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With the rapid advances in molecular biology, the near
completion of the human genome, the development of

appropriate statistical genetic methods and the availability of
the necessary computing power, the identification of quantita-
tive trait loci has now become a realistic prospect for
quantitative geneticists. We briefly describe the theoretical bio-
metrical foundations underlying quantitative genetics. These
theoretical underpinnings are translated into mathematical
equations that allow the assessment of the contribution of
observed (using DNA samples) and unobserved (using known
genetic relationships) genetic variation to population variance in
quantitative traits. Several statistical models for quantitative
genetic analyses are described, such as models for the classi-
cal twin design, multivariate and longitudinal genetic analyses,
extended twin analyses, and linkage and association analyses.
For each, we show how the theoretical biometrical model can
be translated into algebraic equations that may be used to gen-
erate scripts for statistical genetic software packages, such as
Mx, Lisrel, SOLAR, or MERLIN. For using the former program
a web-library (available from http://www.psy.vu.nl/mxbib) has
been developed of freely available scripts that can be used to
conduct all genetic analyses described in this paper.

“Genetic factors explain x% of the population variance in
trait Y” is an oft heard outcome of quantitative genetic
studies. Usually this statement derives from (twin) family
research that exploits known genetic relationships to esti-
mate the contribution of unknown genes to the observed
variance in the trait. It does not imply that any specific genes
that influence the trait have been identified. Given the rapid
advances made in molecular biology (Nature Genome Issue,
February 15, 2001; Science Genome Issue, February 16,
2001), the near completion of the human genome and the
development of sophisticated statistical genetic methods
(e.g., Dolan et al., 1999a, 1999b; Fulker et al., 1999;
Goring, 2000; Terwilliger & Zhao, 2000), the identification
of specific genes, even for complex traits, has now become a
realistic prospect for quantitative geneticists. To identify
genes, family studies, specifically twin family studies, again
appear to have great value, for they allow simultaneous
modelling of observed and unobserved genetic variation.  As
a “proof of principle”, genomEUtwin will perform genome-
wide genotyping in twins to target genes for the complex
traits of stature, body mass index (BMI), coronary artery
disease and migraine. To increase power, epidemiological

and phenotypic data from eight participating twin registries
will be simultaneously analysed.

In this paper the main theoretical foundations underly-
ing quantitative genetic analyses that are used within 
the genomEUtwin project will be described. In addition,
an algebraic translation from theoretical foundation 
to advanced structural equation models will be made that
can be used in generating scripts for statistical genetic soft-
ware packages.

Observed, Genetic, and Environmental Variation
The starting point for gene finding is the observation of
population variation in a certain trait. This “observed”, or
phenotypic, variation may be attributed to genetic and
environmental causes. Genetic and environmental effects
interact when the same variant of a gene differentially
affects the phenotype in different environments. 

About 1% of the total genome sequence is estimated to
code for protein and an additional but still unknown per-
centage of the genome is involved in regulation of gene
expression. Human individuals differ from one another by
about one base pair per thousand. If these differences occur
within coding or regulatory regions, phenotypic variation
in a trait may result. The different effects of variants
(“alleles”) of the same gene is the basis of the model that
underlies quantitative genetic analysis.

Quantifying Genetic and Environmental Influences:

The Quick and Dirty Approach

In human quantitative genetic studies, genetic and environ-
mental sources of variance are separated using a design that
includes subjects of different degrees of genetic and envi-
ronmental relationship (Fisher, 1918; Mather & Jinks,
1982). A widely used design compares phenotypic resem-
blance of monozygotic (MZ) and dizygotic (DZ) twins.
Since MZ twins reared together share part of their environ-
ment and 100% of their genes (but see Martin et al.,
1997), any resemblance between them is attributed to these
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two sources of resemblance. The extent to which MZ twins
do not resemble each other is ascribed to unique, non-
shared environmental factors, which also include
measurement error. Resemblance between DZ twins reared
together is also ascribed to the sharing of the environment,
and to the sharing of genes. DZ twins share on average
50% of their segregating genes, so any resemblance
between them due to genetic influences will be lower than
for MZ pairs. The extent to which DZ twins do not resem-
ble each other is due to non-shared environmental factors
and to non-shared genetic influences. 

Genetic effects at a single locus can be partitioned into
additive (i.e., the effect of one allele is added to the effect of
another allele) or dominant (the deviation from purely
additive effects) effects, or a combination. The total
amount of genetic influence on a trait is the sum of the
additive and dominance effects of alleles at multiple loci,
plus variance due to the interaction of alleles at different
loci (epistasis; Bateson, 1909). The expectation for the phe-
notypic resemblance between DZ twins due to genetic
influences depends on the underlying (and usually
unknown) mode of gene action. If all contributing alleles
act additively and there is no interaction between them
within or between loci, the correlation of genetic effects in
DZ twins will be on average 0.50. However, if some alleles
act in a dominant way the correlation of genetic dominance
effects will be 0.25. The presence of dominant gene action
thus reduces the expected phenotypic resemblance in DZ
twins relative to MZ twins. Epistasis reduces this similarity
even further, the extent depending on the number of loci
involved and their relative effect on the phenotype (Mather
& Jinks, 1982). Depending on the nature of the types of
familial relationships within a dataset, additive genetic,
dominant genetic, and shared and non-shared environmen-
tal influences on a trait can be estimated. For example,
employing a design including MZ and DZ twins reared
together allows decomposition of the phenotypic variance
into components of additive genetic variance, non-shared
environmental variance, and either dominant genetic vari-
ance or shared environmental variance. Additive and
dominant genetic and shared environmental influences are
confounded in the classical twin design and cannot be esti-
mated simultaneously. Disentangling the contributions of
shared environment and genetic dominance effects requires
additional data from, for example, twins reared apart, half-
sibs, or non-biological relatives reared together.

Similarity between two (biologically or otherwise
related) individuals is usually quantified by covariances or
correlations. Twice the difference between the MZ and DZ
correlations provides a quick estimate of the proportional
contribution of additive genetic influences (a2) to the phe-
notypic variation in a trait (a2  = 2[rM Z  – rD Z]). The
proportional contribution of the dominant genetic influ-
ences (d2) is obtained by subtracting four times the DZ
correlation from twice the MZ correlation (d2 = 2rMZ 

– 4rDZ). An estimate of the proportional contribution of the
shared environmental influences (c2) to the phenotypic vari-
ation is given by subtracting the MZ correlation from twice
the DZ correlation (c2 = 2rDZ – rMZ). The proportional con-
tribution of the non-shared environmental influences (e2)

can be obtained by subtracting the MZ correlation from
unit correlation (e 2 = 1 – rMZ). 

These intuitively simple rules are described in textbooks
on quantitative genetics and can be understood without
knowledge of the relative effects and location of the actual
genes that influence a trait, or the genotypic effects on phe-
notypic means. These point estimates, however, depend on
the accuracy of the MZ and DZ correlation estimates and
the true causes of variation of a trait in the population. For
small sample sizes (i.e., most of the time) they may be
grossly misleading. Knowledge of the underlying biometri-
cal model becomes crucial when one wants to move beyond
these twin-based heritability estimates, for instance, to add
information of multiple additional family members or
simultaneously estimate from a number of different rela-
tionships the magnitude of genetic variance in the
population. 

