annihilating
Obstructions to Deforming Holomorphic
Maps

Donatella Iacono

Abstract. We study infinitesimal deformations of holomorphic maps of compact, complex, Kähler

manifolds. In particular, we describe a generalization of Bloch’s semiregularity map that annihilates

obstructions to deform holomorphic maps with fixed codomain.

1 Introduction

The investigation of obstruction spaces plays a fundamental role in the study of de-

formation theory and moduli spaces. For instance, the obstruction theory is used to

determine the dimension of moduli spaces or the virtual fundamental class (see, for

example, [2–4, 9, 14]). From the local point of view, given an infinitesimal deforma-

tion of a geometric object, we would like to know whether it is possible to extend

this deformation or not. The idea is to consider the same problem of extension for

the associated deformation functor. More precisely, let F : Art → Set be a functor of

Artin rings, i.e., a covariant functor from the category Art of local Artinian C-algebras

(with residue field C) to the category Set of sets, such that F(C) = {point}.

A (complete) obstruction space for F is a vector space V , such that, for each small

extension 0 → J → B → A → 0 in Art and each element x ∈ F(A), there exists

an obstruction element vx ∈ V , associated with x, that is zero if and only if x can be

lifted to F(B).

Since this space controls the liftings, we would like to describe it, as well as possi-

ble, and know whether the associated obstruction element is zero or not. In general,

we just know a vector space that contains the obstructions, but we have no explicit

description of which elements of the vector space are actually obstructions. For ex-

ample, if W is another vector space which contains V , then also W is an obstruction

space for F.

In [8], B. Fantechi and M. Manetti proved the existence of the “smallest” obstruc-

tion space for functors associated with deformations of geometric objects. More pre-

cisely, they proved the existence of the universal obstruction space for deformation

functors, i.e., functors of Artin rings satisfying Schlessinger’s conditions (H1) and a

stronger version of (H2) (see [1, Theorem 2.1] and also [8, Lemma 2.11 and Theo-

rem 6.11]).
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Since it is quite difficult to determine all the obstruction spaces, the idea is to

start by studying some special and easier obstructions. In this setting, a very useful

tool is the result known as the Ran–Kawamata T1-lifting theorem: if the functor is

pro-representable and if it has no “curvilinear obstructions”, then the functor has no

obstructions at all. Recall that the curvilinear obstructions are the ones arising from

the curvilinear extensions

0 −→ C
·xn

−→
C[x]

(xn+1)
−→

C[x]

(xn)
−→ 0.

This theorem was generalized by B. Fantechi and M. Manetti: if F is a deformation

functor, then F has no obstructions if and only if F has no curvilinear obstructions

[8, Corollary 6.4].

Thus, in some cases, this result guarantees that it is enough to study the curvilinear

obstructions to determine the obstruction space. More precisely, if the curvilinear

obstructions vanish, then all the obstructions are zero.

A fundamental fact to note is that the curvilinear obstructions do not generate

the obstruction space. Therefore, if these obstructions do not vanish, we do not have

enough information to determine the obstruction space; see [14] and [8, Example

5.7 (1)].

In the case of infinitesimal deformations of complex compact manifolds, an ob-

struction space is the second cohomology vector space H2(X,ΘX) of the holomor-

phic tangent bundle ΘX of X. If X is also Kähler, then A. Beauville and H. Clemens

[6] and Z. Ran [19, 20] proved that the obstructions are contained in a subspace of

H2(X,ΘX) defined as the kernel of a well defined map. This is the so-called “Kodaira’s

principle” (see, for example, [6, Theorem 10.1], [16, Corollary 3.4], [10, Corol-

lary 12.6], [19, Theorem 0], or [20, Corollary 3.5]).

In the case of embedded deformations of a submanifold X in a fixed manifold

Y , the obstructions are naturally contained in the first cohomology vector space

H1(X, NX|Y ) of the normal bundle NX|Y of X in Y . In this case too, if Y is Kähler,

then it is possible to define a map on H1(X, NX|Y ) called the “semiregularity map”,

whose kernel contains the curvilinear obstructions; see S. Bloch [3]. Thus, if we can

prove that this map is injective, then we can conclude that the deformations are un-

obstructed.

