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Equation of State of Stellar Plasmas 
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Abstract 

The equation of state (EOS) of astrophysical plasmas is, for a wide range 
of stars, nearly ideal; with only small non-ideal Coulomb corrections. 
Calculating the EOS of an ionizing plasma from a ground state ion, ideal 
gas model is easy, whereas, fundamental methods to include the small 
Coulomb corrections are difficult. Attempts to include excited bound 
states are also complicated by plasma screening and microfield 
phenomena that weaken and broaden these states. Nevertheless, the high 
quality of current observational data, particularly seismic, dictates that the 
best possible models should be used. The present article discusses these 
issues and describes how they are resolved by fundamental many-body 
quantum statistical methods. Particular emphasis is placed on the activity 
expansion method that is the basis of the OPAL opacity code. Some 
comparisons with standard methods are given. 

Abstract 

L'equation d'etat des plasmas astrophysiques est, pour un large domaine 
d'etoiles, pratiquement ideale; avec de petites corrections coulombiennes. 
Calculer l'equation d'etat d'un plasma ionise a partir d'un modele de gaz 
ideal d'ions dans lew etat fondamental est facile, alors que les methodes 
fondamentales pour inclure les petites corrections coulombiennes sont 
difficiles. Des tentatives pour inclure des etats lies excites sont aussi 
rendues difficiles par les effets d'ecran et le phenomene de microchamp 
qui affaiblissent et elargissent ces etats. Neanmoins, la haute qualite des 
observations actuelles, en particulier en sismologie, impose l'utilisation 
des tous meilleurs modeles. Dans cet article, nous discutons les 
possibilites et nous decrivons les methodes de physique statistique 
quantique du probleme a N-corps pour resoudre ce probleme. La methode 
de developpe opacite OPAL. Nous presentons des comparisons avec des 
methodes standards. 
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2.1 Introduction 

The density temperature range found in stars is very large. Nevertheless, 
it is frequently true that the Coulomb correlational effects are small. For 
example, the density temperature profile of a main sequence star is given 
approximately by constant values of R=p/T$, where p is the density in 
g/cm3 and T& is the temperature in millions of degrees Kelvin. Main 
sequence stars are about 98% hydrogen and helium by mass with the 
remainder being mosdy Carbon, Nitrogen, and Oxygen. Since log R is 
less than -1 for most stars, these two conditions limit Coulomb corrections 
to the equation of state to generally less than a few percent. For stars in 
more advanced states of evolution, e.g. white dwarf and neutron stars, R 
can be much larger and the composition in extreme cases can be pure iron. 
The discussion in the current paper will be primarily aimed at 
understanding the EOS in stars where the Coulomb interactions are small 
to moderate. Saumon and Chabrier (1992; 1991) have been concerned 
with dense hydrogen and helium equations of state. 

The simple ionization equilibrium model introduced by Saha (1920) 
led to a revolution in stellar modeling and has proved to be adequate for 
many purposes. Sana's model assumes ideal gas conditions and uses only 
the ground state configuration in the ionization balance equations. For 
example, in the simple case of a non-degenerate hydrogen plasma it gives 

^ = ̂ 1 § f r e x p ( / J £ 1 , ) (1) 
PH 8H *AP 

where pi= Nj/V is the number density for ions of type i={e, p, H}, 

is the thermal de Broglie wavelength, and ge, gp, and gH are the statistical 
weights. The corresponding pressure is 

F=?A (3) 

Even though, as already noted, the Coulomb corrections to equation 
(1) are generally small for most stars, it is necessary to have a precise 
theory to account for them. There are two reasons for this. Firsdy, a more 
complete model has to include all excited states including possible plasma 
screening effects, as well as, the Coulomb coupling corrections. These 
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effects are interrelated and, as a result, ad hoc approaches are prone to 
count the same term twice. Consequently, the correcnons to the Saha 
equation obtained by ad hoc approaches can vary by substantial amounts 
(gauged by modeling sensitivity). Secondly, the modeling of currently 
available high precision observational data requires very accurate EOS 
data (Christensen-Dalsgaard and DSppen 1993). Modeling of 
helioseismological data, for example, requires derivatives of the EOS that 
are accurate to better than 1%. This level of accuracy can only be 
expected from fundamental procedures. 

Considerable effort has been devoted to the fundamental treatment of 
hydrogen plasmas. An in depth description of much of this work can be 
found in the books by Kraeft, Kremp, Ebeling, and Ropke 1986 and 
Ebeling, Kraeft, and Kremp 1976; see also DeWitt 1966, Krasnikov 1977. 
The more general problem of multi-component plasmas has received much 
less attention (Rogers 1991; Krasnikov and Kucherenko 1978; Ebeling 
1974). A new approach for treating multi-component plasmas is described 
in the articles by Aluestuey and Perez (1992) and Aluestuey elsewhere this 
volume. Numerous papers have been devoted to phenomenological 
modeling of multi-component plasmas (McChesney 1964). 