The Classical Biometrical Model: 
From Single Locus Effects on a Trait Mean 
to the Decomposition of Observed Variation 
in a Complex Trait
Although within a population many different alleles may
exist for a gene (e.g., Lackner et al., 1991), for simplicity
we describe the biometrical model assuming one gene with
two possible alleles, allele A1 and allele A2. By convention,
allele A1 has a frequency p, while allele A2 has frequency q,
and p + q = 1. With two alleles there are three possible
genotypes: A1A1, A1A2, and A2A2 with genotypic freq-
uencies p2, 2pq, and q 2, respectively, under random mating.
The genotypic effect on the phenotypic trait (i.e., the geno-
typic value) of genotype A1A1, is called “a” and the effect
of genotype A2A2 “-a”. The midpoint of the phenotypes of
the homozygotes A1A1 and A2A2 is by convention 0, so a
is called the increaser effect, and –a the decreaser effect.
The effect of genotype A1A2 is called “d”. If the mean
genotypic value of the heterozygote equals the midpoint of
the phenotypes of the two homozygotes (d = 0), there is no
dominance. If allele A1 is completely dominant over allele
A2, effect d equals effect a. If d ≠ 0 and the two alleles
produce three discernable phenotypes of the trait, d is
unequal to a. This is also known as the classical biometrical
model (Falconer & Mackay, 1996; Mather & Jinks, 1982)
(see Figure 1). 

Statistical derivations for the contributions of single and
multiple genetic loci to the population mean of a trait are
given in several of the standard statistical genetic textbooks
(e.g., Falconer & Mackay, 1996; Lynch & Walsh, 1998;
Mather & Jinks, 1982), and some of these statistics are
summarized in Table 1.  

The genotypic contribution of a locus to the popula-
tion mean of a trait is the sum of the products of the
frequencies and the genotypic values of the different geno-
types. Complex traits such as height or weight, are assumed
to be influenced by the effects of multiple genes. Assuming
only additive and independent effects of all of these loci,
the expectation for the population mean (µ) is the sum of
the contributions of the separate loci, and is formally
expressed as µ = Σ a(p – q) + 2 Σ dpq
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Decomposition of Phenotypic Variance

Although Figure 1 and Table 1 lack environmental effects,
quantitative geneticists assume that the individual pheno-
type (P) is a function of both genetic (G) and
environmental effects (E): P = G + E, where E refers to the
environmental deviations, which have an expected average
value of zero. This equation does not include the term
GxE, and thereby assumes no interaction between the
genetic effects and the environmental effects. 

The variance of the phenotype, which itself is defined
by G + E, is given by VP = VG + VE + 2covGE where VP rep-
resents the variance of the phenotypic values, VG represents
the variance of the genotypic values, VE represents the vari-
ance of the environmental deviations, and covGE represents
the covariance between G and E. GE-covariance or GE-
correlation can be modelled in a twin design that includes
the parents of twins (e.g., Boomsma & Molenaar, 1987a ;
Fulker, 1988) or in a design that includes actual measure-
ments of the relevant genetic and environmental factors.
For simplicity we assume that VP = VG + VE. Statistically the
total genetic variance (VG) can be obtained by the standard
formula for the variance:  σ2 = Σ fi(xi – µ)2, where fi
denotes the frequency of genotype i, xi denotes the corre-
sponding mean of that genotype (as given in Table 1) and 
µ denotes the population mean. Thus, VG = p2[2q(a – dp)] 2

+ 2pq[a(q – p) + d(1 – 2pq)] 2 + q2 [–2p(a + dq)] 2. Which
can be simplified to VG = 2pq[a + d(q – p)] 2 + (2pqd)2 = VA

+ VD (see e.g., Falconer & Mackay, 1996). 
If the phenotypic value of the heterozygous genotype

lies midway between A1A1 and A2A2 (i.e., the effect of d
in Figure 1 equals zero), the total genetic variance simplifies
to 2pqa2. If d is not equal to zero, the “additive” genetic

variance component contains the effect of d. Even if a = 0,
VA is usually greater than zero (except when p = q). Thus,
although VA represents the variance due to the additive
influences, it is not only a function of p, q, and a, but also
of d. The consequences are that, except in the rare situation
where all contributing loci are diallelic with p = q, VA is
usually greater than zero. Models that decompose the phe-
notypic variance into components of VD and VE only, are
therefore biologically implausible. When more than one
locus is involved and it is assumed that the effects of these
loci are uncorrelated and there is no interaction (i.e., no
epistasis), the VGs of each individual locus may be summed
to obtain the total genetic variances of all loci that influ-
ence a trait (Fisher, 1918; Mather, 1949). In most human
quantitative genetic models the observed VP of a trait is not
modelled directly as a function of p, q, a, d and environ-
mental deviations (as all of these are usually unknown), but
instead is modelled by comparing the observed resemblance
between pairs of differential, known genetic relatedness,
such as MZ and DZ pairs. Ultimately p, q, a, d and envi-
ronmental deviations are the parameters quantitative
geneticists hope to “quantify”.

Comparing the observed resemblance in MZ twins and
DZ twins allows decomposition of observed variance in a
trait into components of VA, VD (or VC, for shared environ-
mental variation which is not considered at this point), and
VE . As MZ twins share 100% of their genome, the expecta-
tion for their covariance is COVMZ = VA + VD . 

The expectation for DZ twins is less straightforward: as
DZ twins share on average 50 per cent of their genome as
stated earlier, they share half of the genetic variance that is
transmitted from the parents (i.e., 1/2 VA). As VD is not

Figure 1
Graphical illustration of the genotypic values for a diallelic locus.

Table 1

Summary of Genotypic Values, Frequencies, and Dominance Deviation for Three Genotypes A1A1, A1A2, and A2A2

Genotype A1A1 A1A2 A2A2
Genotypic value a d –a
Frequency p2 2pq q2

Frequency x value a p2 2dpq –a q2

Deviation from the population mean 2q(a – dp) a(q – p) + d(1 – 2pq) –2p(a + dq)
Dominance deviation –2q2d 2dpq –2p2d

A2 A2 O A1 A2 A1 A1
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transmitted from parents to offspring it is less obvious
where the coefficient of sharing for the dominance devia-
tions (i.e., the 0.25 mentioned earlier) derives from. If two
members of a DZ twin pair share both of their alleles at a
single locus they will have the same coefficient for d. If they
share no alleles or just one parental allele they will have no
similarity for the effect of d. The probability that two
members of a DZ pair have received two identical alleles
from both parents is the coefficient of similarity for d
between them. The probability is 1/2 that two siblings (or
DZ twins) receive the same allele from their father, and the
probability is 1/2 that they have received the same allele
from their mother. Thus, the probability that they have
received the same two ancestral alleles is 1/2 × 1/2 = 1/4 , and
the expectation for the covariance in DZ twins is COVDZ =
1/2 VA + 1/4 VD .

