Canad. Math. Bull. Vol. 37 (3), 1994 pp. 294-300

A NOTE ON EPI-CONVERGENCE

GERALD BEER

ABSTRACT.  Let LSC(X) denote the set of extended real valued lower semicontinu-
ous functions on a metrizable space X. If f, fi, f>, f3, . .. is asequence in LSC(X), we say
{fn) is epi-convergent to f provided the sequence of epigraphs (epif,) is Kuratowski-
Painlevé convergent to epif. In this note we address the following question: what con-
ditions on f and/or on X are necessary and sufficient for this mode of convergence to
force epigraphical convergence with respect to the stronger Hausdorff metric and Vi-
etoris topologies?

1. Introduction. Let 2% be the closed subsets of a metric space (X, d), and let CL(X)
be the nonempty closed subsets. Classical convergence for sequences in 2% attributed
to Painlevé by Hausdorff [Ha], is now often called Kuratowski-Painlevé convergence.
Given asequenceAj, Ay, A3, Ay, . .. of (possibly empty) closed subsets of (X R d), we write

LiA, = {x € X : there exists a sequence {a,) convergent to x with

a, € A, for all but finitely many integers n},
LsA, = {x € X : there exist positive integers nj < n, < nz < ---
and a; € A,, such that {a;) — x}.

Clearly, the sets LiA, and LsA, are closed, and LiA, C LsA,. The sequence (A,) is
declared Kuratowski-Painlevé convergent [Ku, AF] to a (closed) subset A of X if A =
LiA, = LsA,, or equivalently, if both inclusions L.s A, C A and A C LiA, hold. When
this is satisfied we write A = K — lim A,,.

Kuratowski-Painlevé convergence plays a fundamental role in modern one-sided anal-
ysis, where the basic functional objects are extended real valued lower semicontinuous
functions rather than continuous ones, and functions are associated with their epigraphs
rather than their graphs [At, AF, DG, RW, DM]. Recall the epigraph of an extended real
valued function f: X — [—00, +00] on a metrizable space X is the set

epif ={(x,@) : x €EX,x € R, and a > f(x)}.

In this context, a sequence (f,) of lower semicontinuous functions is called epi-
convergent to a lower semicontinuous function f provided epi f = K — limepi f;,.

It is well-known that for sequences of nonempty closed sets, A = K—lim A, provided
(A,) converges to A in Hausdorff distance [CV, KT, defined on CL(X) by the formula
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Hy(A, B) = max{sup,, d(a, B), sup,¢p d(b,A)}. Furthermore, the converse holds if and
only if X is compact [Be2]. If we equip X X R with a metric compatible with the product
uniformity, one might guess that when X is compact, then Kuratowski-Painlevé conver-
gence of sequences of epigraphs forces their convergence in Hausdorff distance. In fact,
it was observed in [Bel] that for a sequencef, fi, f, ... of bounded real valued lower
semicontinuous functions defined on a compact metric space X, Kuratowski-Painlevé
convergence of epigraphs implies Hausdorff metric convergence. However, this fails in
LSC(X). We characterize here those limit functions f for which this implication is true.
When X is compact, the Hausdorff metric topology 7x, on CL(X) coincides with the
Vietoris topology Ty, also called the finite topology, having as a subbase all sets of form

Vit={Ae2X: ANV #0}, F*={Ae2X:ANF=0}

where V runs over the open subsets of X and F runs over the closed subsets of X [Mi, KT].
Like the Hausdorff metric topology, we have A = 7y —limA, = A = K —1limA, [FLL]
and the converse holds if and only if X is compact. The class of lower semicontinuous
functions f for which epif = K — limf, = epif = 7y — lim epif, differs from the class
for which epif = K — limf,, = epif = H; — lim epif,. We also characterize this class.

2. Preliminaries. Let (X,d) be a metric space. If x € X and a > 0, let Uy[x]
denote the open ball with center x and radius &, and if A C X, write U,[A] for the open
enlargement | J,c4 Uqlal. Itis clear that the Hausdorff distance between A and B in CL(X)
can be rewritten as

Hy(A, B) = inf{a > 0 : Ug[A] D B and U,[B] D A}.

Hausdorff distance so defined is an infinite valued metric on CL(X), that inherits com-
pleteness and compactness of the underlying metric space [CV, KT]. The induced Haus-
dorff metric topology is not changed provided we replace d by a metric that defines the
same uniformity. Thus if replace d by d’ = min{d, 1} we get a finite valued metric
compatible with 74,. For a metric on X X R, we find it simplest to use box metric p de-
fined by p[(x1, a1), (x2, o2)] = max{d(x1,x;), |1 — a2|}. As we have said, 75, = 7v
on CL(X) if and only if X is compact; more precisely, Ty, D 7v if and only if the gap
inf{d(a,b) : a € A,b € B} between disjoint elements of A and B of CL(X) is positive,
whereas 7y, C 7y if and only if (X, d) is totally bounded [Mi].