Recently, M. Manetti studied these deformations using the differential graded Lie

algebras (DGLAs) and proved that the semiregularity map annihilates all obstruc-

tions [18, Theorem 0.1 and Section 9].

Therefore, even if this map is not injective, we have a control on the obstruction

space, i.e., it is contained in the kernel of the map.

Inspired by this work, we follow the approach, via DGLAs, to study the obstruc-

tions to infinitesimal deformations of holomorphic maps of complex compact man-

ifolds. In [11], E. Horikawa proved that the obstructions to the deformations of

f : X → Y , with fixed codomain, are contained in the second cohomology vector

space H2(C ·
f∗

) of the cone C ·
f∗

, associated with the complex morphism

f∗ : A
0,∗
X (ΘX) → A

0,∗
X ( f ∗ΘY ).
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Using the approach via DGLAs, we can give an easy proof of this theorem (Propo-

sition 4.6) and, furthermore, we can improve it in the case of Kähler manifolds. Our

main result is the following theorem (Corollary 4.14).

Theorem Let f : X → Y be a holomorphic map of compact Kähler manifolds. Let

p = dim Y − dim X. Then the obstruction space to the infinitesimal deformations of f

with fixed Y is contained in the kernel of the map

σ : H2(C ·
f∗

) −→ H p+1(Y,Ω
p−1
Y ).

In the case of an inclusion X →֒ Y , the previous map reduces to Bloch’s semireg-

ularity map. We remark that this map annihilates all obstructions.

In [4], R.-O. Buchweitz and H. Flenner studied deformations of coherent mod-

ules and, as a particular case, deformations of holomorphic maps. They used very

different techniques and they also produced a semiregularity map [4, Theorem 7.23],

but they did not explicitly state that their map annihilates all obstructions (and not

merely the curvilinear ones).

2 Notation

We will work on the field of complex number C, and all vector spaces, linear maps,

tensor products etc. are intended over C.

If A is an object in Art, then mA denotes its maximal ideal.

Unless otherwise specified, by a manifold we mean a compact, (complex) con-

nected, and smooth variety.

Given a manifold X, we denote by ΘX the holomorphic tangent bundle, by A
p,q
X

the sheaf of differentiable (p, q)-forms on X and by A
p,q
X = Γ(X,A

p,q
X ) the vector

space of its global sections. More generally, A
p,q
X (ΘX) is the sheaf of differentiable

(p, q)-forms on X with values in ΘX , and A
p,q
X (ΘX) = Γ(X,A

p,q
X (ΘX)) is the vector

space of its global sections.

Finally, by a map f : X → Y we always mean a holomorphic morphism of (com-

plex compact) manifolds, and we denote by f ∗ and f∗ the induced maps, i.e.,

f ∗ : A
p,q
Y (ΘY ) −→ A

p,q
X ( f ∗ΘY ) and f∗ : A

p,q
X (ΘX) −→ A

p,q
X ( f ∗ΘY ).

The cone C ·
f∗

is the complex (C ·
f∗
, D) with

C i
f∗

:= A
0,i
X (TX) ⊕ A

0,i−1
X ( f ∗TY )

and

D : C i
f∗
−→ C i+1

f∗
,

(l, n) 7→ (∂l, f∗(l) − ∂n) ∈ A
0,i+1
X (TX) ⊕ A

0,i
X ( f ∗TY ).
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3 The Semiregularity Map

Let f : X → Y be a map of Kähler manifolds, n = dim X and p = dim Y − dim X.

Let H be the space of harmonic forms on Y of type (n + 1, n − 1). By Dolbeault’s

theorem and Serre’s duality, we have Hν = (Hn−1(Y,Ωn+1
Y ))ν = H p+1(Y,Ω

p−1
Y ).

Using the contraction y of vector fields with differential forms, for each ω ∈ H,

we can define the following map

A
0,∗
X ( f ∗ΘY )

y ω
−→ A

n,∗+n−1
X ,

y ω(φ f ∗χ) = φ f ∗(χ y ω) ∈ A
n,p+n−1
X ∀ φ f ∗χ ∈ A

0,p
X ( f ∗ΘY ).