2.2 Commonly Used Methods 

Typical stellar model calculations require the EOS for a large, variable 
set of temperature-density points and for variable composition. It is thus 
very desirable to have available an efficient model that allows online 
computation, or failing that, a model that can be used to readily produce 
tables. All such models in current use are based on free energy 
minimization methods. These approaches work in the chemical picture 
and deal explicitly with ions and atoms. 

Eggleton, Faulkner, and Flannery (1973) developed an EOS that is 
computationally simple and suitable for online use (EFF). They 
introduced an ad hoc free energy term to produce pressure ionization at 
high density, i.e., when the interparticle separation is less than a bohr. 
This overcomes a well known shortcoming of the Saha equation, which 
predicts that hydrogen is 30% neutral in the solar center where 
temperatures are 100 times the binding energy of H. Similar to Saha, EFF 
assume that ions and atoms are in their unperturbed ground states. The 
EFF method accounts for Fermi-Dirac statistics for electrons, but ignores 
Coulomb interactions. It can produce unphysical phase transitions when 
used outside its range of validity. 
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In view of the need for high accuracy in the EOS, a number of 
attempts have been made to improve the EFF equation. Christiansen-
Dalsgaard and Dappen (1991) and Swensen, VandenBerg, Alexander, and 
Irwin (1994) have added a Debye-Hiickel free energy term (see equation 
(22)), called the CEFF equation to indicate that the Debye Coulomb 
correction has been added. Swenson and Rogers (1993) also adjusted 
parameters in the CEFF equation in order to obtain improved agreement 
with the activity expansion method. 

Going beyond the simple models to include the excited states and more 
correct Coulomb interaction terms is fraught with difficulties. For 
example, the internal partition function for an isolated atom is divergent, 
so that some method for cutting off the partition function must be 
introduced. Typically this is accomplished by assuming that the presence 
of other particles in the vicinity of a given atom (ion) confines the particle 
to a sphere of order of the ion sphere radius, a, or that it interacts with the 
plasma through a short-ranged screened potential, e.g., the Debye-Hiickel 
potential. The resulting free energy is finite but discontinuous at plasma 
conditions such that a bound state is just entering the continuum. This 
behavior cannot be present in physically consistent models. 

Mihalas, Hummer, and Dappen (Hummer and Mihalas 1988; Mihalas, 
Dappen and Hummer 1988; Dappen, Anderson, and Mihalas 1987) have 
presented an occupation probability formalism that is physically 
consistent and produces continuous free energies. It is commonly referred 
to as the MHD equation of state. Based on experimental measurements of 
level shifts (Goldsmith, Griem and Cohen 1984), they assume that the 
bound states of atoms and ions are unshifted by the plasma environment. 
They note that, if a configurational free energy, f(V,T,{ni}), that depends 
explicitly on the occupation numbers of the individual states is added to 
the ideal free energy terms, then the ratio of the occupation of a state i of a 
given ion to the total occupation is given by 

n( I n = exp[-)3(£i + df I drift IZ* (4) 

where 

Zta = I , exp[-0(£,. + df I drift (5) 

plays the role of the partition function, 

ml=exfi-pdf/dni\t (6) 
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is the occupation probability, nj is the occupation number for state i and n 
is the total occupation for a given species. The occupation probability is a 
measure of the number of bound states of type i that are available to be 
occupied. The quantity l-coj is, thus, a measure of the fraction of total 
states that have been severely affected by plasma perturbations and no 
longer act like localized states. In order to make progress it is necessary to 
have either a good estimate for f or a good estimate for a>i, whichever is 
easier. The MHD approach mixes the two possibilities. In the case of 
neutral particle interactions they use the free energy of a parameterized 
hard sphere gas to determine the occupation probability. For ion-ion 
interactions they use the electric microfield (Stark-ionization theory) to 
determine the occupation probability. For ion-neutral interactions they 
propose using a product of the two forms. The method is thus 
phenomenological, but uses experimental data to fit free parameters in the 
occupation probability function. The MHD method has been used in 
numerous stellar modeling sensitivity studies (Christensen-Dalsgaard and 
Dappen 1993; Dziembowski, Pamyatnykh, and Sienkiewicz 1992). A 
method closely related to the MHD approach has also been developed by 
Sevastyanenko (1985). 

