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Introduction

In many respects the theory of semi-prime rings (i.e. rings without proper
nilpotents) is similar to that for lattice-ordered groups. In this paper semi-prime
rings are faithfully represented as subrings of continuous global sections of
sheaves of integral domains with Boolean base spaces. This representation allows
a simple description of a particular extension of a semi-prime ring as the corres-
ponding ring of all continuous global sections. The ideals in a semi-prime ring R
that give rise to the stalks in the sheaf representation are then characterized
when R is projectable. Finally equivalent conditions are given for a semi-prime
ring R to satisfy a condition, that in the case of lattice-groups, was termed ‘‘weak
projectability”” by Spirason and Strzelecki [8]. Some of the results that are
common to semi-prime rings and lattice-groups (and semi-prime semigroups)
have been extended to certain universal algebras by Davey [3].

1. Sheaf Representation

Let R be a semi-prime ring. That is, x> = 0 is possible only for x = 0 in R;
this is equivalent to the fact that R has no non-zero nilpotents. For A < R define

A° = {xeR:ax =0forallaec 4},

and A% = (4°°. If A = {x} is a singleton set then A°, A°° are denoted by x°,
x°0 respectively.

The class of all subsets of R of the form A° is denoted by #(R) and, ordered
by inclusion, #(R) is a complete Boolean algebra with

() Asds = N A7 = (U, 4)°
(ii) Vo 42 = Nn{B°:B°2 u, 4%}
and

(iii) A°° as the complement of A°.
353
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The Stone space of #(R) is denoted by 2: thus 2 is the set of prime ideals
of #(R) and is furnished with the hull-kernel topology, for which the closed-open

sets 240={tec2: A%}
form a base for the open sets. For each t € 2 a subset R, of R is defined by
R, = {xeR:x"e1t}.
It is readily seen that each R, is a two-sided ideal of R. Furthermore N, ,R, = (0)
for if x°® et for all te 2 then x°° = 0so x = 0.
A sheaf of rings (£, p, 2) is now defined as follows: £ is the disjoint union

of the rings R/R,, te2; p is the map from £ into 2 defined by p(r) = ¢ if
re R/R,; a topology is placed on # by taking the sets

{x+ R,:te 2,0},

with x e R, A° € # (R), as basic open sets. It follows, as for instance in Dauns and
Hofmann [2], that (%, p2) is a sheaf of rings. The ring of continuous global
sections of this sheaf is denoted by I'(%). If xe R and A®e Z(R) then the pair
(x, A®) defines an element I(Q40;x) of I'(R) by

x+R, if te.@Ao
I(240; X)(H) = {

0+R, if t¢ 2,0

When 2,0 = 2, 1(2 40; x)isdenoted by %, and if R has an identity 1 then I(2,; 1)
is denoted by I(2 40).

PROPOSITION 1.1. Let R be a semi-prime ring.
Then,

(1) (&,p,2) is a sheaf of integral domains

(2) the map x » X from R into I(R) is a ring isomorphism

(3) if eI (&) then there is a finite closed-open partition {QAO, 2,2 40}
of 2 and x,++,x,€ R such that 6 = ZI(.@Ao, x;) "

(4) if R has an identity 1 then for every non-empty subset A < I'(#) there
is a central idempotent e e I'(R) such that A° = eI'(R).

ProoF, The homomorphism x+» X is an isomorphism since M, _,R, = (0).
If 0e(#) then for each te 2 there is an x,e R such that o(f) = %,(f). Since
(#, p, 2) is a sheaf there is a basic closed-open neighbourhood 2 40 of t such that
o = %, 0n 2. Then {2,40: te 2} is an open cover for 2 and since 2 is compact
there is a finite subcover {ao 53240 }. Put
1 r

-QAiO = -@A;’ s -@Ag = "QAO' = ’QA:’ U 240
i

t
! ! 1gjs<i J
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for i > 1. Then {2,0,:+, 2,0} is a closed-open partition of 2, and if x; = x;,
then X,1(2,,; X;) is just o, for if t€ 2, then

ZI(20 5 x)(0) = £(1) = o(t).

The sheaf (%, p, 2) is a sheaf of integral domains since the ideals R, are prime
(i-e. xy€eR, is possible only if xe R, or ye R,). This follows from the fact that
(xy)°° = x°° N y°% in a semi-prime ring.

