MAXIMAL SUBGROUPS OF INFINITE SYMMETRIC GROUPS
Fred Richman

(received December 12, 1966)

The purpose of this paper is to extend results of Ball [1]
concerning maximal subgroups of the group S(X) of all permu-
tations of the infinite set X . The basic idea is to consider
S(X) as a group of operators on objects more complicated than
X . The objects we consider here are subspaces of the Stone-
Cech compactification of the discrete space X and the Boolean
algebra of '""big setoids' of X .

In [1] Ball exhibited several classes of maximal subgroups,
to wit:

I. All permutations which fix (setwise) a finite subset of
X.

II. All permutations which "almost' fix an infinite subset
A of smaller cardinality than X .

III. All permutations which either almost fix or almost
interchange two complementary subsets of X of the same car-
dinality.

In this paper we shall extend classes I and III.

Before starting we fix some notation and terminology. If
A and B are sets A + B means the symmetric difference of
A and B, IAI is the cardinality of A . The symbol <> is
used to denote the group generated by whatever is placed within.
A permutation ¢ almost fixes an infinite set A if |A+cA|<|A] .
Almost interchange and almost permute then have the obvious
meanings. A group of operators G is transitive on sets of type T
if any 1-1 correspondence between two sets of type T is realizable
by (the restriction of) an element of G . Small Greek letters
will designate operators (e.g. permutations), small Roman letters
the elements they act upon.
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1. A change of scene. To extend class I we change the
domain of S(X) from X to suitable subspaces of the Stone- Cech
compactification of the discrete space X . The relevant theorem
concerns maximal subgroups of groups acting on sets.

THEOREM 1. Let G be a group acting on an infinite set
S . Suppose G is transitive on finite subsets of S. If J is a
nonempty finite subset of S, set H = {reG|rJ=J} . Then H
is a maximal subgroup of G .

Proof. Let meGNH . We first show the existence of a
o e <H,m> suchthat JfloJ=¢ . Choose oe <H,m> mini-
mizing IJOO' Jf . If ¢ is not as desired then there exist

%,y e J such that o—xé J, oyeJ. Choose TeH such that 7(oy)=x

-1
and T(o-z)é o J for all zeJ such that (rzé J. Then oroe<H,m>
contrary to the minimality of o .

We now show that G =<H,o> . Let peG . Choose \eH

-1 -1
such that (Ao J)N(p J) =¢ and peH such that ppreJ =0 "J.
Then oppioe H and so pe<H,o> .

Observe that distinct finite sets J give rise to distinct
maximal subgroups H .

If X is an infinite set let BX be the set of all ultrafilters
on X, i.e. the Stone- Cech compactification of the discrete space
X . We note that S(X) acts on X in a natural way. Two points
of BX are said to be equivalent if there is an element of S(X)
taking one to the other.

THEOREM 2. If S is an equivalence class of ultrafilters
then S is infinite and S(X) is transitive on finite subsets of S .

Proof. Let Fe¢S, Ae¥ . If ¥ is fixed (i.e. is an
element of X) the theorem is trivial. Otherwise A =BUC,
BNC=¢, |B|=]|C|=]A|]. Then, say, Be¥F , C¢7F .
Partition C into an infinite number of copies Bi of B . Clearly

there exist ™€ S(X) such that niB = B. and so Tri'} are all
i

distinct and in S ; hence S is infinite.

Now suppose '}1, e, F n are distinct elements of S and
similarly 4 y..., & . Choose A.e F. suchthat ANA, = )
1 n b i
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for i$j. Let ™ e S(X) be such that w.F. = 4. . We may
arrange to have ijjﬁ 1-riAi =¢ for i =}: j and IX\UA_, =
i
,X\UwiAil . Choose mwe S(X) such that TTIAJ,:TT_lA.j ,
J

j=1,...,n. Then ﬂgj: éj’ j=1,...,n.

COROLLARY. If J is a finite set of equivalent ultra-
filters on X then the set of all we S(X) such that wJ =J is a
maximal subgroup of S(X) .

| x|
2

COROLLARY. There are 2 maximal subgroups
of S(X) .

2. Another view. In this section we take a look at our
extended class from another angle and observe some of the
limitations to further extension. I mwe S(X) we denote by fsm
the fixed set of m , i.e. the elements xeX such that nx =x .
We use the notation spt w to stand for the support, X\fsmw, of m.