2.3 Consistent Treatment of Bound and Scattering States 

The source of the discontinuity in free energy minimization methods is 
easily shown to be the result of an inconsistent treatment of bound and 
scattering states. The second virial coefficient is the leading term in the 
density expansion of the free energy. The quantum mechanical second 
virial coefficient can be expressed in the form (Uhlenbeck and Beth 1936; 
Beth and Uhlenbeck 1939) 

B,=B?+B? (7) 

where 

tf = -JlXlz.^ z.M = £(2* + \y+* (8) 
nl 

and 

** =-—Xj2(2* + l )J>^le- '" 2 ^ (9) 
n VTT Jo dp 
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In equations (7, 9) i and j are the particle types, X̂  = (h2 / 2HykT)m, n 
and I, are quantum numbers, the En/ are bound state energies, 5/ is the 
phase shift, p is the relative momentum, and |iy is the reduced mass. The 
connection between bound and scattering states can readily be established 
by integrating equation (9) by parts and using the fact that the phase shift 
at zero energy is just mc (Levinson 1949). Adding the zero energy term to 
equation 8 (Rogers, Graboske, and DeWitt 1971) gives 

flj* =-V2Xj£(2* + lXe-/K- -1) (10) 
ml 

If now each exponential (Boltzmann) factor is expanded in powers of 
PEni it is apparent that the first term in the expansion just removes the 
negative term in equation (10). In other words, an analytical term having 
the form of the most divergent term in Zint is not actually present in By; at 
least at temperatures where the Boltzmann factors are near unity. The sum 
over the PEn/ terms in the expansion of B^s is also divergent, but with a 
second integration by parts of equation (9) it too can be shown to be 
analytically missing from the total By at high temperature (Rogers 1979; 
1977; Bolle 1989; 1987; Pisano and McKellar 1989). There are 
divergences in By, but they are all in the final form for B^s after the two 
integrations by parts. These two integrations by parts have effectively 
redefined the continuum such that it begins at -kT, rather than die usual 
zero of energy. The effective internal partition function is thus, 

Zl =X(2^ + D(e"/K- -1 + PEJ (11) 
«/ 

It is worthwhile noting that the value of By has not changed in this series 
of manipulations, rather it has been shown that the analytic properties of 
the complete set of states dictates a specific separation of By into effective 
bound and scattering state parts. This separation will play an important 
role in the many-body statistical mechanical methods to be described in 
the next section. 

2.4 Classical Density Expansion for Plasmas 

The natural way to treat reacting, multicomponent plasmas is in the 
grand canonical ensemble (Hill 1956). In this approach one views the 
system in terms of its fundamental constituents, so that bound complexes 
arise naturally from the theory. As a result, this approach is commonly 
referred to as the physical picture method. The standard procedure is to 
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expand the pressure in terms of two body, three body clusters, etc., i.e„ a 
cluster expansion. The same is true for plasmas, but the long range of the 
Coulomb potential introduces substantial complications. In addition, the 
quantum nature of electrons introduces degeneracy and exchange 
corrections. The attractive electron-ion interaction leads to short distance 
divergences in classical cluster coefficients, so that the use of quantum 
mechanical methods is essential. Graphical resummation procedures are 
required to remove the long-range divergences occurring in all cluster 
coefficients of plasmas. The divergences in B§J, mentioned in the 
previous section, are only the simplest examples. A detailed description of 
the procedure is given elsewhere (Dashen, Ma, and Bernstein 1969; 
Kraeft, Kremp, Ebeling and Ropke 1986; Rogers 1981). For illustrative 
purposes it is much easier to consider the related procedure in the 
canonical ensemble, i.e., an expansion of the free energy in the density. 
For simplicity we also focus on classical procedures where possible. 

In early graphical analysis of the classical one-component plasma, ie., 
heavy ions emmersed in a continuous neutralizing background of 
electrons, Mayer (1950) referred to the non-ideal free energy (aside from a 
factor VkT) as -S, so that, 

(F-F0)/VkT = -S (12) 

where 

S = iS;^7 (13) 
7=2 J ~ A 

Bj is the jth virial coefficient. The classical second virial coefficient for 
the one component plasma (OCP) is given by 

B2 = -—jd7x'd72(e-fiulra) -1) = -2n\~(e-p«r) -l)r2dr (14) 

where r12 s r = r 2 - n 

The divergence in B2 is easily seen by expanding the classical Boltzmann 
factors in powers of |5u. The leading term diverges as r2, the second term 
as r, and the third term logarithmically as r-»oo. The leading divergence 
posses no problem, since it is canceled by an opposing term provided by 
the neutralizing electron background; leaving the (|5u)2 as the leading 
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divergence. In general the lowest order term from each of the virial 
coefficients is given by 

B>=(-iyO-l)!^J...Jdr1...dr>M(r12)M(r23)...u(r; i) (15) 

The sum over the most divergent terms from each of the higher B j ; 

i.e., those that have just one power of the potential turned on between each 
pair of particles, can be represented graphically as shown in Figure 1. 

o*<ra*0 
Fig. 1 Graphic illustration of the classical ring sum for the OCP. Solid circles 
represent ions. A diagram involving n ions comes from Bn. 