It can be proved (see Lemma 4.7) that if f ∗ω = 0, then the following diagram

A
0,∗
X ( f ∗ΘY )

y ω
// A

n,∗+n−1
X

A
0,∗
X (ΘX)

f∗

OO

// 0

OO

is commutative. Thus, for each ω, we get a morphism

H2(C ·
f∗

) −→ Hn(X,Ωn
X),

which, composed with the integration on X, gives the semiregularity map

σ : H2(C ·
f∗

) −→ H p+1(Y,Ω
p−1
Y ).

If f is the inclusion map X →֒ Y , then H2(C ·
f∗

) ∼= H1(X, NX|Y ), where NX|Y is

the normal bundle of X in Y . In this case, the previous map σ reduces to Bloch’s

semiregularity map (see [3] or [18, Section 9]), i.e.,

σ : H1(X, NX|Y ) −→ H p+1(Y,Ω
p−1
Y ).

Example 3.1 Let S be a K3 surface. Then the canonical bundle is trivial, ΘS
∼= Ω1

S,

q(s) = dim H1(S,OS) = 0, and pg(S) = dim H2(S,OS) = 1.

Let f : C → S be a non-constant holomorphic map from a smooth curve C in S

(the differential f∗ : ΘC → f ∗ΘS is non zero at the generic point). If we consider the

deformations of f with fixed codomain S, then the semiregularity map

σ : H2(C ·
f∗

) −→ H2(S,OS) ∼= C

is surjective. Indeed, let N f be the cokernel of f∗, i.e.,

ΘC

f∗
−→ f ∗ΘS −→ N f −→ 0.
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The hypothesis on f∗ implies that the sequence

0 −→ ΘC

f∗
−→ f ∗ΘS −→ N f −→ 0

is also exact. Therefore, Hi(C, N f ) ∼= Hi+1(C ·
f∗

) for each i ≥ 0, and the induced map

H1(C, f ∗ΘS) −→ H1(C, N f )

is surjective.

Consider the pull-back f ∗Ω1
S → Ω1

C and denote by L and ∆ the kernel and the

cokernel, respectively, i.e.,

0 // L // f ∗Ω1
S

!!CC
CC

CC
CC

// Ω1
C

// ∆ // 0

K

??~~~~~~~

ÃÃA
AA

AA
AA

A

0

<<zzzzzzzzz
0.

By hypothesis on f , ∆ is a torsion sheaf, and so H1(C,∆) = 0. Therefore,

H1(C, K) → H1(C,Ω1
C ) is surjective.

Moreover, H2(C,L) = 0 and so H1(C, f ∗Ω1
S) → H1(K) is surjective. In conclu-

sion, the induced map

H1(C, f ∗Ω1
S) −→ H1(C,Ω1

C )

is surjective. By the integration on C , we get a surjective map

H1(C, f ∗Ω1
S) −→ C.

Since the diagram

H1(C, f ∗Ω1
S)

xxxxqqqqqqqqqq

## ##HHHHHHHHHH

H1(C, N f )
σ

// C

is commutative, the semiregularity map is surjective.
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4 Proof of the Main Theorem

Nowadays, the approach to deformation theory via DGLAs is quite standard (see for

example [5, 15, 17]).

In [18], M. Manetti used the DGLAs to study the obstructions of the inclusion

map and Bloch’s semiregularity map.

Inspired by his work, we also prove our main theorem using the DGLAs and, in

particular, the techniques developed in [12, 13].

For the reader’s convenience, we recall the main results of these papers.

To study deformations of holomorphic maps via DGLAs, it is convenient to de-

fine a deformation functor associated with a pair of morphisms of DGLAs. More

precisely, let h : L → M and g : N → M be morphisms of DGLAs, with M concen-

trated in non negative degrees, i.e.,

L

h

²²
N

g
// M.