Path Analysis and 
Structural Equation Modelling
The expectations for variances and covariances of MZ
twins and DZ twins or sib pairs reared together may also be
inferred from a path diagram (Wright, 1921, 1934), which
is an often convenient non-algebraic representation of
models such as are discussed here (see e.g., Neale &
Cardon, 1992, for a brief introduction into path analysis)
and which can be translated directly into structural equa-
tions. The parameters of these equations can be estimated
by widely available statistical software (e.g., Mx and Lisrel).
Structural Equation Modelling (SEM) has several advan-
tages over merely comparing the MZ and DZ correlations
(Eaves, 1969; Jinks & Fulker, 1970). If the model assump-
tions are valid, SEM produces parameter estimates with
known statistical properties, while the correlational method
merely allows parameter calculation. SEM thus also allows
determination of confidence intervals and of standard
errors of parameter estimates and quantifies how well the
specified model describes the data.  One can either directly
derive structural equations from a theoretical model, or use
path analysis as a non-algebraic intermediary to derive the
structural equations. 

Extended Twin Design

A convenient feature of SEM is the flexible handling of
unbalanced data structures. This enables the relative easy
incorporation of data from a variable number of family
members. In Figure 2 a path diagram is drawn for a uni-
variate trait measured in families consisting of a twin pair
and one additional sibling. As additive, dominant and
shared environmental effects are confounded in the twin
design, the path diagram includes additive genetic influ-
ences (A), dominant genetic influences (D) and non-shared
environmental influences (E), but not shared environmental
influences (C). Note that a path diagram for shared environ-
mental influences can be obtained by substituting 0.25 (for
the DZ correlation for dominant genetic influences) for 1.00
(for the DZ correlation for shared environmental influences)
and replacing the D with C for a latent shared environmen-
tal factor. 

To rewrite the model depicted in Figure 2 into struc-
tural equations using matrix algebra we introduce three

matrices X, Y, and Z of dimensions 1 × 1, containing the
path coefficients x, y, and z, respectively. The matrix algebra
notation for VP is XX T + YY T + ZZ T, where T denotes the
transpose of the matrix (and corresponds to tracing for-
wards through a path, see Neale & Cardon, 1992). The
expectation for the MZ covariance is XXT + YYT and the
expectation for the DZ covariance is 0.5XXT + 0.25YYT.
Including additional siblings in this design is straightfor-
ward, and in this diagram the expectation for sib pair
covariance is also 0.5XXT + 0.25YYT (but one should note
that it is not necessary to assume the same model for sib-sib
covariance as for DZ covariance).

The inclusion of non-twin siblings (if available) will not
only enhance statistical power (Dolan et al., 1999b;
Posthuma & Boomsma, 2000), but also provides the
opportunity to test several assumptions, such as whether
the covariance between DZ twins equals the covariance
between non-twin siblings (which is often assumed, but
can now be tested), whether the means and variances in
twins are similar to the means and variances observed in
siblings, or whether twin-sib covariance is different from
sib-sib covariance, across males and females.

As in practice some families may for example consist 
of a twin pair and six additional siblings while other fami-
lies consist of twins, the correlational method cannot 
be applied to estimate genetic and environmental contribu-
tions to the variance. Fortunately, these so-called non-
rectangular (or unbalanced nested) data structures can be
handled with ease using a SEM approach. 

Threshold Models for Categorical Twin Data 

So far we have considered quantitative traits. Several
observed traits, however, are measured on a non-continu-
ous scale, such as dichotomous traits (e.g., disease vs. no
disease; smoking vs. non-smoking) or ordinal phenotypes
(e.g., underweight/normal weight/overweight/obesity/
severe obesity), yielding summary counts in contingency
tables instead of means and variances/covariances.
Reducing continuous scores like BMI to a categorical score
like obese/non-obese should be avoided, as the statistical
power to detect significant effects is much lower in categor-
ical analyses (Neale et al., 1994).Contingency tables
typically contain the number of (twin) pairs (for each
zygosity group) for each combination (e.g., concordant
non-smokers, concordant smokers, discordant on smoking).
Because of the inherent polygenic background of complex
traits, these data are often treated by assuming that an
underlying quantitative liability exists with one or more
thresholds, depicting the categorization of subjects.
Although the liability itself cannot be measured, a stan-
dard-normal distribution is assumed for the liability. The
thresholds (z-values in the standard normal distribution)
are chosen in such a way that the area under the standard
normal curve between two thresholds (or from minus infin-
ity to the first threshold, and from the last threshold to
infinity) reflects the prevalence of that category. 

For one variable measured on single subjects, the preva-
lence of category i is given by: 
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Figure 2
Path diagram representing the resemblance between MZ or DZ twins and an additional sibling, for additive genetic influences (A), dominant
genetic influences (D), and non-shared environmental influences (E), for a univariate trait.
The latent factors A, D, and E have unit variance, and x, y, and z represent the respective path coefficients from A, D, and E to the phenotype P.
The path coefficients can be regarded as standardized regression coefficients. The phenotypic variance (VP) for the trait (the same for both
members of a twin pair) equals x2 + y2 + z2 which equals VA + VD + VE. By applying the tracing rules of path analysis, the covariance between 
DZ twins (and sib pairs) is traced as 0.50x2 + 0.25y2, which equals 1/2 VA + 1/4 VD. The covariance between MZ twins is traced as x2 + y2 which equals
VA + VD.

�
ti

ti–1

φ(v)dv

were ti-1 = –∞ for i = 0 and ti = ∞ for i = p for p categories,
and φ(v) is the normal probability density function

, 

where π = 3.14.

This can easily be extended to twin data, where one vari-
able is available for both members of a twin pair (e.g.,
obesity yes/no in twin 1 and twin 2). In this case, the
underlying bivariate normal probability density function
will be characterized by two liabilities (that can be con-
strained to be the same) and by a correlation between them:

e –0.5v2

—
�2�π�
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ti

ti–1
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φ(v)dv

with ti-1, si-1 = –∞ for i = 0 and ti , si = ∞ for i = p. In this
case, 

φ(v) = ⏐2πΣ⏐–n/2 × e – vi
T × Σ–1 × vi , 

where Σ is the predicted correlation matrix.
Although the underlying bivariate distribution cannot

be observed, its shape depends on the correlation between
the two liability distributions. A high correlation results in
a relatively low proportion of discordant twin pairs,
whereas a low correlation results in a much higher propor-
tion. Based on the contingency tables one may calculate
tetrachoric (for dichotomous traits) or polychoric (for
ordinal traits) twin correlations between the trait measured
in twin 1 and the trait measured in twin 2 for each zygosity

1—
2
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group. Subsequently, genetic analyses can be conducted
that use these correlations in the same way as is done with
continuous data. The practical extension of this method to
the analysis of more than two categorical variables may not
be straightforward, especially if many variables are involved.
The method then needs an asymptotic weight matrix (see
Neale & Cardon, 1992) and the tetrachoric or polychoric
correlations should be estimated simultaneously, not pair-
wise, as the latter method often produces improper
correlation matrices. The computations may then become
very time consuming. The preferred method for categorical
multivariate designs is to conduct analyses directly on all
available raw data, fitting each twin or sib pair individually
using the multivariate normal probability density functions
given above. Again, the underlying correlation matrix of
family data can be decomposed into genetic and environ-
mental influences in the same way as can be done for
continuous data. 