Due to their topology, they are known as ring diagrams. The result of the 
summation over ring diagrams is 

S ^ = V = Z P ' * ; = P A / 3 (16) 

where 

A = Z2e2/kTXD (17) 

and 

XD=(kTIAj(Z2e2p)m (18) 

The pressure for a v component plasma, corresponding to 
multicomponent generalization of equation (12), is 

JV*r = 2 p v + s - $ > v ^ - (19) 
v v dPv 
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Using equation (16) this gives in the Debye-Hiickel approximation for the 
OCP 

P/kT = p(X-^) 
o 

(20) 

The Debye-Hiickel correction is just the leading term in an infinite 
expansion analogous to the virial expansion for an ordinary gas. However 
due to the Coulomb modifications it involves p3# rather than p2 (see 
equation 16). The next higher term in the expansion is obtained by 
summing over the next most divergent diagrams, the three rung ladder 
diagrams; so named by their ladder-like quantum mechanical form. Figure 
2 shows (in the classical limit) how one rung of the three rung ladder 
diagram is screened by summing over chains, of ever increasing length, 
that have one power of the potential, Pu, turned on between each pair of 
ions. Similar summations produce screening in the remaining two rungs 
of the diagram (often called watermelon diagrams in classical mechanics). 

ooci 
Fig. 2 Graphical illustration of the classical ladder sum for the OCP that 
screens the right hand rung of the three rung ladder diagram. Solid circles 
represent ions. 

Continuing in this way provides an expansion for S, known as the Abe 
nodal (cluster) expansion (Abe 1959), that is valid at all values of the 
coupling. The result for the general case of a multi-component plasma is 

y y* 

&... = SDH = 1 / \2nXDH r-t 

AX)=(*774/B?2I,.Z2p,.) 1/2 

(21) 

(22) 

(23) 
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S^=S2=Apy (24) -B,(T,XD)-2n\drr2(qii-f) 

3 

-j|J^v^<7,><?>t^] (25) 
where 

ZaZbe-rlK° 
1^-^ry (26) 

is the Debye-Huckel screened potential, A.D is the multi-component Debye 
length, and 

/ * = « - ' * - l (27) 

is the Mayer function. 
Figure 3 shows the convergence of the Abe cluster expansion to 

Monte-Carlo simulations (Slattery, Doolen, and DeWitt 1982) of the one 
component plasma. The Debye-Huckel pressure term (corresponding to 
SDH) is seen to have a very small range of validity. Significant 
discrepancies appear for A > 0.2. The S2 correction, analogous to the 
second virial coefficient for the Debye-Huckel potential, is somewhat of 
an improvement The important point is that the Abe series offers a 
systematic way of calculating the EOS of the OCP. It was shown in 
Rogers (1981) that, if large numbers of Abe nodal terms are included, this 
convergence persists to large values of the coupling parameter, r=Z2e2/a. 
This shows that, contrary to some claims in the literature, that, when 
properly implemented, the Debye-Hiickel potential is a valid plasma 
potential. Similar studies have been done for multicomponent mixtures of 
heavy ions (TCP) in a neutralizing background. Our interest here is 
limited mainly to weak to moderately coupled plasmas, but this example 
shows that the Abe procedure could be applied to plasmas occurring in 
white dwarf stars. Related examples of the convergence of the activity 
expansion method (see Section 7) to the OCP are given in Rogers and 
DeWitt (1973). They found that the convergence is somewhat faster in the 
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activity expansion. Similar results have also been reported for electrolytic 
solutions (Wood, Lilley, and Thompson 1978). 

Since electrons in real plasmas are always quantum mechanical, direct 
use of classical methods is not possible. Nevertheless, the main 
complications in real plasmas have to do with the highly classical long 
range correlations. The divergences associated with short range quantum 
interactions are easily handled by replacing the classical virial coefficients 
occurring in the Sj with their quantum-mechanical equivalents (Rogers 
1991; 1986; 1981; 1974; Rogers andDeWitt 1973). Quantum mechanical 
calculations for real reacting plasmas follow similar steps and the 
convergence should be similar to the example in Figure 3. In the current 
implementation the ion-ion correlations are included in all orders, but the 
electron-electron and electron-ion correlations are included only through 
5/2 order in the density (activity). Approximate methods for including 
electron-electron and electron-ion terms when even the electron-ion 
coupling is strong are given in Rogers 1979. 

0 4 8 12 16 
A 

Fig. 3 Comparison of the Abe nodal expansion with Monte Carlo simulations 
of the OCP by Slattery, Doolen, and Dewitt (1982). Labels indicate the free 
energy terms used to calculate the pressure. 