Then the deformation functor associated with the pair (h, g) is

Def(h,g) : Art −→ Set, Def(h,g)(A) =
MC(h,g)(A)

gauge
,

where

MC(h,g)(A) =
{

(x, y, ep) ∈ (L1 ⊗ mA) × (N1 ⊗ mA) × exp(M0 ⊗ mA) |

dx + 1
2
[x, x] = 0, dy + 1

2
[y, y] = 0, g(y) = ep ∗ h(x)

}

,

and the gauge equivalence is induced by the gauge action of exp(L0⊗mA)×exp(N0⊗
mA) on MC(h,g)(A), given by

(ea, eb) ∗ (x, y, ep) = (ea ∗ x, eb ∗ y, eg(b)epe−h(a)).

Let (C·
(h,g), D) be the differential graded vector space with

Ci
(h,g) = Li ⊕ N i ⊕ Mi−1 and D(l, n, m) = (dl, dn,−dm − g(n) + h(l)).

Then the tangent space of Def(h,g) is H1(C·
(h,g)), and the obstruction space of Def(h,g)

is naturally contained in H2(C·
(h,g)) ([12, Lemma III.1.19] or [13, Section 4.2]).

Lemma 4.1 Let h : L → M and g : N → M be morphisms of abelian DGLAs. Then

the functor MC(h,g) is smooth, that is, it has no obstructions.

Proof See [12, Lemma II.1.20].
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Remark 4.2 Every commutative diagram of morphisms of DGLAs

L

h

²²

α ′

// P

η

²²

M
α

// Q

N

g
??~~~~~~~~ α ′ ′

// R

µ

??~~~~~~~~

induces a morphism ϕ· of complexes

Ci
(h,g) ∋ (l, n, m)

ϕi

7−→ (α ′(l), α ′ ′(n), α(m)) ∈ Ci
(η,µ)

and a natural transformation F of the associated deformation functors, i.e.,

F : Def(h,g) −→ Def(η,µ) .

Proposition 4.3 If ϕ· : C·
(h,g) → C·

(η,µ) is a quasi-isomorphism of complexes, then

F : Def(h,g) → Def(η,µ) is an isomorphism of functors.

Proof See [12, Theorem III.1.23].

Proposition 4.4 Let

L

h

²²

α ′

// P

η

²²

M
α

// Q

N

g
??~~~~~~~~ α ′ ′

// R

µ

??~~~~~~~~

be a commutative diagram of differential graded Lie algebras. If the functor Def(η,µ) is

smooth, then the obstruction space of Def(h,g) is contained in the kernel of the map

H2(C·
(h,g)) −→ H2(C·

(η,µ)).

Proof The natural transformation F : Def(h,g) → Def(η,µ) induces a linear map be-

tween the obstruction spaces. If Def(η,µ) is smooth, then its obstruction space is

zero.
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By a suitable choice of the morphisms h and g, we can study the infinitesimal

deformations of holomorphic maps.

Indeed, let f : X → Y be a holomorphic map, Z = X × Y and Γ ⊂ Z the graph

of f . Let

F : X −→ Γ ⊆ Z := X × Y, x 7−→ (x, f (x)),

and p : Z → X and q : Z → Y be the natural projections.

Then we have the following commutative diagram:

X
F

//

id

$$IIIIIIIIIIIIIIIIIIIIIIII

f

))SSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSSS Z

p

§§±±
±±
±±
±±
±±
±±
±±

q

»»1
11

11
11

11
11

11
1

X Y.

In particular, F∗ ◦ p∗ = id and F∗ ◦ q∗ = f ∗. Since ΘZ = p∗ΘX ⊕ q∗ΘY , it follows

that F∗(ΘZ) = ΘX ⊕ f ∗ΘY . Define the morphism γ : ΘZ → f ∗ΘY as the product

γ : ΘZ

F∗

−→ ΘX ⊕ f ∗ΘY

( f∗,− id)

−→ f ∗ΘY ;

moreover, let π be the surjective morphism

A
0,∗
Z (ΘZ)

π
−→ A

0,∗
X ( f ∗ΘY ) −→ 0,

π(ω u) = F∗(ω)γ(u), ∀ ω ∈ A
0,∗
Z , u ∈ ΘZ .

Since each u ∈ ΘZ can be written as u = p∗v1 +q∗v2, for some v1 ∈ ΘX and v2 ∈ ΘY ,

we also have

π(ωu) = F∗(ω)( f∗(v1) − f ∗(v2)).