Multivariate Analysis of Twin Data 

The univariate model can easily be extended to a multivari-
ate model when more than one measurement per subject is
available (Boomsma & Molenaar, 1986, 1987b; Eaves &
Gale, 1974; Martin & Eaves, 1977) or for longitudinal

data when the same subject is assessed repeatedly in time.
Figure 3 is a path diagram for a bivariate design (two mea-
surements per subject; four measures for a pair of twins or
siblings). The corresponding matrix algebra expressions for
the expected MZ or DZ variances and covariances are the
same as for the univariate situation, except that the dimen-
sions of matrices X, Y, and Z are no longer 1×1. An often
convenient form for those matrices is lower triangular of
dimensions n × n (where n is the number of variables
assessed on a single subject; in Figure 3, n = 2). The sub-
scripts of the path coefficients correspond to matrix
elements (i.e., xij denotes the matrix element in the i-th row
and j-th column of matrix X). The path coefficients sub-
scripted by 21 reflect the variation that both measured
phenotypes have in common. For example, if the path
denoted by x21 is not equal to zero, this suggests that there
are some genes that influence both phenotypes. 

Thus, multivariate genetic designs allow the decompo-
sition of an observed correlation between two variables into
a genetic and an environmental part. This can be quantified
by calculating the genetic and environmental correlations
and the genetic and environmental contributions to the
observed correlation.

Figure 3
Path diagram representing the resemblance between MZ or DZ twins, for additive genetic influences (A), dominant genetic influences (D), and
non-shared environmental influences (E), in a bivariate design.
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The additive, dominance and environmental (co)vari-
ances can be represented as elements of the symmetric
matrices A = XXT, D = YYT, and E = ZZT. They contain
the additive genetic, dominance, and non-shared environ-
mental variances respectively on the diagonals for variables
1 to n. X, Y and Z are known as the Cholesky decomposi-
tion of the matrices A, D and E, which assures that these
matrices are nonnegative definite. The latter is required for
variance-covariance matrices. 

The genetic correlation between variables i and j (rgij) is
derived as the genetic covariance between variables i and j
(denoted by element ij of matrix A; aij) divided by the
square root of the product of the genetic variances of vari-
ables i (aii) and j (ajj):

rgij = .

Analogously, the environmental correlation (reij) between
variables i and j is derived as the environmental covariance
between variables i and j divided by the square root of the
product of the environmental variances of variables i and j: 

reij = .

The phenotypic correlation r is the sum of the product of
the genetic correlation and the square roots of the standard-
ized genetic variances (i.e., the heritabilities) of the two
phenotypes and the product of the environmental correla-
tion and the square roots of the standardized environmental
variances of the two phenotypes: 

r = rgij × �� ×��

+ reij × �� × ��

(i.e., observed correlation is the sum of the genetic
contribution and the environmental contribution).

The genetic contribution to the observed correlation
between two traits is a function of the two sets of genes that
influence the traits and the correlation between these two
sets. However, a large genetic correlation does not imply a
large phenotypic correlation, as the latter is also a function
of the heritabilities. If these are low, the genetic contribu-
tion to the observed correlation will also be low. 

If the genetic correlation is 1, the two sets of genetic
influences overlap completely. If the genetic correlation is
less than 1, at least some genes are a member of only one of
the sets of genes. A large genetic correlation, however, does
not imply that the overlapping genes have effects of similar
magnitude on each trait. The overlapping genes may even
act additively for one trait and show dominance for the
second trait. A genetic correlation less than 1 therefore
cannot exclude that all of the genes are overlapping
between the two traits (Carey, 1988). Similar reasoning
applies to the environmental correlation.

Genetic correlations do not provide information on the
direction of causation. In fact, genes may influence one

ejj—
(ajj + ejj)

eii—
(aii + eii)

ajj—
(ajj + ejj)

aii—
(aii + eii)

eij——
�eii� ×� e�jj�

aij——
�ai�i ×� a�jj�

trait that in turn influences the second trait. Or, there may
be genes that act in a pleiotropic way (i.e., they influence
both traits but neither trait influences the other). Genetic
correlations do not distinguish between these situations,
but merely provide information on the nature of the causes
of covariation between two traits.

Longitudinal Analysis of Twin Data

The aim of longitudinal analysis of twin data is to consider
the genetic and environmental contributions to the dynam-
ics of twin pair responses through time. In this case the
phenotype is measured at several distinct time points for
each twin in a pair. To analyse such data one must take the
serial correlation between the consequent measurements 
of the phenotype into consideration. The classical genetic
analysis methods described in previous sections are aimed
at the analysis of a phenotype measured at a single point 
in time and provide a way of estimating the time-specific
heritability and variability of environmental effects. How-
ever, these methods are not able to handle serially correlated
longitudinal data efficiently.

To deal with these issues the classic genetic analysis
methods have been extended to investigate the effects of
genes and environment on the development of traits over
time (Boomsma & Molenaar, 1987b; McArdle 1986).
Methods based on the Cholesky factorization of the covari-
ance matrix of the responses treat the multiple phenotype
measurements in a multivariate genetic analysis framework
(as discussed under “Multivariate Analysis of Twin Data”).
“Markov chain” (or “Simplex”) model methods (Dolan,
1992; Dolan et al., 1991) provide an alternative account of
change in covariance and mean structure of the trait over
time. In this case the Markov model structure implies that
future values of the phenotype depend on the current trait
values alone, not on the entire past history. Methods of
function-valued quantitative genetics (Pletcher & Geyer,
1999) or the genetics of infinite-dimensional characters
(Kirkpatrick & Heckman, 1989) have been developed for
situations where it is necessary to consider the time variable
on a continuous scale. The aim of these approaches is to
investigate to what extent the variation of the phenotype at
different times may be explained by the same genetic and
environmental factors acting at the different time points
and to establish how much of the genetic and environmen-
tal variation is time-specific.

An alternative approach for the analysis of longitudinal
twin data is based on random growth curve models (Neale
& McArdle, 2000). The growth curve approach to genetic
analysis was introduced by Vandenberg & Falkner (1965)
who first fitted polynomial growth curves for each subject
and then estimated heritabilities of the components. These
methods focus on the rate of change of the phenotype (i.e.,
its slope or partial derivative) as a way to predict the level at
a series of points in time. It is assumed that the individual
phenotype trajectory in time may be described by a para-
metric growth curve (e.g., linear, exponential, logistic etc.)
up to some additive measurement error. The parameters of
the growth curve (e.g., intercept and slope, also called
latent variables) are assumed to be random and individual-
specific. However, the random intercepts and slopes may be
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dependent within a pair of twins because of genetic and
shared environmental influences on the random coeffi-
cients. The basic idea of the method is that the mean and
covariance structure of the latent variables determines the
expected mean and covariance structure of the longitudinal
phenotype measurements and one may therefore estimate
the characteristics of the latent variable distribution based
on the longitudinal data.