Elaborating on the remarks of the previous paragraph, we note that for 
a real plasma, involving electrons and ions, the diagrammatic sum that 
gives the Debye-Hiickel correction equivalent to equation 16, involves 
additional terms corresponding to electron-electron and electron-ion 
interactions. 
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o o o 
A « < 

electron-electron electron-proton proton-proton 

Fig. 4 Leading classical ring diagrams for an electron-proton plasma. Open 
circles represent electrons; closed circles represent protons. 

The fact that electrons are now being treated as real particles, rather than a 
neutralizing fluid, introduces explicit diagrams in which electrons interact 
with electrons and diagrams in which electrons interact with ions. Due to 
the Coulomb repulsion the electron-electron terms are not divergent at 
small distances. However, quantum diffraction effects modify the result 
and can be treated by semi-classical methods. The classical electron-ion 
terms are divergent at small distances and can only be treated quantum 
mechanically; the large distance divergence is of course still classical. 
When Yij is « 1, the ring sum free energy is 

*-«k (28) 

where 

X»»=i-A a," J"2 (29) 

Equations (28, 29) are exactly the same as given by the classical theory 
(see equations (22-23)). This supports the earlier statement that the 
Coulomb correlations are largely classical. In general however, due to the 
quantum modifications at small distances, SDH is appreciably reduced 
when Yjj = X̂  / XD > 0.5 . For Boltzmann statistics the quantum corrected 
Debye-Hiickel term can be written in the form 

$DH — SDHJ\ YwYti) (30) 
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where f(0,0)=l. There are also some additional corrections due to 
exchange effects. The ion-ion diffraction parameter, "ft, does not appear in 
equation (30), since 7i i«l due to the mass of the ion. 

Figure 5 displays the variation of f with yee for the simple case of a 
non-degenerate electron gas for the "exact" calculations of Graboske and 
DeWitt (1974) and the approximate effective potential results of Rogers 
(1979). 

T 1 — m 1 1 — m — i 1 i i 

100 

Fig. 5 Diffraction corrections to the electron-electron ring sum. 

2.5 EOS of a Hydrogen Plasma 

We have chosen the simple example of ionization equilibrium in a 
nondegenerate hydrogen plasma to compare the free energy obtained from 
a many body quantum statistical approach with a commonly used free 
energy minimization model, i.e., 

e+p^tH 

The typical free energy minimization method would have 

F/kT = -NJn(-^\-Npen ' ^ 

lM 
•NH£n 

pj 
^ \-VS'DH (31) 

where the first three terms on the right correspond to the translational free 
energies for electrons, protons, and hydrogen atoms, respectively, Zmt is 
the sum over states (internal partition function), and SDHis given by 
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equation (28). As described in Section 2, some model must be introduced 
to make the sum in Zjnt finite. In practice this can be one of a number of 
possibilities such as the use of the energy levels of the Debye potential. 
Since Zjnt changes discontinuously at conditions where a state moves into 
the continuum and is no longer counted, equation (31) is not physically 
consistent. 

The free energy that results from the many body diagrammatic 
approach is (Rogers 1991; 1989; 1986) 

F/kT = -Nln -N. 
PA) 

-NHln 
e8H 7Pt 

-3 ^im 
\PHAH 

VSDH (32) 

where 

Z £ = £ ( 2 / + l)(B-/B--l + i8£(rf) (33) 

which is closely related to Z$,t of equation (11), is the so called Planck-
Larkin partition function. The sum in Zj}Jt ranges over the states in a 
screened potential which approaches the Debye-Huckel potential at very 
low density. As described in Rogers (1986; 1981) the energy levels 
appearing in 3m are unscreened except for high lying states near the 
plasma continuum. The states that are screened change with plasma 
conditions. As a result Zg}t is both finite and a continuous function of 
temperature and density; although the density dependence is very slight 
for normal stellar conditions. The MHD EOS displays a similar property 
through the use of the occupation probability formalism. 

Figure 6 is an attempt to explain the result in equation (32). It shows 
(schematically) the contribution to the partition function for hydrogen as a 
function of principal quantum number at temperatures of 1-2 eV. Due to 
the large value of the Boltzmann factor at these temperatures, the ground 
state contribution is large. Because of the wide energy separation between 
n=l and n=2, the contribution from n=2 has already dropped close to 
unity. For higher states the n2 degeneracy causes the contribution to again 
increase. For the pure Coulomb potential the area under the curve 
becomes infinite and leads to the well known divergence of the atomic 
partition function. The high lying states are classical (closely spaced), 
which means that sums over quantum numbers can be replaced with 
integrals; while the low lying states are quantum mechanical. This 
suggests that the partition function can be separated into two parts; one 
requiring the explicit use of quantum numbers, the other only involving 
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integrals as shown in the figure. The natural way to do this seems to be to 
use the analytic properties (see Section 3). The boundary between the two 
regions is of course fuzzy and not abrupt as actually shown. The 
discussion leading to equation (28) showed that, even though quantum 
mechanics is required to remove the divergence in the electron-ion terms, 
the ring sum is highly classical. This suggests that the electron-ion part of 
the ring summation leading to equation (28) has in some sense included 
the classical parts of Zint. As a result, using the full Z^t in equation (31) is 
incorrect, since it would double count much of the excited state part. 