The algebra A
0,∗
Z (ΘZ) is the Kodaira–Spencer (differential graded Lie) algebra of Z

and we denote by A
0,∗
Z (ΘZ(− log Γ)) its differential graded Lie subalgebra defined by

the following exact sequence

(4.1) 0 −→ A
0,∗
Z (ΘZ(− log Γ)) −→ A

0,∗
Z (ΘZ)

π
−→ A

0,∗
X ( f ∗ΘY ) −→ 0.

The DGLA A
0,∗
Z (ΘZ) controls the infinitesimal deformations of Z, and

A
0,∗
Z (ΘZ(− log Γ)) controls the infinitesimal deformations of the pair Γ ⊂ Z, i.e.,

each solution of the Maurer-Cartan equation in A
0,∗
Z (ΘZ(− log Γ)) defines a defor-

mation of both Γ and Z [18].

Consider the morphism of DGLAs

g = (p∗, q∗) : A
0,∗
X (ΘX) × A

0,∗
Y (ΘY ) → A

0,∗
Z (ΘZ).
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The solutions n = (n1, n2) of the Maurer–Cartan equation in N = A
0,∗
X (ΘX) ×

A
0,∗
Y (ΘY ) correspond to infinitesimal deformations of both X (induced by n1) and Y

(induced by n2). Moreover, the image g(n) satisfies the Maurer–Cartan equation in

M = A
0,∗
Z (ΘZ), and so it is associated with an infinitesimal deformation of Z, that is

exactly the one obtained as product of the deformations of X (induced by n1) and of

Y (induced by n2).

Next, fix M = A
0,∗
Z (ΘZ), L = A

0,∗
Z (ΘZ(− log Γ)), h the inclusion L →֒ M, N =

A
0,∗
X (ΘX) × A

0,∗
Y (ΘY ), and g = (p∗, q∗) : N → M, i.e.,

(4.2) A
0,∗
Z (ΘZ(− log Γ))

Ä _

h

²²

A
0,∗
X (ΘX) × A

0,∗
Y (ΘY )

g=(p∗,q∗)
// A

0,∗
Z (ΘZ).

If Def( f ) is the functor of the infinitesimal deformations of the map f , then the

following theorem holds.

Theorem 4.5 Let f : X → Y be a holomorphic map of compact complex manifold.

Then with the notation above, there exists an isomorphism of functors

Def(h,g)
∼= Def( f ).

Proof See [12, Theorem IV.2.5] or [13, Theorem 5.11].

Furthermore, for each choice of the pair (h, g), there exist a DGLA H(h,g) and an

isomorphism DefH(h,g)
∼= Def(h,g) [13, Corollary 6.18]. In particular, there exists an

explicit description of a DGLA H(h,g) that controls the infinitesimal deformations

of f , i.e., Def( f ) ∼= DefH(h,g) [13, Theorem 6.19].

In general, it is not easy to handle the DGLA H(h,g), and so it is convenient to use

the functor Def(h,g), associated with the previous diagram (4.2).

Indeed, for example, if we want to study the infinitesimal deformations of f with

fixed domain, it suffices to take N = A
0,∗
Y (ΘY ).

Analogously, in the case of deformations of a map f with fixed codomain Y , the

DGLA N reduces to A
0,∗
X (ΘX), and so diagram (4.2) reduces to

L

h
²²

A
0,∗
X (ΘX)

p∗

//

f∗
((

A
0,∗
Z (ΘZ)

π

%%LLLLLLLLLL

A
0,∗
X ( f ∗ΘY ),
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where f∗ is the product π ◦ p∗.

Using this diagram and Theorem 4.5, we can easily prove the following proposi-

tion due to E. Horikawa [11].

Proposition 4.6 The tangent space to the infinitesimal deformations of a holomor-

phic map f : X → Y , with fixed codomain Y , is H1(C ·
f∗

), and the obstruction space is

naturally contained in H2(C ·
f∗

).

Proof Theorem 4.5 implies that the infinitesimal deformation functor of f , with Y

fixed, is isomorphic to Def(h,p∗). Therefore, the tangent space is H1(C ·
(h,p∗)) and the

obstruction space is naturally contained in H2(C ·
(h,p∗)). Since h is injective, we have

isomorphisms Hi(C ·
(h,p∗))

∼= Hi(C ·
π◦p∗) = Hi(C ·

f∗
) for each i.