For ¢ = X,1(2,0 ; x)e (&), with {20 ,---,2 40 } a partition of 2, the set
S(o) = {te 2: a(t)aé()l} is just U; 20 N .@Ef which is closed-open, so that,
assuming R has an identity 1, I(S(c)) € [(%). For an arbitrary subset {o,} < I'(%)
the closure S of U, S(o,) is closed-open since 2 is extremally-disconnecied so
that I(S) e I'(#). Since the R/R, are integral domains, ¢, - ¢ = 0 for all « is equi-
valent to I(S)I(S(¢)) = 0 so that {c,}° = [f — I(S)](#) and {— I(S) is a central
idempotent.

The above argument is essentially that given by Kist [ 5]. Notice also that an
entirely similar argument gives the following:

PROPOSITION 1.2. Let I" be the ring of all continuous global sections of a
sheaf of integral domains with identities over a Boolean base space X. Then for
every X€R there is a unique central idempotent e such that x° = {yel:
xy = 0}= el’. If X is extremely-disconnected then for every subset A<R there
is a unique central idempotent e such that A® = {yeI':xy =0 for all xe A} = eI,

Koh [6] has extended Grothendieck and Dieudonné’s sheaf representation
of a commutative ring with identity to semi-prime rings. In his representation a
semi-prime ring is isomorphic to the ring of all continuous global sections of a
sheaf of semi-prime rings over a compact base-space: however the semi-prime
rings that comprise the stalks are not necessarily integral domains and the base
space of the sheaf is not necessarily Boolean,

2. Extensions

DEerINITIONS 2.1. Aring S with identity 1 is said to be completely-projectable
if for every non-empty subset A = S there is a central idempotent e such that
A® = eS. Let R be a semi-prime ring: a completely-projectable cover for R is a
triple (S,¥,¥) where

(1) S is a completely-projectable ring

(2) ¥:R- Sisaring isomorphism into S
(3) V¥:%(R)— %(S) is a Boolean bijection
@ P(x°) = ¥(x)°, for xeR.
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By an abuse of language, S is sometimes said to be a completely-projectable
cover for R if (S,¥,¥) has this property. When R has an identity I'(®) is a
completely-projectable ring. The Boolean algebra #(R) is isomorphic, A° = 2 o,
to the Boolean algebra of closed-open subsets of 2, and this latter algebra is
isomorphic to Z(I'(R)), for if 2’ = 2 is closed-open then

{0el'(#):S(o)c 2'} = {6eT' (#):S(0) = 2\2'}°,
and conversely if {¢,} = I'(#) then
{0,}° = {0eT(R): S(6) = 2 |\ closure US(s,)}.
Denote this isomorphism between #(R) and ﬁ’(l’(@))aby Y. Then for xeR,
Y(x°) = {ceT(#): S(6) S 2,00}°
whilst £° = {geT(#): S(6) < 2\S(x)} so P(x*) = x°. Thus,

PROPOSITION 2.2, If R is semi-prime with identity then I'(®) is a completely-
projectable cover for R.

DErFINITION 2.3. A completely-projectable extension for a semi-prime ring R
is a triple (R, ¢,¢) where

(1) (R, ¢,P) is a completely-projectable cover for R

(2) If (S,¥, ) is a completely-projectable cover for R there is an isomorphism
j: R— S such that the diagram

is commutative.

Lemma 2.4. If R is a completely-projectable ring then R is semi-prime
and x & £ is an isomorphism onto I'(%).

Proor. It is well-known that completely-projectable rings (otherwise known
as Baer rings) are semi-prime.

For A°e B(R), 1{2,.) agrees on 2 with the map £ where x is the unique
element of A° < R for which 1 — x € 4%, so that all continuous global sections
are of the form £ for some x € R.

THEOREM 2.5. If R is a semi-prime ring with identity then I'(®) is a
completely-projectable extension of R.

ProOF. For a semi-prime ring S the sheaf of integral domains obtained from
S, as in 1.1 will be denoted by (4, ps, 2°).
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If (S,¥,P) is a completely-projectable cover for R then by the previous
lemma S can be replaced, without restriction, by I'(%,). Since ¥: #(R) - Z(S)
is an isomorphism satisfying ¥(x°) = P(x)° for xe R then a map from I'(#g)
into T'(,) can be defined by

ZI(-Qi?)fi Lnd E'I(,@;,A?))‘F(xi).
This map is an isomorphism for which the appropriate diagram commutes, with
S replaced by I'(Z,).