Fig. 6 Contributions to the hydrogenic bound state partition function. Lower 
shaded region corresponds to the quantum mechanical part; upper shaded 
region to the (approximate) classical part. The total is shown as a smoothed 
curve to emphasize the classical nature of the high n contribution. 

The pressure for a partially ionized hydrogen plasma corresponding to 
equation (32), but also including degeneracy and exchange corrections, 
has the form 

where the In/2 functions are the usual Fermi Functions, oce =\iJkT is the 
degeneracy parameter, 
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P.= 
lit 

3V 
jr2(^j(8„(r)-l)dr (35) 

is the first order electron exchange, and gee is the electron-electron 
distribution function for an ideal Fermi gas, the Debye length corrected for 
electron degeneracy is 

K = 
kT 

-|l/2 

4xe2(ptI_u2(a,) I /1 / 2(a.)+p,)_ 
(36) 

and fp(Yee»Yei) is the diffraction correction to the pressure similar to Figure 
5. There are some additional exchange corrections to equation (34), which 
are not explicitly shown. The first order exchange correction (equation 
(35)) is frequently omitted in astrophysical EOS calculations, but in view 
of the current need for high precision that is no longer acceptable. 

The origin of the exchange term is easily seen from the electron-
electron distribution function for an ideal gas, as shown in Figure 7. 

Fig. 7 Schematic representation of the ideal Fermi gas electron-electron 
distribution function. 

For an ideal Boltzmann gas, gee is everywhere unity, as is gpp ang gep (not 
shown), so that, the first order contribution to the pressure, i.e., the 
average over ZiZje2/r, is exactly zero. However, when the electron 
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distribution is allowed to redistribute itself, due to die Pauli repulsion, gee 
is forced to have the value 1/2 at r=0 and gradually increases to unity as r 
> ao. This produces a small, negative, non-cancellation in the average of 
ZiZje2/r. In other words the quantum statistical effects that produce the 
degeneracy corrections are always partially reduced by the Coulomb 
interactions. The presence of the Coulomb interaction also affects the 
electronic charge distribution, which produces additional corrections to the 
first order average over ZiZje2/r. This leads to what are known as second 
order (or higher) exchange corrections. 

The Fermi function ratios appearing in equation (34) are shown 
schematically in Figure (8) as a function of the degeneracy parameter. 
The ratio of I3/2/I1/2 increases with increasing degeneracy, indicating that 
degeneracy increases the electron contribution to the pressure, while the 
ratio L1/2/11/2 decreases, indicating that highly degenerate electrons do not 
contribute to the screening. 

2.0 

1.0 

•aofog/WaJ 

Jl/2(OeV'-i/2(0^) 

-2 0 
a. 

Fig. 8 Fermi function ratios appearing in equation (34). 

2.6 The Activity Expansion Method 

A many body Quantum statistical procedure for calculating the EOS of 
reacting multi-component plasmas is described in Rogers (1991). A 
somewhat different procedure, specialized to hydrogen plasmas is given in 
Bartsch and Ebeling (1971). These approaches treat the plasma in terms 
of its electrons and nuclei and are thus "physical picture" methods. 
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Composite particles, i.e., ions, atoms, and molecules, arise naturally in the 
physical picture, such that, plasma screening effects on the bound states 
are determined from theory. This is a definite advantage over chemical 
picture methods in current use; all of which introduce models to obtain 
these effects. 

For a discussion of the activity expansion method, as developed for 
multi-component plasmas, the reader is referred to Rogers (1991). The 
main steps in the method can be summarized as follows 

I. Start from the classical multicomponent canonical ensemble. 

n. Carry out the Abe reorganization in powers of p*u (see Section 4) to 
obtain a finite expression for S(T, {p;}, A,D). The reason for this 
step is that the analogous summation in the grand-canonical 
ensemble gives S(T, {z[}, X), i.e., exactly the same analytic 
function except density is replaced by the activity; where 

Z,.=(2s,.+l)^exp*</*7' (37) 

is the activity, i={e, ctj}, Oj is an atomic nucleus of charge Zj, and 
X is a screening length that approaches XD when the Coulomb 
coupling is weak. 

HI. Construct a generating function method for developing the 
corresponding grand canonical ensemble from functional 
derivatives of S(T, {z{}, X). The advantage of this procedure is 
that, as a result of the resummation in step n, S(T, {z{}, X) is 
divergence free and therefore so is the grand canonical expression. 