Our main theorem improves this result in the case of Kähler manifolds. To prove

it, we need some preliminary lemmas.

Lemma 4.7 Let f : X → Y be a holomorphic map of complex compact manifolds. Let

χ ∈ A
0,∗
Y (ΘY ) and η ∈ A

0,∗
X (ΘX) such that f ∗χ = f∗η ∈ A

0,∗
X ( f ∗ΘY ). Then for any

ω ∈ A
∗,∗
Y

f ∗(χ y ω) = η y f ∗ω.

Proof See [12, Lemma II.6.1]. It follows from an easy calculation in local holomor-

phic coordinates.

Let f : X → Y be a holomorphic map, Z = X × Y , and Γ ⊂ Z the graph of f .

Lemma 4.8 If X and Y are compact Kähler manifolds, then the sub-complexes

Im(∂) = ∂AZ , ∂AΓ, ∂AZ ∩ q∗AY and ∂AZ ∩ p∗AX are acyclic.

Proof See [12, Lemma II.2.2]. It follows from the ∂∂-Lemma.

Remark 4.9 In the previous lemma, the Kähler hypothesis on X and Y can be

substituted by the validity of the ∂∂-lemma in AX , AY , AZ = AX×Y and AΓ. In

particular, it holds for every compact complex manifold bimeromorphic to a Kähler

manifold [7, Corollary 5.23].

Let W be a manifold and A
0,∗
W (ΘW ) its Kodaira–Spencer algebra. Then we define

the contraction map i as follows:

i : A
0,∗
W (ΘW ) −→ Hom∗(AW , AW ),

ia(ω) = a y ω, ∀ a ∈ A
0,∗
W (ΘW ) and ω ∈ A

∗,∗
W .

Therefore,

i(A
0, j
W (ΘW )) ⊂ ⊕h,l Hom0(A

h,l
W , A

h−1,l+ j
W ) ⊂ Hom j−1(AW , AW ).
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In order to interpret i as a morphism of DGLAs, the key idea, due to M. Manetti

[18, Section 8], is to substitute Hom∗(AW , AW ) with the differential graded vec-

tor space Htp(ker(∂), AW /∂AW ) =
⊕

i Homi−1(ker(∂), AW /∂AW ). Consider on

Htp(ker(∂), AW /∂AW ) the following differential δ and bracket { · , · }:

δ( f ) = −∂ f − (−1)deg( f ) f ∂,

{ f , g} = f ∂g − (−1)deg( f ) deg(g)g∂ f .

Lemma 4.10 Htp(ker(∂), AW /∂AW ) is a DGLA and the linear map

i : A
0,∗
W (TW ) −→ Htp

(

ker(∂),
AW

∂AW

)

is a morphism of DGLAs.

Proof See [18, Proposition 8.1].

Remark 4.11 For any pair of graded vector spaces V and W , there exists an iso-

morphism Hi(Htp(V,W )) ∼= Htpi(H∗(V ), H∗(W ))) for each i.

Next, we apply this construction to Z = X × Y . Let Γ be the graph of f in Z

and IΓ ⊂ AZ the space of the differential forms vanishing on Γ. The DGLA L =

A
0,∗
Z (ΘZ(− log Γ)) defined in (4.1) satisfies the property

L ⊂ {a ∈ A
0,∗
Z (ΘZ) | ia(IΓ) ⊂ IΓ}.

Furthermore,

p∗A
0,∗
X (ΘX) ⊂ {a ∈ A

0,∗
Z (ΘZ) | ia(q∗AY ) = 0},

where p and q are the projections of Z onto X and Y , respectively.

In conclusion, we can define the following commutative diagram of morphisms

of DGLAs

(4.3)

L
Ä _

h

²²

// K =

{

f ∈ Htp
(

ker(∂), AZ

∂AZ

) ∣

∣ f (IΓ ∩ ker(∂)) ⊂ IΓ
IΓ∩∂AZ

}

Ä _

η

²²

A
0,∗
Z (ΘZ) // Htp

(

ker(∂), AZ

∂AZ

)

A
0,∗
X (ΘX)

p∗

OO

// J =

{

f ∈ Htp
(

ker(∂), AZ

∂AZ

) ∣

∣ f (ker(∂) ∩ q∗AY ) = 0
}

,

?Â

µ

OO

where the horizontal maps are all given by i.