The random growth curve approach shifts focus of the
genetic analysis towards the new phenotypes — the para-
meters of the growth curve model. This framework permits
to investigate new questions concerning the nature of
genetic influence on the dynamic characteristics of the phe-
notype, such as the rate of change. If the random
parameters of the growth curve would be observed, they
might have been analysed directly using the classical
methods of multivariate genetic analysis. However, their
latent nature requires a more elaborate statistical approach.
Since the growth curve model may be formulated in terms
of the mean and covariance structure of the random para-
meters one might simply take the specification of the mean
and covariance structure of a multivariate phenotype as pre-
dicted by the classical methods of multivariate genetic
analysis and plug it in into the growth curve model. The
resulting two-level latent variable model would then allow
for multivariate genetic analysis of the random coefficients.

In the following sections we consider the bivariate
linear growth curve model applied to longitudinal twin
data using age as timescale. The approach may be extended
to other parametric growth curves (e.g., exponential, logis-
tic etc.) using first-order Taylor expansions and the
resulting mean and covariance structure approximations
(Neale & McArdle, 2000). We also describe a method for
obtaining the predicted individual random growth curve
parameters using the empirical Bayes estimator. These pre-
dictions may be useful for selection of most informative
pairs for subsequent linkage analysis of the random inter-
cepts and slopes.

Linear Growth Curve Model

A simple implementation of the random effects approach
may be carried out using linear growth curve models. In
this case each individual is characterized by a random inter-
cept and a random slope, which are considered to be the
new phenotypes. In a linear growth curve model the con-
tinuous age-dependent trait (Y1t , Y2t) for sib 1 and sib 2 are
assumed to follow a linear age-trajectory given the random
slopes and intercepts with some additive measurement
error: Yit = αi + βi t + εit , for sibling i, where i = 1, 2, t
denotes the timepoint (t = 1, 2, …, n), αi and βi are the
individual (random) intercept and slope of sib i, respec-
tively, and εit is a zero-mean individual error residual, which
is assumed to be independent from αi and βi. The aim of
the study is then the genetic analysis of the individual inter-
cepts (α i) and slopes (β i). The model may easily be
extended to include covariates.

Assume the trait (Yit ) is measured for the two sibs at t =
1, 2, …, n. The measurements on both twins at all time
points may be written in vector form as Y = (Y11,…., Y1n,
Y21, …, Y2n)

T (where T denotes transposition). Furthermore,
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if L denotes the vector of the random growth curve para-
meters, the matrix form of the linear growth curve model
is: Y = DL + E

where

L = , D = , F = , E =

Note, that the linear growth curve model actually repre-
sents a Structural Equation Model with latent variables αi

and βi (and εit’s) with loadings of the latent variables on the
observed responses Yit given by either 1 or t . This implies,
that this model may be analysed using the general SEM
techniques. In particular, parameter estimation may be
carried out via the Maximum Likelihood method under
multivariate normality assumptions using the fact that the
moment structure (mY, ΣY) of Y can be expressed in terms
of m, Σ and Var(εit), where m = E(L), Σ = Cov(L, L): mY =
Dm, ΣY = D Σ DT + Σε, where Σε = Cov(E, E).

As described previously in the section on multivariate
genetic analysis, the two-dimensional phenotype (αi , βi)
may be analysed by modelling the covariance matrix Σ for
MZ and DZ twins using the Cholesky factorisation
approach. The two-level model construction leads to a
parameterisation of the joint likelihood for the trait in
terms of the variance components, the respective mean
vectors and residual variances. This yields estimates of the
two heritability values of αi and βi (and respective variabili-
ties of the environmental effects) and also estimates of
correlations between the genetic and environmental com-
ponents of α i and β i ,  as described earlier under
“Multivariate Analysis of Twin Data”. 

Predicting the Random Intercepts and Slopes

In the following, we briefly describe a method for obtaining
the predicted individual random growth curve parameters.
These predictions may be useful for selection of most infor-
mative pairs for subsequent linkage analysis of the random
intercepts and slopes.

The prediction of the individual random growth curve
parameters may be given by the empirical Bayes estimates,
that is, the conditional expectation of the random growth
curve parameters given the measurement Y = y. As noted
above, Y and L are assumed multivariate normal, i.e., Y ~
MVN(mY; ΣY) and L ~ MVN(m; Σ). The joint distribution
of Y and L is given by

∼MVN , .

By multivariate Gaussian theory, the predicted random
growth curve parameters of a pair with measurement Y = y
may then be given by 

^
L(y) = m + ΣDT Σ–1

Y (y – mY) for esti-
mated parameters. The estimator  is the best linear
unbiased predictor of the individual random growth curve
parameters (see Harville, 1976). Furthermore, an assess-
ment of the error in estimation is provided by the variance

L
Y[ ] m

mY[{ }] Σ ΣDT 

DΣ ΣY[ ]

α1

β1

α2

β2
( )
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ε1n
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ε2n

)(( )F 0 
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of the difference 
^
L – L given by: Var(

^
L – L|Y) = Σ – ΣDT

Σ–1
Y DΣ.

Additional Components of Variance
In the aforementioned models the absence of effects of
genes × environment interaction, of a genes–environment cor-
relation and of assortative mating was assumed. Using the
appropriate design these effects can relatively easy be incor-
porated in structural equation models. 

G×E interaction occurs when the effects of the environ-
ment are conditional on an individual’s genotype, such as
when some genotypes are more sensitive to the environ-
ment than other genotypes. Genetic studies on crops and
animal breeding experiments have shown that G×E interac-
tion is extremely common (see summary in Lynch &
Walsh, 1998. pp. 657–686). However, in general G×E
interaction accounts for less than 20% of the variance of a
trait in the population (Eaves, 1984; Eaves et al., 1977). 

G×E interaction can be modelled according to two
main methods. In the first method the presence of G×E
interaction is explored by studying the same trait in two
environments (or at two time points). A genetic correlation
between the two measurements that is less than one indi-
cates the presence of G×E interaction (Boomsma &
Martin, 2002; Falconer, 1952). However, a genetic correla-
tion equal to one does not need to imply the absence of
G×E interaction (see Lynch & Walsh, 1998). In human
quantitative genetic analyses it is often not possible to
control the environmental or genetic influences, unless the
specific genotype and specific environmental factors are
explicitly measured (see Boomsma et al., 1999; Dick et al.,
2001; Kendler & Eaves, 1986; Rose et al., 2001; but see
Molenaar et al., 1990, 1999). 

In a second method the presence of G×E interaction is
explored by correlating the MZ intra-pair differences and
MZ pair sums (Jinks & Fulker, 1970). Assuming that MZ
twin similarity is purely genetic, a relation between MZ
means and standard deviations suggests the presence of
G×E interaction.

G×E interaction is often not included in quantitative
genetic models. However, if the true world does include
GxE interaction, assuming its absence may lead to biased
estimates of G and E (Eaves et al., 1977). For example if
G×E interaction was truly gene by non-shared environment
interaction, a model without G×E interaction will result in
overestimation of the effects of the non-shared environ-
ment. If, however, G×E interaction was interaction
between genes and shared environmental influences,
assuming its absence will result in overestimation of the
effect of genes on the phenotype, as well as in overestima-
tion of the influence of the shared environmental on the
phenotype. The separate detection of these two biased
effects in the presence of genes by shared environmental
interaction necessitates the inclusion of twin pairs reared
apart (Eaves et al., 1977; Jinks & Fulker, 1970).