IV. Recollect terms to introduce screened cluster coefficients; i.e. 
construct the grand canonical ensemble analogs to equations (21-
27). At this point all states are screened by the plasma. 

V. Replace all the classical Boltzmann factors in the classical grand 
canonical ensemble with Tr exp* PH. 

VI. Introduce an augmented set of activity variables to account for the 
formation of ions, atoms, and molecules; i.e., construct composite 
particle activities from products of ze and za. This renormalization 
removes the screening of low lying, bound states that were initially 
present after step IV. 

https://doi.org/10.1017/S0252921100026300 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100026300


34 Rogers: Stellar plasmas 

VII. Reorganize the resulting activity expressions to take advantage of 
the charge asymmetry of high Z ions. Since the ion-ion terms are 
classical, it is possible to include them in all orders. Limitations on 
the range of validity are set by the electron-ion diagrams, which 
require quantum mechanics and are only included to 5/2 order in 
the coupling parameter. 

This procedure will only recover the linear correction in Yij in the 
expansion of f(Yee»Yei)- However, it is possible to introduce additional 
corrections using known results from other sources (Rogers 1981). Since 
the activity expansion approach is based on a systematic method, it is 
possible to determine its range of validity. This is shown in Figure 9 for 
an argon plasma which shows contours of constant A=< 2?>e2/kTA.D- As 
already shown in Figure 3 for the classical OCP, the contour A=0.2 is the 
approximate limit of validity of the Debye-Huckel theory. The current 
version of the code includes all orders of ion-ion interactions, but only 
terms through 5/2 order in the activity for electron-electron and electron-
ion interactions. Consequently, in the shaded region on the right side of 
the figure the errors in the pressure are estimated to exceed 5%. The 
limitation at the low temperature end of this region is due to the inclusion 
of only two particle neutral-neutral and ion-neutral interactions. 

KT5 10T* 10T3 10r2 10"1 1 
Density (g/cm3) 

Fig. 9 Contours of constant A= <Z2>e2fliiTkD for an argon plasma. 
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The short dashed line in the lower right hand part of Figure 9 is the 
approximate location of some recent shock wave EOS measurements by 
Erskine, Rosznyai, and Ross (1994). Figure 10 compares this 
experimental work with the Saha equation and the activity expansion 
method. The coupling parameter, T, is around unity and the temperature is 
2.5 eV at the densest point. The activity expansion method is in good 
agreement with the experiment. Additional experimental work is in 
progress. 

0.20 

0.16 -

to0 ' 1 2 

I 
0.08 

0.04 

i i i I i i i i i FT I i i i I i i i | i i . | 

OPAL-

lonlzation 
_ onset 

0.004 0.008 0.012 
3\ Density (g/cnr) 

0.016 

Fig. 10 Comparison of the activity expansion method (curve labeled OPAL) 
with the shock wave experiments of Erskin, Rosznyai, and Ross (1994). To 
demonstrate the importance of Coulomb interations, the simple Saha equation 
is also shown. 

2.7 Equation of State Comparisons 

The EOS properties frequently needed in stellar modeling are the first 
order thermodynamic quantities and the following second order quantities 
(Cox and Guili 1968) 

XT [denTj, 
JdinP\ 

{d£np)T 
(37) 
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BinP] J^JiinL) (38) 
{d£np)s T 2 - l {dtnTJs r,= 

c^l^X (39) 

Comparisons of the several EOS methods described above have been 
carried out by Dappen (1992). A few selected examples are repeated here. 
Figure 11 compares results for XT. Figure 11a shows that for stellar 
envelope conditions, that there is only a few percent difference between 
the EFF and MHD approaches. Figure 1 lb shows that the differences 
between the MHD and OPAL equations of state are much smaller than 
their differences with EFF. Similar results were found for the other 
second order quantities. The seismic modes are determined only by the 
deviations of Ti from the ideal gas value 5/3. Consequently, differences 
similar to those shown in Figure 11a for XT substantially affect the 
agreement with the p-mode data. The MHD and OPAL equations of state 
are in somewhat better agreement with observational data than is the 
simple EFF model (Christensen-Dalsgaard and Dappen 1993). 

At higher densities, where the Coulomb coupling is outside the range 
of validity of the Debye-Hiickel theory, differences between MHD and 
OPAL become significant. Figure 12 shows a comparison of T\ along an 
isochore having density 0.1 gm/cm3- The region around two million 
degrees corresponds to conditions near the bottom of the solar convection 
zone. Differences in the two EOS methods are fairly small in this 
important solar region. However, substantial differences occur at 
temperatures of a few hundred thousand degrees. These differences could 
effect the modeling of very low mass stars. 