PROPOSITION 2.6. If M < R is a minimal prime ring ideal then M = R, for
some prime ideal t € #A,(R).

Proor. Take x;,-:-,x,€ M and suppose that for some yex2°V .- yx2°,
y°° & M. Then, (0) = y°° N y°so y° = M. Then
XN--Nx2cy’em

so x? = M for some i. Since M is minimal prime, R is commutative and semi-prime,
and x;e M, there is an a¢ M such that ax; = 0. Thus aex; = M which is a
contradiction. Hence

xP0V - vxd = M.
Now let ¢, be the ideal in Zy(R) generated by the set {x°°\/y°: xe M, y ¢ M}.
that is,
A% By(R): A0 = x2°0V/ - VxQ VY0V e 20, ]
o [for some x;€ M, y; ¢ M. J
If ty, = #o(R) then
R=(0)° =x{°V - VX’ Vy; Ve Vyp
for some x;e M, y;¢ M. Then
W ny® =pn- 0y nR

= 00PN EPV v
so that
yln Ny ex®vavxl e M

and therefore y; e M for some i, contrary to the choice of the y;. Thus ¢, is con-
tained in a prime ideal t = %, (R) and it is readily seen that M = R,. (c.f. Spirason
and Strzelecki [7]).

Keimel [4] has considered the problem of Stone and Baer extensions for
commutative semi-prime semigroups and rings respectively. It is to be noted that
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in [4] a Baer envelope of a commutative semi-prime ring R with identity is a
commutative Baer ring I (i.e. a ring in which for every A = I, A° = eI for some
idempotent eeI'; since I' is commutative it is also completely projectable)
minimally containing an isomorphic copy of R. In the following section it is
seen that Keimel’s I' is the I'(R) of this section and hence a more functorial
statement can be made about the ring I'. In the case of semigroups, however, no
such statement is apparent. Keimel has also remarked that every commutative
semi-prime ring R with identity has a weak Baer envelope I (i.e. a commutative
ring I minimally containing an isomorphic copy of R and in which for every
x eI there is an idempotent e satisfying x, = eI'). In fact any such I is a Baer
extension in the sense of Kist [5] and also has functorial properties similar to
those of the completely-projectable extension of R. In the remainder of the
section this point is considered in some detail: let R be a commutative semi-prime
ring with identity 1, and denote by #, (R) the Boolean subalgebra of # (R)
generated by polar sets of the form x° xeR. Thus, A° e Zy(R) if and only if
A = A; V; Aij where {Aij} is a finite set of polars with, for each i, j either
Afj = xijor Ajj = x?j0 for elements xij e R.

LemMA 2.7. If 9, is the Stone space of %,(R) and 2= 9, is closed-open
then there is an xe R such 95 = 3o (x) = {te 2: x°° ¢ 1}.

PRrOOF. If 2§ < 2, is closed-open then
2 = 240 = {te 2y; A°¢ 1}

for some A° € #y(R). Suppose that A% = A;V; Ai;', where for each i, j, Ajj = xijo'
or A19j = xjj, for some xije R. Then V; Ai;'qé t for each i, so that for each i there is
a j(i) such that A(;'j(i) ¢ t. Conversely, if for each i there is a j(i) such that AJj(i)¢ ¢
then A; V; Ajj ¢ 1.

Thus, there is a finite set xy,,X,,, ¥, '+, y, = R such that

28 =240 = {te2:x0°¢1,y? ¢1, forall i,j}.

Now if y°¢t then (1 —y)°et for if aey° N1 —y)° then ya=a—- (1 — y)a
so a = 0. Hence there is a finite set {x,,--,x,} < R such that

28 =240 ={te2y:(x, - "x,)%et}.

Then (x, - -+ - x,)°° = x3° N+ Nx)° s0 that
Nte2:x°¢1} = 29
and thus x = x - -+ * X, is the required element of R.

Kist [5] calls a commutative ring B a Baer ring if for each x e B there is an
idempotent ee B satisfying x° = eB. Kist’s definition of a Baer extension of a
commutative ring R is as follows:
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a Baer ring B is a Baer extension of a commutative ring R if

(1) R is isomorphic to a subring of B containing the identity of B,

(2) the subring of B generated by the image of R and the idempotents of B
is B,

(3) the semilattice ug = {M(x): x € R}, where M(x) is the class of minimal
prime ideals of R not containing x € R is isomorphic to a dense subsemilattice
of ug = {M(x): xe B} and the Boolean subalgebra of py generated by pg is pig.