It is known (see, e.g., [FLL, Be2, DM]) that in any metric space—in fact, in any first
countable space—Kuratowski-Painlevé convergence is compatible with a topology of
the Vietoris type called the Fell topology 7r [Fe], having as a subbase all sets of the form

Vit={Ae2X: ANV #0}, K"S={Ae2*:ANnK =0}

where V runs over the open subsets of X and K runs over the compact subsets of X. This
means that in 2X, A = K —1lim A, if and only if A = 77 — lim A,,. The Fell topology has a
remarkable property: it is always compact, independent of the character of the underly-
ing space (for three different proofs, see [At, Fe, No]). On the other hand, assuming the
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continuum hypothesis, the topology is sequentially compact if and only if (X, d) is sep-
arable [Si]. The following are equivalent [Po]: (1) X is locally compact; (2) (2X, TF) is
Hausdorff. In this case, (2%, 7r) is compact Hausdorff and (CL(X), ) is locally compact
Hausdorff.

By a lower semicontinuous function f: (X, d) — [—00, +00], we mean a function with
closed epigraph. Equivalently, f is alower semicontinuous function if and only if for each
a € R, its sublevel set at height aslv(f; @) = {x € X : f(x) < a} is a closed subset of X.
We denote the set of lower semicontinuous functions on X by LSC(X). If f € LSC(X), we
write domf for {x € X : f(x) is finite}. We call f proper provided f(x) > —oo for each
x, and domf # (). LSCo(X) will denote the set of proper lower semicontinuous functions
on X.

Although we will not use the following formulation, epi-convergence in LSC(X) can
be given a local characterization [At, Theorem 1.39]: at each x € X, (1) whenever (x,)
is convergent to x, we have f(x) < liminf, . f,(x,), and (2) there exists a sequence
(x) convergent to x such that f(x) = lim,—co f(x,). Epi-convergence neither implies
nor is implied by pointwise convergence; the two modes of convergence are linked by
the notion of equi-lower semicontinuity [SW, DSW, Ma].

Identifying elements of LSC(X) with their epigraphs in X X R, the Fell topology on
the lower semicontinuous functions is usually called the topology of epi-convergence,
but it is also the inf-vague topology by the probabilists (see, e.g., [Ve, No]). As LSC(X)
is closed in (2X*R 1), the function space (LSC(X), 7r) is always compact, too. Compat-
ibility of Kuratowski-Painlevé convergence in LSC(X) with the Fell topology means that
wheneverf, fi, f2, f3, .. . is a sequence in LSC(X), then epif = K — limf;, if and only if
(i) whenever V is openin X X R and epif NV # (), then eventually, epif, NV # @, and
(ii) whenever K is compactin X X R and epif N K = (), then eventually, epif, N K = 0.

3. Epi-convergence versus Hausdorff metric convergence of epigraphs. As we
have defined Hausdorff distance only between nonempty closed subsets, we only inves-
tigate the relationship between epi-convergence and Hausdorff metric convergence of
epigraphs when the limit function f € LSC(X) has nonempty epigraph. Again, we are in-
terested in the question: if (X, d) is a compact metric space and p is the box metric on X X
R, under what conditions on f does epif = K—lim epif, imply lim, .., H,(epifs, epif) =
0?

Actually, there is no need to assume at the outset that X is compact, for no such
function f with epif # @ can exist more generally. To see this, first observe that f
must be bounded below, for otherwise epif = K — limepi(f V —n), but for each n,
Hp(epi(f V —n), epi f) = +00. For future reference, notice that for each n, f V —n €
LSCy(X). Now if X is noncompact, choose (x,) in X with no cluster point. Then if
f € LSC(X), epif # 0, and inf,ex f(x) = o is finite, for each n, define f;, € LSCy(X) by

fux) = {

Clearly, epif = K — lim epif; but for each n, H,(epif,,epif) > 1.
We now come to our characterization theorem.

a—1 ifx=ux,
fx) otherwise °
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THEOREM 1. Let (X,d) be a metric space, and let p be the box metric on X X R.
Suppose f is a lower semicontinuous function on X with epif # 0. The following are
equivalent:

(1) X is compact, f is proper, and domf = {x € X : f(x) € R} is dense in X;

(2) whenever (f,) is a sequence in LSC(X) with epif = K — limepif,, then

lim,, . H,(epify, epif) = 0;
(3) whenever (f,) is a sequence in LSCo(X) with epif = K — limepif,, then
lim,, ., H,(epify, epif) = 0.

PROOF. (1) = (2). Lete > 0 be arbitrary. Since X = cl(UR2,; sIv(f; k), (sIV(f; k) is
Kuratowski-Painlevé convergent to X. Since X is compact, convergence in the Hausdorff
metric holds, and we can find k € Z* with X C U, 3lsiv(f; b))

By the compactness of X, f assumes a minimum value on X which we denote by a.
Now let F be a finite / 3-dense subset of the compact set epif N (X X [a, k]). By epi-
convergence, there exists an index N such that foreachn > N, we have F C U, /3[epifa].
Since epif recedes in the vertical direction, we obtain epif C U.[epif,] foreachn > N.