We note that diagram (4.3) induces a natural transformation of deformation func-

tors

I : Def(h,p∗) −→ Def(η,µ) .
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Lemma 4.12 If the differential graded vector spaces (∂AZ , ∂), (∂AΓ, ∂) and (∂AZ ∩
q∗AY , ∂) are acyclic, then the functor Def(η,µ) has no obstructions. In particular, the

obstruction space of Def(h,p∗) is naturally contained in the kernel of the map

H2(C ·
(h,p∗))

I

−→ H2(C ·
(η,µ)).

Proof This lemma is an extension of [18, Lemma 8.2].

The projection ker(∂) → ker(∂)/∂AZ induces a commutative diagram

(4.4) K

η

²²

{ f ∈ K | f (∂AZ) = 0}

η ′

²²

α

oo

Htp
(

ker(∂), AZ

∂AZ

)

Htp( ker(∂)
∂AZ

, AZ

∂AZ
)

β

oo

J

µ

OO

{ f ∈ J | f (∂AZ) = 0}.

µ ′

OO

γ

oo

Since ∂AZ is acyclic, β is a quasi-isomorphism of DGLAs. Since

coker(α) =

{

f ∈ Htp
(

∂AZ ,
AZ

∂AZ

)

| f (IΓ ∩ ∂AZ) ⊂
IΓ

IΓ ∩ ∂AZ

}

,

there exists an exact sequence

0 → Htp
( ∂AZ

IΓ ∩ ∂AZ
,

AZ

∂AZ

)

→ coker(α) → Htp
(

IΓ ∩ ∂AZ ,
IΓ

IΓ ∩ ∂AZ

)

→ 0.

Moreover, the exact sequence

0 −→ IΓ ∩ AZ −→ ∂AZ −→ ∂AΓ −→ 0

implies that IΓ ∩ AZ and ∂AZ/(IΓ ∩ ∂AZ) = ∂AΓ are acyclic. Thus, the complexes

Htp
( ∂AZ

IΓ ∩ ∂AZ
, AZ/∂AZ

)

and Htp
(

IΓ ∩ ∂AZ ,
IΓ

IΓ ∩ ∂AZ

)

are acyclic, and the same holds for coker(α), i.e., α is a quasi-isomorphism.

As to γ, we have

coker(γ) = { f ∈ Htp
(

∂AZ ,
AZ

∂AZ

)

∣

∣ f (∂AZ ∩ q∗AY ) = 0}

= Htp
( ∂AZ

∂AZ ∩ q∗AY
,

AZ

∂AZ

)

.

https://doi.org/10.4153/CMB-2011-012-3 Published online by Cambridge University Press

https://doi.org/10.4153/CMB-2011-012-3


484 D. Iacono

By hypothesis, ∂AZ ∩ q∗AY and ∂AZ are acyclic, and so the same holds for

∂AZ/(∂AZ ∩ q∗AY ). Then coker(γ) is acyclic, i.e., γ is also a quasi-isomorphism.

Therefore, by Lemma 4.3, there exists an isomorphism of deformation functors

Def(η,µ)
∼= Def(η ′,µ ′). We note that the elements of the three algebras of the right

column of (4.4) vanish on ∂AZ . Then by the definition of the bracket { · , · }, these

algebras are abelian and so, by Lemma 4.1, the functor Def(η,µ)
∼= Def(η ′,µ ′) has no

obstructions.

Therefore, by Proposition 4.4 the obstruction space of Def(h,p∗) lies in the kernel

of H2(C ·
(h,p∗))

I
→H2(C ·

(η,µ)).

Theorem 4.13 Let f : X → Y be a holomorphic map of compact Kähler manifolds.