GE-correlation occurs when the genotypic and environ-
mental values are correlated. Three different forms of
GE-correlation have been described (Plomin et al., 1977;
Scarr & McCartney, 1983). Passive GE-correlation occurs
for example when parents transmit both genes and environ-

ment (cultural transmission) relevant for a certain trait
(Eaves et al., 1977). Effects of cultural transmission can be
measured using a twin design that also includes the parents
of twins (Boomsma & Molenaar, 1987a; Fulker, 1988).
Active GE-correlation is the situation where subjects of a
certain genotype actively select environments that are corre-
lated with that genotype. Reactive GE-correlation refers to
the effects of reactions from the environment evoked by an
individual’s genotype. The presence of a positive GE-corre-
lation leads to an increase in the phenotypic variance. It is
difficult to measure GE-correlation, however, as active and
reactive GE-correlation necessitate the direct measurement
of these influences (Falconer & Mackay, 1996). Falconer
and Mackay (1996) state that GE-correlation is best
regarded as part of the genetic variance because “… the
non-random aspects of the environment are a consequence
of the genotypic value …” 

Assortative mating refers to a correlation between the
phenotypic values of spouses (e.g., Willemsen et al., 2002).
Assortative mating can be based on social homogamy (i.e.,
preferential mating within one’s own social class) or may
occur when mate selection is based on a certain phenotype
(P; which in turn is a function of G and E). Phenotypic
assortative mating tends to increase additive genetic varia-
tion (and therefore in the overall phenotypic variation;
Lynch & Walsh, 1998) and consequently increases the
resemblance between parents and offspring as well as the
resemblance among siblings and DZ twins. Statistically, it
may conceal the presence of non-additive genetic effects and
overestimate the influence of additive genetic factors (Eaves
et al., 1989; Cardon & Bell, 2000; Carey, 2002; Heath et
al., 1984; Posthuma et al., in press). Assortative mating is
known to exist for traits such as intelligence, exercise behav-
ior and body height and weight (e.g., Aarnio et al., 1997;
Boomsma, 1998; Vandenberg, 1972), but is to a large extent
an unexplored topic in most human populations.

Gene Finding
In addition to the estimation of the effects of unmeasured
genes and environmental influences on traits, SEM can 
also be used to test the effects of measured genetic and envi-
ronmental factors. In the following sections we will
concentrate on the detection of the actual genes that influ-
ence a trait. Two methods are currently employed:
Quantitative trait loci (QTL) linkage analysis and associa-
tion analysis.

QTL Linkage Analysis

Quantitative trait loci (QTL) linkage analysis establishes
relationships between dissimilarity or similarity in a quanti-
tative trait in genetically related individuals and their
dissimilarity or similarity in regions of the genome.  If such
a relationship can be established with sufficient statistical
confidence, then one or more genes in those regions are
possibly involved in trait (dis)similarity among individuals.

Linkage analysis depends on the co-segregation (i.e., a
violation of Mendel’s law of independent assortment which
applies only to inheritance of different chromosomes) of
alleles at a marker and a trait locus (Ott, 1999). If a pair of
offspring has received the same haplotype from a parent in
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a certain region of the genome, the pair is said to share the
parent’s alleles in that region identical by descent (IBD).
Since offspring receive their haplotypes from two parents,
the pair can share 0, 1 or 2 alleles IBD at a certain locus in
a region.  The IBD status of a pair is usually estimated for a
number of markers with (approximately) known location
along the genome and is then used as the measure of
genetic similarity at the marker. The IBD status at a marker
is informative for the IBD status at any other locus along
the chromosome as long as the population recombination
fraction between the marker and the locus is less than 0.5.
In that case the IBD status at the marker and the locus are
correlated in the population and hence similarity at the
marker is informative for similarity at the locus.  The locus
may be a gene or may be located near a gene. If variation in
the gene and variation in the trait are related (i.e., the gene
is a QTL), then variation in the IBD status at the locus and
thus also at the marker will be related to variation in trait
similarity. Identity by descent is distinct from identity is
distinct from identical by state (IBS), which denotes the
number of physically identical alleles that a pair of off-
spring has received, and that have not necessarily been
inherited from the same parent. Table 2 gives all possible
sib pairs from a A1A2 by A1A2 mating and their IBD /
IBS status.

A commonly made distinction is between parametric
and nonparametric models for linkage analysis.  Parametric
models, which are discussed at length by Ott (1999),
require a fairly detailed specification of population charac-
teristics of the gene, such as allele frequencies and
penetrances. Nonparametric models are not nonparametric
in the usual statistical meaning of nonparametric, but these
are parametric models that require fewer assumptions than
nonparametric linkage models.  Parametric models use a
fairly simple relationship between the contribution of a
QTL to the covariance of the trait values of pairs of indi-
viduals, the pairs’ IBD status at a certain location on the
genome and the recombination fraction between the locus
and the QTL. This relationship is usually expressed as a
function of the proportion πi of alleles shared identical by
descent, πi = i/2 for i = 0, 1, 2. For sibling pairs, for
instance, the contribution to the covariance given the pro-
portion πi is f(θ) πi σ 2, where σ 2 is the QTL’s contribution
to the population trait variance, θ is the recombination
fraction between the locus and the QTL, and the monoto-
nic function f(θ) equals 0 and 1 for recombination fractions
0.5 and 0, respectively. Since IBD status is not always

unambiguously known, it is usually estimated probabilisti-
cally from the specific allele pattern across chromosomes of
two or more siblings (Abecasis et al., 2002; Kruglyak et al.,
1996). The estimate of π is referred to as ^π, and can be cal-
culated as (Sham, 1998): ^π = 1

/2 pIBD1 + pIBD2.
We call the correlation between the dominance values

within a population of sib pairs δ, which in the population
can be estimated as:

^
δ = pIBD2, where pIBD2 is the proportion

of sib pairs that share two alleles IBD in this population.
This can be incorporated in a path diagram (Figure 4). 

The path coefficients v and w (Figure 4) and the rela-
tive contribution of the factors Am and Dm to the
phenotypic variation are a function of the recombination
fraction between the marker and the trait locus and the
magnitude of the genetic effects of the trait locus.
Relatively small effects of the factors Am and Dm can thus
either reflect a situation with small effects at the trait locus
and a small recombination fraction (close to zero) or may
reflect large effects at the trait locus in combination with a
large (close to 0.5) recombination fraction between the
marker and the trait locus.

The expectation for the variance is in algebraic terms x2

+ y2 + v2 + w2 + z2 , the expectation for the covariance
among MZ twins is x2 + y2 + v2 + w2 , and for the covari-
ance among DZ twins is 1

/2 x2 + 1
/4 y2 + ^πv2 + 

^
δw2 .