As before a sheaf of integral domains (%, p, 2,) is constructed with the
stalks being the integral domains R/R,, te 2,.

PROPOSITION 2.8. T'(%,) is a Baer ring.

This is just the commutative case of 1.2. As in the remarks before 1.2 it can
also be seen that if R is a Baer ring then R ~ I'(%,).

PROPOSITION 2.9. g is A —isomorphic to the A - subsemilattice of the
Boolean algebra BI'R,)) of idempotents of T(,).

ProoF. As in Kist [ 5] the idempotents of I'(%,) are seen to be the sections
I(24(x)), x € R. Consider the assignment .#(x) — I(24(x)): this is a map from pg
into the idempotents of T" (%, for if #(x) = .#(y) then the continuous sections
I(24(x)), I(2,(y)) are equal on the dense subset of those te 2, for which R, is
minimal prime. Since (xy)°° = x°° M y»°° for x, y e R it follows that

M(xy) = M(x) O\ A(y) and [(2o(xy)) = I(2o(x)) - 1(2o(y)).
Finally, if I(24(x)) = I(24(»)) then xe R, iT ye R, so M (x) = AH(y).

CoRrOLLARY 2.10. T(R,) is a Baer extension of R.

A projectable extension of a not necessarily commutative semi-prime ring R
with identity can be defined as follows: a ring R is projectable if for every x € R
there is a central idempotent e = e satisfying x, = eR. A projectable extension
of R is then defined as in 2.1 and 2.3 with *‘completely-projectable’” replaced by
““projectable”, and *“Z(R)’’ replaced by “Zy(R)’. The following theorem then
holds:

THEOREM 2.11. T'(#,) is a projectable extension of R.

NoTte. In all cases the ring R has been assumed to have an identity. If R is
semi-prime but without an identity then R can be embedded in the ring R cf all
generalized left translations on R: a group endomorphism ®: R — R is a genera-
lized left translation if ®(xy) = ®(x)y. The ring R is minimal with respect to the
properties ‘

(1) R is semi-prime with an identity

(2) R contains an isomorphic copy of R

(3) Risisomorphic to R if R has an identity.
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3. The ideals R,

The following result gives an internal description of the ideals R, for a class
of semi-prime rings R.

DErINITIONS 3.1. A ring R with identity is said to be projectable if for each
x € R there is a central idempotent e such that x, = eR. Since the above idempotent
e is central it is uniquely determined by x, = eR, and e is denoted by id(x). A ring
ideal I = R is a projection ideal if x e I is equivalent to 1 — id(x)< 1.

THEOREM 3.2. Let R be a projectable ring. If B(R) is the Boolen algebra of
central idempotents of R then the ideals R, = {xe R: x°°et}, for te 2, are the
projection ideals I = R such that I N B(R) is a prime ideal in B(R).

ProOOF. Firstly see that the ideals R, are characterized as those ideals I = R
satisfying

(1) x eI implies x° # (0)

(2) xel implies x°° < I

(3) xy = Oimplies xel or yel;
let I = R be an ideal satisfying (1)-(3).

The ideal t, < #(R) generated by the set {x°°\/y°: xel, y¢I} is then a
proper ideal: if x,,x, € I then

x2°Vx3®% = (1 —id(x,)°° V(1 — id(x2))°° = [(1 — id(x) V(1 — id(x,))]°°
which is contained in I, since
1—id(x)e(l —idx)® = x<c I =1,2)

gives (1 —id(x))v(l —id(x,) el
Induction shows that if x;,+-,x, €I then x%\/ ... yx3°® = I, If t5 is not a
proper ideal then there exist x,---,x,, ¢ I and y,,---, y, €I such that

R=V x®VVy
i=1 i=1
Then
n n m n
Ny =Ny°NR=VvxNNy°
i=1 i=1 i=1 i=
so that

and thus Aj_; 1 —id(y)el.