Then the obstruction space to the infinitesimal deformations of f with fixed codomain is

contained in the kernel of the map

H2(C ·
f∗

)
J

−→ H1
(

Htp(IΓ ∩ ker(∂) ∩ q∗AY , AΓ)
)

.

Proof By Lemma 4.8, the complexes (∂AZ , ∂), (∂AΓ, ∂), and (∂AZ ∩ q∗AY , ∂) are

acyclic. Then Lemma 4.12 implies that the obstruction space lies in the kernel of the

following map

H2(C ·
(h,p∗))

I

−→ H2(C ·
(η,µ)).

Since h is injective, as in Proposition 4.6, we have H2(C ·
(h,p∗))

∼= H2(C ·
f∗

). Thus, the

obstructions lie in the kernel of I : H2(C ·
f∗

) → H2(C ·
(η,µ)).

As to H2(C ·
(η,µ)), consider K as in equation (4.3), i.e.,

K =

{

f ∈ Htp
(

ker(∂),
AZ

∂AZ
) | f (IΓ ∩ ker(∂)

)

⊂
IΓ

IΓ ∩ ∂AZ

}

and the exact sequence

0 −→ K
η

−→ Htp
(

ker(∂),
AZ

∂AZ

) π ′

−→ coker(η) −→ 0,

with coker(η) = Htp(IΓ ∩ ker(∂), AΓ

∂AΓ
). Then H2(C ·

(η,µ))
∼= H2(C ·

π ′◦µ). Let J be as in

(4.3), i.e.,

J =

{

f ∈ Htp(ker(∂),
AZ

∂AZ
) | f (ker(∂) ∩ q∗AY ) = 0

}

;

thus,

π ′ ◦ µ : J −→ Htp(IΓ ∩ ker(∂),
AΓ

∂AΓ

),

with

coker(π ′ ◦ µ) = Htp(IΓ ∩ ker(∂) ∩ q∗AY ,
AΓ

∂AΓ

).
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Consider the map I ′ : H2(C ·
π ′◦µ) → H1(coker(π ′ ◦ µ)) = H1(Htp(IΓ ∩ ker(∂) ∩

q∗AY , AΓ

∂AΓ
)). Since the complex ∂AΓ is acyclic, the projection

Htp(IΓ ∩ ker(∂) ∩ q∗AY ,
AΓ

∂AΓ

) −→ Htp(IΓ ∩ ker(∂) ∩ q∗AY , AΓ)

is a quasi-isomorphism.

Therefore, the obstruction space is contained in the kernel of J : H2(C ·
f∗

) →

H1(Htp(IΓ ∩ ker(∂) ∩ q∗AY , AΓ)), i.e.,

H2(C ·
f∗

)

J

++XXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
I

// H2(C ·
π ′◦µ)

I
′

// H1(Htp(IΓ ∩ ker(∂) ∩ q∗AY , AΓ

∂AΓ
))

∼=

²²

⊕i Hom(Hi(IΓ ∩ ker(∂) ∩ q∗AY ), Hi(AΓ)).

Corollary 4.14 Let f : X → Y be a holomorphic map of compact Kähler manifolds.

Let p = dim Y − dim X. Then the obstruction space to the infinitesimal deformations

of f with fixed Y is contained in the kernel of the map

σ : H2(C ·
f∗

) −→ H p+1(Y,Ω
p−1
Y ).

Proof Let n = dim X, p = dim Y − dim X and H be the space of harmonic forms

on Y of type (n + 1, n − 1). Using the contraction with the forms ω ∈ H, we define

the semiregularity map σ as in Section 3. Since f ∗ω = 0, Lemma 4.7 implies that the

diagram

A
0,∗
X ( f ∗ΘY )

y ω
// A

n,∗+n−1
X

A
0,∗
X (ΘX)

f∗

OO

// 0

α

OO

is commutative, and we get the semiregularity map

σ : H2(C ·
f∗

) −→ H p+1(Y,Ω
p−1
Y ).

Since q∗H is contained in IΓ ∩ ker ∂ ∩ ker ∂ ∩ q∗AY , we conclude the proof applying

Theorem 4.13.

Remark 4.15 As we already noticed in Remark 4.9, the previous corollary holds if

the compact complex manifolds are bimeromorphic to Kähler manifolds.
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