Translating this into matrix algebraic terms we introduce
matrix Q (i.e., the product of matrices V and VT, represent-
ing the additive genetic influences on the phenotype at the
marker site) and matrix R (i.e., the product of matrices W
and WT, representing the dominant genetic influences on
the phenotype at the marker site). Written in matrix
algebra the expectation for the variance equals XXT + YYT +
ZZT + VVT + WWT (or A + D + E + Q + R), the expecta-
tion for the covariance of MZ twins equals XXT + YYT +
VVT + WWT (or A + D + Q + R), and the expectation for
the covariance of DZ twins equals 0.5XXT + 0.25YYT +
^πVVT + 

^
δ WWT (or 0.5A + 0.25D +  ^πQ + 

^
δ R).

Testing whether the elements of matrices V and W are
statistically different from zero provides a test for linkage at
a particular marker position. In a genome screen this test is
conducted for each marker along the genome. Those
marker positions for which the �2 difference exceeds a
certain critical value are believed to be linked to a QTL.
Apart from calculating  ^π's and 

^
δ's to model the linkage

component, one may also apply a mixture model. In this
model for each sib pair three models (for IBD = 0, IBD =

Table 2 

IBD / IBS Status from all Possible Sib Pairings from Parental Mating Type A1A2 (father) � A1A2(mother)

Sib 1
A1A1 A1A2 A2A1 A2A2

Sib 2
A1A1 2 / 2 1 / 1 1 / 1 0 / 0
A1A2 1 / 1 2 / 2 0 / 2 1 / 1
A2A1 1 / 1 0 / 2 2 / 2 1 / 1
A2A2 0 / 0 1 / 1 1 / 1 2 / 2

Note: A1A2 (Father in bold) × A1A2 (Mother in normal text).
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1, IBD = 2) are fitted to the data that are weighted by their
relative probabilities.

Apart from these variance components methods for
linkage analyses, other statistical methods for conducting a
QTL linkage analysis have been proposed. Haseman and
Elston (1972) developed a now classical model for QTL
linkage analysis.  In the HE model the squared difference of
the trait values y1 and y2 of siblings 1 and 2 is regressed on
the value of πi at a particular location on the genome.  The
average of the squared difference in a given population
equals var (y1) + var (y2 ) – 2 cov (y1, y2 ). As the assignment
of individuals’ trait values to y1 or y2 is usually arbitrary this
becomes 2var (y) – 2 cov (y1, y2 ).  With a few additional
assumptions only cov (y1, y2) varies as a function of the IBD
status at the locus, although it does also depend on the vari-
ances of other QTL’s.  Then the regression equation for the
squared difference is µ - f (θ)2 σ 2πi, where πi is the regres-
sor and the constant µ contains variances associated with
the total environmental and genetic effects, including the
QTL. A statistically significant negative estimated regres-
sion weight is suggestive of a QTL at or near the locus. 

By a simple rewriting of the likelihood of the joint dis-
tribution under normality, Wright (1997) demonstrated
that the difference and sum together carry all the informa-
tion in the variance and covariance of the joint
distribution. He suggested regression approaches using
both the difference and the sum. Subsequently several
authors (Drigalenko, 1998; Forrest, 2001; Sham & Purcell,
2001; Sham et al., 2002; Visscher & Hopper, 2001; Xu et
al., 2000) proposed regression methods that use the infor-
mation in both the squared sum and the squared difference
for inference about a QTL effect. These methods were
shown to be nearly as powerful as the likelihood-based vari-
ance component methods. The methods generally have the
advantage that the computations are easy and fast, which is
of some importance if the models are fitted for many loca-
tions along the genome. In contrast, the variance
components methods can be quite time consuming and
may, moreover, yield estimates that do not maximize the
likelihood, which is required for the validity of the distribu-
tion theory on which inferences about the QTL are based.

Figure 4
Path diagram representing the resemblance between MZ or DZ twins, for background additive genetic influences (A), background dominant
genetic influences (D), additive genetic influences due to the marker site (Am), dominant genetic influences due to the marker site (Dm), and non-
shared environmental influences (E), in a univariate design.
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Association Analysis

Ultimately we aim to quantify the specific effects of genes
in terms of a, d, and –a (see Figure 1), using association
analysis. In association analysis the effects of measured
alleles on a trait are tested, by incorporating fixed effects on
the means using genetically related or unrelated subjects
(Moxley et al., 2002; Neale et al., 1999; Neale, 2000; Zhu
et al., 1999). The measured alleles can be functional alleles
at a candidate gene locus, or non-functional alleles at a
marker locus that is in linkage disequilibrium (LD) with
the trait locus. Traditional association studies such as case
control studies may provide spurious associations as a result
of the effects of the use of stratified samples (Hamer &
Sirota, 2000). Any trait that has a different distribution
across substrata (e.g., due to cultural differences between
strata or assortative mating within strata) will show a statis-
tical association with any allele that has a different
frequency across those substrata (e.g., as a result of different
ancestors or genetic drift). To control for these confound-
ing effects, statistical methods based on genomic control
may be employed (Lesch, 2003). In these methods the sta-
tistical significance level for testing genetic association is
adjusted using information from assessed single nucleotide
polymorphisms or unlinked microsatellite markers (Bacanu
et al., 2000; Pritchard et al., 2000). Alternatively, to control
for the effects of population stratification, one may employ
family based methods in which locus-trait associations are
compared across genetically related individuals, which, by
definition, stem from the same stratum. Most family based
association tests have been developed in the context of dis-
crete traits, but recently new statistical developments have
provided methods for association analyses of quantitative
traits (for a review see Vink & Boomsma, 2002). A very
powerful method for quantitative traits was proposed by
Fulker et al., 1999, who developed a method that not only
allows the simultaneous analysis of linkage and association,
but also simultaneously controls for possible confounding
effects of population stratification. By partitioning the asso-
ciation effects into a between family component and a
within family component, spurious associations can be sep-
arated from genuine associations. The between family
effects reflect both the genuine and the possible spurious
association between locus alleles and a trait (or allelic asso-
ciation between locus alleles and trait locus alleles). The
within family effects reflect only the genuine association. 

Fulker et al. (1999) thus decomposed the additive value
a (see Figure 1) into a “between” component (ab: the geno-
typic mean of a sib pair) and a “within” component (aw: the
deviation of a sib from the genotypic mean of the sib pair).
Analogously, the dominance deviation d can be decom-
posed into a between part (db) and a within part (dw). For
example, the genotypic mean of a sib pair with genotypes
A1A1, A1A2 is (a + d)/2 or 1

/2 ab + 1
/2 db. The a and d have

the subscript b to denote the between effect, the two 1
/2’s are

the coefficients with which the between effects of a and d are
multiplied for this particular sib pair. The deviation of the
genotypic mean for the sib with genotype A1A1 is a – ((a 
+ d)/2) or 1

/2 aw – 1
/2 dw. The subscripted w refers to the

within effect, 1
/2 is the coefficient for the additive within

effect for this particular sib (with genotype A1A1) from this

particular pair, and – 1
/2 is the coefficient for the dominance

within effect for this particular sib from this pair. For the
sib with genotype A1A2 the within effect is derived as d –
((a + d )/2) or – 1

/2 aw + 1
/2 dw, where – 1

/2 is the coefficient for
the additive within effects for the sib with genotype A1A2,
and 1/2 is the coefficient for the dominance within effects
for the sib with genotype A1A2 in this particular pair. 