PROPOSITION 1. Let F be an ultrafilter on X . Then
7F = F <= fsnme T .

Proof. <= If Fe¢F sois FNfswt . But FNfsrC nF .
Thus 7Fe T .
=> If fsm¢F then sptmeF . By examining the
cycles of w it is clear that we can break up sptw into a dis-
joint union AUBUC where tA=B, tBCCUA and wnCC A .
Since exactly one of A, B and C is in F this contradicts

¥ =F .

By an n-partition of X we mean a partition of X into sets
of cardinality n. If {X.} , ieI, is an n-partitionof X and ¥
i

is an ultrafilter on I we can define a subgroup H of S(X) as
{reS(X)|IFeTF , nX =X, forall ieF} .

PROPOSITION 2. H is a subgroup associated with an
n-partition of X <> H = {re S(X)In J=J} where J is a set
of n distinct equivalent points of BX .

Proof. => Label the points in Xi’ b4 .,X., . Let

i1’ in
'r'xij = xi(j +1) (mod n in the second index). Let ’3’1 be the
ultrafilter on X generated by the ultrafilter induced on {xM}

by the ultrafilter ¥ on I. Set §j=""]—1'f1 for j=1,...,n
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and let J = { ’Ij} . We shall show that wJ =J implies weH

and by the maximality of {n | nJ = J} and the properness of H
we are done.

If m¢H then {i|m Xi + Xi} ¢ ¥ and therefore there is a j
such that {i l -rrxij % X.} €3 and therefore is a jo such that
i

{i|rx,.=x, . for some i %i} =Fe¥F . Clearly n¥.= 7
NI 0 ity

Consider the function g:F-1, g(i) = iO . Let ACF be maximal

with respect to g(A)MNA = ¢ - Then F = AU (g(A)ﬂF)U(g-1(A)ﬂF).
Now Aé¢ 7T lest also g(A)e F . On the other hand g(A)¢ F be-
cause F~A and therefore g(F~A) is in 7 (note that g is

1-1) . Finally gbi(A)é'}' lest AeF , completing the contra-
diction.

<= Let J= {1'r1':7r . .,Trn'j} , wje S(X), ¥ an ultrafilter
on X . Choose Fe¢JF such that the njF's are mutually disjoint
and their union has infinite complement. For xieF set
Xi = {1T1Xi, cee nnxi} and enlarge to an n-partition of X . F

induces an ultrafilter on this n-partition and we get an associated
proper subgroup H . Again, it suffices to show that wJ =J
implies weH and the proof is the same as above.

Observe that we gain no generality by considering partitions
of X into sets of cardinality < m for if F is an ultrafilter on
such a partition we may always find an n and an Fe J such that
every set of the partition indexed by F 1is of cardinality n. On
the other hand we dare not allow unbounded partitions in view of:

PROPOSITION 3. Let F be an ultrafilter on the index
set of a partition of X such that if Fe¢JF then the sets Xi ,

ieF , are not of bounded finite cardinality. Then the subgroup
H = {meS(X)| for some Fe ¥, nX =X, forall ieF} is not
ior some i ior all 1s not

maximal.

Proof. Let H={me S(X)| for some FeJF and n,
lTrx:,l + Xilg n for all ieF} . Itis readily verified that H is

a subgroup and Hi I?IC*: S(X) .

378

https://doi.org/10.4153/CMB-1967-035-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-035-0

3. Operators on Boolean algebras. In order to extend the
third class of maximal subgroups we view S(X) as acting on the
Boolean algebra of subsets of X modulo the ideal of subsets of
cardinality less than X . This puts the notions of "almost
fixing'" and "almost interchanging' in their proper setting. The
relevant theorem concerns maximal subgroups of groups acting
on Boolean algebras. Recall that a Boolean algebra B is
atomless if whenever beB and b $ 0 there exists an aeB such
that Of: ai b .

THEOREM 3. Let B be an atomless Boolean algebra
and G a group of operators on B which is transitive on finite
sets of nonzero disjoint elements whose supremum is 1 . Let
ayseeena be such a set, n>2 . Let H= {TTeG’ for all i there

exists a j, Ta, = aj} . Then H is a maximal subgroup of G .