If e, f are central idempotents and ef'e I then

https://doi.org/10.1017/51446788700013264 Published online by Cambridge University Press


https://doi.org/10.1017/S1446788700013264

91 Semi-prime rings 361

(ef—e)(f-f)=0
shows that ef —eclToref — felsoeeclor fel.
Induction gives that if A_,e;el then e¢;el for some i. Consequently,
1 —id(y,)e for some i, so that y,el, contrary to the choice of y;. Hence ¢, is
proper ideal in #Z(R) and is therefore contained in a maximal ideal ¢. It is readily
seen that R, = I. Conversely it is easily seen that every R, < R satisfies (1)—(3).
Now let I be a projection ideal such that I N B(R) is a prime ideal in B(R).
Then 1¢1, and if xel, x° = (0) then (1 —id(x)) = (0) so id(x) =.0 and thus
1=1-id(x)e I. That is, I satisfies (1). Suppose x € I, y € x°°. Then id(x) <id(y) so
1 -id(y) £1-id(x)el,
which gives 1 — id(y) e I and hence y € I. Finally, suppose that xy = 0. Then
[1—idx)] A [1—id(»)] =0
sol —id(xelorl —id(y)el,and therefore x eI or y e I. Hence I satisfies (1)-(3).

Conversely, any ideal satisfying (1)-(3) is a projection ideal whose inter-
section with B(R) is a prime ideal.

For a semi-prime ring R the class of proper ideals R, < R can be given a
topology that is compact if R has an identity, and a Boolean space if R is project-
able. Denote by 7" (R) the class of ideals R, # R, te 2. For xe R, put ¥ (x)
={R,;:x¢ R.}.

PROPOSITION 3.3. The class vy = {¥"(x): x€ R} is an intersection semi-
lattice and so forms a base for the open sets for a topology on ¥" (R). If R has an
identity then ¥ (R) is compact. If R is projectable then vg = {¥"(x): e€ B(R)} is
a lattice for union and intersection and ¥ (R) is a Boolean space.

PROOF. 7" (x) N¥" ()

= {R, # R:x%¢1t, y°°¢1t}
= {R, # R:x°° N y°%¢1}
= {R, # R: (xy)*°¢1}
= 7 (xy).
If R has an identity then the map ¢: ¢ — R, maps 2 onto ¥ (R). For xeR,
¢V () = {te 2: Rte¥ (x)} = 2,00

so ¢ is continuous. Since 2 is compact so is ¥ (R). Now assume R is projectable.
Then every ¥ (x) is of the form ¥ (e) for some central idempotent e: in fact
¥ (x) =¥ (1 — id(x)). Also, #" (R) is a union semi-lattice since
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Y (x)VUY (y) = {R, # R:x°°¢tor y°°¢t}

= {R, # R:x%0/y%0¢¢}

= {R, # R:[(1 —id(x) V(1 —id(y)]°°¢ 1}

= ¥ (1 —id(x) A id(y)).
If R,, # R,, then there is an xeR,, x¢R,,. Then 1 = x; + x, with x, € x%°,
X, €x% so that x, eR,, but x,¢R, , for otherwise 1eR,,. Thus R, € ¥ (x,),
R,,e?(x) and ¥7(x,) N ¥(x) is void. That is, #(R) is a Hausdorff space.

Finally, let e be a central idempotent. Then for te2 either ee R, or 1 —e€eR,
but not both since 1 ¢ R,, and therefore

7 (R) (e) = {R,:ecR,}
= {R;:1—e¢R,}
=¥ (1-¢

so the basic open sets ¥ {e) are closed-open.

Note that the ideals R, in a semi-prime ring R are just those used by Keimel [4]
and Adams [1]. These ideals were also used by Veksler [8] in a more general
setting. In a commutative semi-prime ring R every minimal prime ideal is an R,,
and in the next section the converse of this is considered. The minimal prime
ideals in a non-commutative semi-prime ring R are characterized as those prime
ideals P satisfying

P =0,={xeR:xa =0 for some a¢ P},

Koh [6], and it then follows as in 2.6 that every minimal prime ideal of R is an R..

4. Commutative semi-prime rings

For a commutative semi-prime ring R there are several conditions that imply
that " (R) is a Hausdorfl topological space, and if the annihilators x°°, xe R,
form a sublattice of Z(R) then these conditions are equivalent to the Hausdorff
property of ¥ (R). Throughout this section R will be assumed commutative and
semi-prime.

The class of minimal prime ideals of R is denoted by .#(R), and the sets
M(x) = {Me MR): x¢ M}, for xe R, form a closed-open base for the open
sets for a Hausdorff topology on #(R).