This derivation of coefficients for additive between and
within components from sib genotypic means and devia-
tions from the genotypic sib mean for all possible sib pairs
and for a diallelic locus, can be found in Fulker et al.
(1999), an extension to dominance effects, multi-allele loci,
variable sibshipsizes, and the use of parental genotypic
information where available can be found in Posthuma 
et al. (in press).

As opposed to the effects of the sharing of genomic
regions between sibpairs, which are described in the model
for the (co-) variance of a trait, association effects (i.e., allelic
effects on trait means) are described in the model for the
trait mean(s) for each individual, next to the effects of other
covariates such as age or sex. 

Formally, the model for an observed score in sib j from
the i-th family (yij ) is represented as: yij = µ + β1 ageij + β2

sexij + cabi ab + cawij aw + cdbi db + cdwij dw + εij , where yij is the
observed score for sib j in the i-th family, µ denotes the
overall grand mean or intercept (assumed to be equal for all
individuals), β1 denotes the regression coefficient for the
first covariate (age in this example), β2 denotes the effect of
the second covariate (a deviation of females in this
example), ageij and sexij denote the observed age and sex
(male = 0; female=1) respectively of sib j in the i-th family,
cabi is the coefficient derived from the sib genotypic mean
(e.g., 1

/2, or – 1
/2 ., 1, etc) for the additive between genetic

effect for the i-th family, cawij denotes the coefficient for the
additive within genetic effects for sib j from the i-th family
as can be derived from the deviation of sib j from the sib
genotypic mean, cdbi is the derived coefficient for the domi-
nant between genetic effect for the i-th family, cdwij denotes
the derived coefficient for the dominant within genetic
effects for sib j from the i-th family. ab and aw are the esti-
mated additive between and within effects, db and dw are
the estimated dominance between and within effects, and
εij denotes that part of the grand mean that is not explained
by the covariates (age, sex) and genotypic effects. 

Equating the between genetic effects and the within
genetic effects serves as a test of the presence (and direc-
tion) of spurious associations between a locus and a trait in
the dataset: when the two effects are unequal a spurious
association is said to exist. This test can be conducted on
DNA markers as well as candidate genes. 

Combined Linkage and Association Analysis

The model formulated by Fulker et al. (1999) can also be
used as a simultaneous test of linkage (using identity-by-
descent information at positions across the genome) and
association (using the alleles from candidate genes/markers
lying within the region that shows linkage), which allows
quantification of the amount of linkage that can be
ascribed to the locus used in the association (Abecasis et al.,
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2000, 2001; Cardon & Abecasis, 2000; Fulker et al., 1999;
McKenzie et al., 2001).

Testing the significance of linkage in the presence of
association against the significance of linkage when associa-
tion is not part of the model, provides information on how
well the locus explains the linkage result. If the locus used in
the association is the actual quantitative trait locus  (QTL),
the evidence for linkage at that locus is expected to disap-
pear when modeled simultaneously with association.
Incomplete reduction of evidence for linkage in the presence
of a significant genuine association effect of a locus within
the linkage region, implies that the linkage derives from
some other gene within that genomic region, or that not all
relevant alleles of the locus have been genotyped, or that
(part of ) the observed linkage may have been artefactual
(i.e., due to marker genotype errors) (Abecasis et al., 2000,
2001; Cardon & Abecasis, 2000; McKenzie et al., 2001).

Conclusion
Classical biometrical genetics provides the fundamental
theory for the quantification of gene effects. Proper imple-
mentation of this theory into genetic software packages for
mixed models, path analysis or structural equation model-
ling (e.g., Mx, Lisrel, MERLIN, or SOLAR (Neale, 1997;
Jöreskog & Sörbom, 1986; Abecasis et al., 2002; Almasy &
Blangero, 1998 respectively), using path analysis or struc-
tural equation modelling, provides a flexible practical tool
for gene finding.

Since the identification of the first gene for a common
disease in humans in 1991 (Goate et al., 1991), the suc-
cesses in mapping human genes for common disease have
slowly but surely accelerated (Korstanje & Paigen, 2002),
impressively illustrated by the reports for Crohn’s disease
(Hugot et al., 2001), type-II diabetes (Horikawa et al.,
2000), schizophrenia (Stefansson et al., 2002; Straub et al.,
2002) and asthma (Hakonarson et al., 2002; Van
Eerdewegh et al., 2002). This acceleration of successes
seems primarily associated with the availability of large
sample sizes (Altmüller et al., 2001).

In the genomEUtwin project, funded by the European
Union, data from over 0.8 million twins and their relatives
are available from twin registries in eight countries. The
combined datasets on traits such as body height and
weight, body mass index, cardiovascular disease and
migraine, will provide the necessary statistical power for
unravelling not only the genetic but also the environmental
architecture of these traits. Knowledge of the genetic archi-
tecture of a trait is, for example, crucial for parametric
linkage analyses such as variants of the Haseman-Elston
regression, where several parameters are expected to be
known a priori (see e.g., Sham & Purcell, 2001).

In addition, such a large combined dataset offers the
unique opportunity for modelling effects that are otherwise
difficult (if not impossible) to detect, such as effects of
gene–gene interaction (epistasis), gene–environment inter-
action as well as differences in genetic or environmental
influences across countries. For example, across countries
there may be different allele frequencies (Cavalli-Sforza 
et al., 1994), different genotypic values, different environ-
mental contributions to the variance, or different loci that

influence the same trait in different countries. Also, large
datasets especially offer the opportunity to select the most
informative families for linkage (Carey & Williamson,
1991; Cardon & Fulker, 1994; Dolan & Boomsma, 1998;
Eaves & Meyer, 1994; Gu et al., 1996; Risch & Zhang,
1995, 1996).

Many of the targeted traits in genomEUtwin have been
measured longitudinally. Longitudinal data are extremely
valuable for understanding the development of disease and
elucidating molecular processes such as the on/off switch-
ing of genes with age. For example, the availability of
longitudinal data enables testing whether stability in a trait
is due to genetic (e.g., “do the same genes influence body mass
index at different ages?”) or environmental influences. Genes
for traits such as migraine, which usually develops between
the ages of 25 and 55 (Breslau & Rasmussen, 2001), will
go undetected when the trait is measured prior to genetic
expression. Longitudinal association analyses are therefore
crucial in detecting such age-related genetic penetrance.

For the purpose of analyzing the genomEUtwin data-
sets on body height and weight, body mass index, and
migraine a library of Mx scripts has been developed1 con-
taining scripts for the analysis of continuous or categorical
traits, saturated or variance decomposition models, twins
only or extended twins design, univariate, multivariate, or
longitudinal models, or association and linkage models.
The aim of providing such a scripts library is to allow a
uniform method of analysis, starting from saturated
models, via variance decomposition models to linkage and
association models. The application of sound uniform sta-
tistical modelling to the data from the largest genetic
epidemiological study cohort in the world should help us
meet the ultimate goal of the genomEUtwin project: the
identification of polymorphisms that influence population
variation in body height, weight, body mass index, cardio-
vascular disease, or migraine.

Endnote
1 Available from http://www.psy.vu.nl/mxbib.
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