To show that epif, C U.[epif] eventually, let K be this nonempty compact subset of
XX R: '

K= XX [a—¢k])N(Ulepif]).

By the convergence of {epif,) to epif in the Fell topology, there exist Ny € Z* such that
for each n > Nj, we have epif, N K = 0. Since the horizontal set X X {a — ¢} lies in K
and epif, recedes in the vertical direction, we have

epif, C (X X (k,+00)) U Uc[epif] C U, 3[epif]U Uclepif] = Uelepif].

Thus, for all sufficiently large indices n, both of the inclusions epif C U.[epif,] and
epif, C U,[epif] are satisfied, as required.

(2) = (3). This is trivial.

(3) = (1). We have already observed that if (3) holds, then X must be compact and
f must be lower bounded. Since epif # @, f is proper. Now suppose that cldomf is
a proper subset of X. Choose xyp € X with d(xp, domf) > 0. For each n € Z* define

Jn € LSCo(X) by
n if x = xp

Fux) = f(x) otherwise
Although epif = K —lim epif,, for each n, we have H,(epify, epif) > d(xo,domf) > 0,
which contradicts (3). =

4. Epi-convergence versus Vietoris convergence of epigraphs. Although the Vi-
etoris topology and the Hausdorff metric topologies agree on the nonempty closed sub-
sets of a compact metric space (X, d), this is clearly not the case in CL(X X R), even for
epigraphs of lower semicontinuous functions. For example, for any metric space (X, d),
we have X X R = 7y — lim X X [—n, +00). More generally, if f = —oo and epif =
K —lim epif,, then epif = 1y — lim epif,, so that for noncompact X, we can always find
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a function f € LSC(X) satisfying epif = K — limepif, = epif = 7v — limepif,. As it
turns out, we can find no such f € LSCy(X) unless X is compact, and in this case, f must
be real valued. The precise situation is described in the next result.

THEOREM 2. Let (X, d) be a metric space, and supposef € LSC(X). The following
are equivalent:
(1) domf is compact and sup, ¢y f(x) < +00;
(2) whenever (f,) is a sequence in LSC(X) with epif = K — limepif,, then epif =
Ty — limepif,;
(3) whenever (f,) is a sequence in LSCy(X) with epif = K — lim epif,, then epif =
Ty — lim epif,.

PROOFE. (1) => (2). Suppose f € LSC(X) satisfies condition (1), (f,) is a sequence in
LSC(X), and epif = K — lim epify, i.e., epif = 77— limepif,. Since the “lower halves”
[FLL] of the Fell and Vietoris topologies agree, to show that epif = 7y — limepif,, it
suffices to show that if A € CL(X) and epif N A = 0, then epif, N A = () eventually.
Choose B € R with sup,xf(x) < (. Since domf X [B,+00) C epif and (domf)* x
R C epif, we have A C domf X (—o0, 3). Write o = minyedom s f(x), which exists by
compactness, and let K be the following compact subset of X X R:

K = (domf x {a —1})U (AN (domf x [o — 1, 8])).

By the choice of a, we have epif N K = (), and so there exists N € Z* such that for each
n > N, we have epif, N K = 0. We claim that for each such n, we have epif, NA = 0.
We compute

epify NA
= epify NAN (domf X (—00,8))

C (epif, NAN (domf x [ — 1,5]))u(epif,, NAN (domf x (00, o — 1]))
= epif, ﬂAﬂ(domf X (—00, 0t — 1]) C epif, N (domf X (—00, 0t — 1]) =0,

because epif, N (domf X (—00, a — 1]) # () implies epif, N (domf X {a— 1}) # 0,
which would contradict epif, € K™*.

(2) = (3). This is trivial.

(3) = (1). Assuming (3), we first show that sup,y f(x) < +oo. If this fails, we can
find for each n € Z* a point x, € X with f(x,) > n (note that the x, need not be distinct).
LetA = {(x,,n) : n € Z*}, aclosed subset of X x R disjoint from epif. For eachn € Z*
define f;, € LSCy(X) by the formula

n if x = x,
max{f(x),—n} otherwise

Jalx) =

Although, epif = K — limepif;, each epif; hits the closed set A, and so (epif,) fails to
converge to epif in the Vietoris topology, contradicting (3). This shows that f is bounded
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above. To finish the proof, we must show that domf is a compact subset of X. If this
fails, then there exists a sequence (x,) with distinct terms in dom that has no cluster
point in domf, although it might have a cluster point p for which f(p) = —oo. Then
A= {(x,,, =) — n) :nezZt } is a closed subset of X x R disjoint from epif. For
eachn € Z* define f, € LSCy(X) by the formula

—fx)|—n  ifx=x,
max{f(x),—n} otherwise

ﬂ®={

Again, epif = K — lim epif,, but each epif, hits the closed set A. n

COROLLARY. Let (X,d) be a compact metric space. Then the Fell topology, the
Hausdorff metric topology, and Vietoris topology all agree on the family of bounded
real valued lower semicontinuous functions defined on X, where functions are identified
with their epigraphs.
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