THEOREM 4.2, Consider the following statements:.
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(1) For every xe R there is an x' € R such that x°° = (x’)°
(2) Forallx,yeR thereis an aex° @ x° such that y° = a°
(3 7 (R) = AR)
(4) Each ¥ (x) is closed in ¥"(R)
(5) ¥ (R) is Hausdorff
(6) vy is relatively complemented.
Then
[a] (1) implies (2)
[b] If R has an identity then (2) implies (1)
[c] (2) implies (3)
[d] (3), @), (5) are equivalent
[e] (2) implies (6)

If the intersection semi-lattice {x°%: xe R} is a sub-lattice of #(R) then
(2)-(6) are equivalent.

PrOOF. (1) implies (2): for x,y e R suppose that (x')° = x°°, Then xy e x°°,
x'y e x® and

(xp + X0 = (5 + XD)® = (x -+ )% (00 = [x00/(x')90] 1 0
=R nyOO - yOO'

If R has an identity 1 then (2) implies (1): for xeR, 1 = a + b with aex°°,
o

bex? and © =1° = (a+b)° = a® A b°,

so that a®® = b°. Then x°° < b° and b° = a®° < x°°, so b° = x©O,

(2) implies (3): suppose x€ R, € ¥ (R). Then there is a y¢ R, and y, € x°°,
¥, € x° such that

=y + )% =y} Nyj.

If y,eR, then y° = y9Nyd¢t so yeR,. Thus y,¢R, and y,x = 0 so R, is
minimal prime. The preceding lemma says that every minimal prime is -an R,,
so that #"(R) = #(R).

(3) implies (4): if each R,e¥"(R) is minimal prime then for xe R, ¥(x)
= M(x) is closed in ¥ (R) = #(R).

(4) implies (3): suppose xe R,€¥ (R). Then t¢ ¥ (x) so there is a basic
open set ¥ (y) such that

te¥(y) € V(R)\7(x)

and ¥ (y) N ¥ (x) is void. That is, y¢ R, and xy = 0 so R, is minimal prime.

(3) is equivalent to (5): if 7"(R) = .#(R) then ¥"(R) is Hausdorff. Con-
versely, if 7" (R) # #(R) then there is a proper R, that properly contains a minimal
prime ideal M. Then R, and M cannot be Hausdorff separated.
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(2) implies (6): suppose ¥ Ux) e vg and ¥ (y) € ¥ (x). Then y°® < x°°, and
there exist a € y°, b € y°° such that

Xgo = (a + b)°° = a®° v b°°,
so that xa € y, N x°® and
(xa)°%\/ %0 = (x°0 M g90)\/ y0°
= x% N (a%yy°°)
= %0\ 00 = x00,

since x%° 2 4%\ y°° 2 % v b9 = x%, Thus, ¥ (xa) N ¥ (y) is void and
¥ (xa) YUY (y) =¥ (x), so that vy is relatively complemented.

Now suppose that {x°°: xe R} is a sub-lattice of #(R). That is, for all
X, y € R there is an a € R such that x°0\/y%0 = %0,

(3) implies (2): suppose that R does not have property (2). Then there
exist x, y€ R such that for all ae x°, y¢ (x + a)°°. The subset

to = {A°€ B(R): A° < (x + a)°°Vy°, for some a e x°}
is then an ideal of #(R), since for a, b € x°,
(x + a)°®VyoV(x + b)°%Vy® = x00\/a%0\/h00\/p0 = x00\/c00\/y0,
for some ce R and ce a®Vb° < x°. If ¢, is not a proper ideal then
R =(x+a)Vy® = x%Vva®Vy°

for some aeR, s0 y° = y°° N R = (x°°Va%%) N y°° and therefore y e y°°
< x°%y/ a0, contrary to assumption. Then ¢, is contained in a prime ideal ¢ and
R, # Rsince y°°¢ 1. If a e x° then

aOO < xOOvaOO\/yO — (x + a)OOVyOEt

so ae R,. That is, xe R, and x° < R, so R, is not minimal prime.

(6) implies (2): if vg is relatively complemented and x,ye R then
¥ (x) €7 (a), where a®® = x%0\/ %%, 5o there is an x’ € R such that x’ x = 0 and
(x")°0\/x% = x00\/y%° Then

(x'y +2y)° = (x' + )% (100 = (x20V/y%) Ny

and x'y e x%, xy e x°°.
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