Proof. We first treat the case when n=2 . Let weG\H .
We wish to show that G =<H,w> . Partition G\NH into five

1 f el ts: 1. < ; 2. < ; 3. > ;
classes of elements: 1 11'a1 a1,2 rra1 a2 1’!‘31 a1

4, ma, > a 5. all others. If w is in a class C it is clear

17 %2
that CC <H,w> . Therefore we need only show that if = is in
a class C and D is any class then there is a TeD such that
Te<H,w> . We employ a semi-circular proof.

C=14, D=2: Let T =or where 0‘a1=a2.

C=2, D=3: Let 7 = (O"rr)-i, o as above.

C=3, D=4: Let v =owm, ¢ as above.

C=4, D=1: Let 7 =(0'1r)-1, o as above.

C=1, D=5: Let ma, = Xvy where x,y+0 and x Ay =0 .
Let aZ/\Tr 1a1 =z1v x1 where x1,z1+0 and x1/\ z1=0 . Let

aZ\Tr_ a.1 =Z2v y1 where yi,zz#o and Y’IA z2

are justified by the fact that B is atomless). Choose ¢ such that

- = = = . S t'f: .
OX =X, OV =Y, o-(a1\11-a1) Z)v 2, and ca, =a, e womT

= 0 (these steps

C=5, D=1: Let xi’y"zi’ui*o be such that u,An u, =0,
i

1 2
= , = N < N < ) - = ’
Va2 =0 may =X vy X <A, <A  moa S Xvy,v
x, < a, (yzv ZZ) < az, N\ Y, = u1v u, - Choose ¢ such that
ox, = XZ’ a’y1 yz, cru1 = zZ, O'u2 = az\(yzv zz), cr(ai\ xi) = ai\ x2 .

379

https://doi.org/10.4153/CMB-1967-035-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-035-0

Note that O'a1 = a1 . Set T=nmqow.

For n> 2 the proof breaks into two parts:

(i) If ﬂéH then there is a Te<H,w> such that 'réH and

Ta, = a, for some i and j (and we may just as well assume
i

i1 = J = )
(ii) If ~ is as above then, by induction, <H,7 > contains

all ¢ such that for some i and j, va, = aLj . Under this assump-

tion we show that any 7 is an <H, 7> .

. -1 .. .
(i) Proof. w aj has nontrivial meet with two ai's for

some j lest weH . Without loss of generality we may assume

that Tra2 and Tra3 have nontrivial meets with a1 . Let

a,Ama, =Xvy, aiAwa3 =zvw, XV, 2z, W, %0, XAy =zaw=0.
Let o fix all elements ai/\ Traj, (i, j) + (1,2), (1,3), interchange

x and z and fix y and w . Set ’r=1r_1crn. Then oeH and

'r‘a'1 =a1 but ‘raz meets a2 and a3 and hence 'T*H .

(ii) Proof. Let Xx..=7 a.na, y..=a. ama, =X, .
1] J 1] J 1 1]

i
Observe that a, =\/ x.. and Tr—1a. =\/ X.. .
1 i J i U

gy

(1) We may assume that ma, i a'1 and ma, i a1 . For
consider waj vis a vis a, - We cannot have -n-ajs a'1 for all j .
If -rraj > a, simply choose some other j. We may assume that
j =1 since it will suffice to prove wo is in <H,7” > where
ca, = aj .

(2) We may assume that X, =I= 0 . For if -n~aj < a, for
all j+ 1, reverse the roles of 1 and 2. Otherwise use suitable
interchanges fixing a, .

(3) Choose X\ such that

_ c i 2,2
)‘xij yij or i,j¥1  (i,j) % (2,2)

M= Vi

A\X, =V

\%
iy i1 22

380

https://doi.org/10.4153/CMB-1967-035-0 Published online by Cambridge University Press


https://doi.org/10.4153/CMB-1967-035-0

Note that )\a1 = a

L
(4) Consider o =\ 11-r .

(rxij = Xij for 1i,j * 1 (1, j) * (2,2)

oX., = Vi

T2 T Y Py

1+1
< j .
(rx“. <%, J + 1

We can conclude

cga, < a,v a

1 1 2
craiga'lvai i=|t1,2.
If va, + a,va, wecan find p fixing as ceera such that
poa, =a, . If va, =a,va, then 0'a3=|ta1v ag and so we can
find p fixing TR N such that po a; = ag. In any event

p)\_iﬂ fixes an aj as do p and \ .

COROLLARY. If X jis partitioned into a finite number of
sets of equal cardinality then the subgroup of S(X) which almost
permutes these sets is maximal.
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