In a recent paper Dziembowski, Pamyatnykh, and Sienkiewicz (1992) 
used helioseismological data to test the MHD equation of state. They 
found evidence that this approach is inadequate for conditions that exist in 
the fractional solar radius range r//?=0.85 to 0.95. We have used the 
activity expansion method (Section 7) to study two points in this region 
(Rogers and Iglesias 1993). One point is located at r/K=0.88, T=744,000 
K and p =0.0348 g/cm^; the other is at r/R=0.90, T=612,000 K and 
p=0.0259 g/cm3. We were able to draw several conclusions (see Figure 1 
of Rogers and Iglesias 1993). 1) The activity expansion result is 
appreciably different than the MHD result for Ti , on the fine sensitivity 

https://doi.org/10.1017/S0252921100026300 Published online by Cambridge University Press

https://doi.org/10.1017/S0252921100026300


Rogers: Stellar plasmas 37 

2.0 

1.8 

1.6 

1.4 

1.2 

1.0 

I I 

— \ 

" I I 

\ \ \ \ 

a) 

I I V 1 " 1 

1 
— 

— 

— 

— 

— 

i -

4.6 4.8 5.0 
log T (Kelvin) 

Fig. 11 Comparison of ftp on an isochore with p=10"*A Part a compares the 
EFF and MHD equations of state; solid line EFF and the dashed line MHD. 
The mixture is 90% H and 10% He by number abundance. OPAL is 
indistinquishable from MHD on this scale. Part b compares the MHD and 
OPAL equations of state by looking at the relative differences with EFF: i. e., 
(Xrropal .XjEFFyXpEFF ( s o l i d l i n e ) and (faMHD _xTEFF)/xTEFF (dashed 

line). [From Dappen (1992) with permission]. 
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Fig. 12 Ti for p=0.1 g/cm3 for the mixture of Fig. 11; solid line CEFF; 
dashed line MHD: dotted line OPAL equation of state. [From Dappen (1992) 
with permission ] 

scale of the experimental data; 2) the Coulomb corrections are important; 
3) the metallicity has a surprisingly large effect on I*i; and 4) the 
composition of Z is important. For example, we found that if we assume 
Z is composed entirely of Si, that a close match of the inversion data is 
obtained with just solar metallicity (0.0193). 

2.8 OPAL Equation of State Tables 

The inability to resolve a number of long standing discrepancies 
between theory and observation through improved modeling led to the 
speculation that the widely used Los Alamos opacities were missing 
important sources of opacity in the lO -̂lO** K temperature range (Simon 
1982). Due to this speculation and the need for the opacity of low Z 
materials to model laser produced plasmas, the OPAL opacity effort was 
undertaken (Iglesias, Rogers, and Wilson 1987; Rogers and Iglesias 1992; 
Iglesias and Rogers 1993). While it was necessary to calculate the 
occupation numbers as part of this effort, the much greater accuracy and 
table density required to calculate derivatives of the equation of state, 

I - -
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made it necessary to defer these calculations. The success of the OPAL 
opacities in helping to improve theoretical models (Guenther 1992) has 
made it essential to also provide EOS data that is consistent with the 
opacity tables. We now have available EOS tables for the following 
conditions: 

Grevesse 1991 mixture (Rogers and Iglesias 1992) 
0.005> T6< 100 
10-14> p < 107 g/cm3 
X=0,0.2,0.4,0.6, and 0.8 
Z=0,0.02, and 0.04 
Y=l-X-Z 

Data has been tabulated for the quantities discussed in Section 8. 
Figure 13 shows Ti-5/3 vs. T6 at several values of log R for a 

simple mixture of H and He. Figure 13a shows results for the full range of 
the tables; while Figure 13b is limited to the high temperature range above 
100,000 K. The large negative deviations from 5/3 at low temperature in 
Figure 13a is due to placing energy into the formation of ions and atoms. 
In the few hundred thousand degree range the negative deviation due to 
bound complexes is competing with the positive deviations caused by 
Coulomb interactions. The positive Coulomb deviations start to dominate 
with increasing values of log R. 

0.20 

0.00 

• -0.20 

-0.40 

-0.60 
0.0 0.1 1.0 10.0 

Fig. 13 (a) Ti-5/3 vs. T6 for hydrogen mass content X=0.4 and helium mass 
content Y=0.6. Dotted line log R=-5: solid line log R=-3; dot-dash log R=-l; 
dashed line log R=0. 
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Fig. 13 (b) Same as (a) except for reduced temperature range. 

Figure 13c is similar to Figure 13b, but for the Grevesse 1991 mixture. 
The small amount of high Z admixture has a noticeable effect on the 
results. It is apparent that the modeling results will be sensitive to 
uncertanties in the abundances of heavy elements, e.g. neon in the million 
degree range. 
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Fig. 13 (c) Same as (b) with X=0.4, Y=0.58 and Z=0.02. 
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