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Malte THOMA,1,2 Klaus GROSFELD,2 Christoph MAYER,1 Frank PATTYN3

1Commission for Glaciology, Bavarian Academy of Sciences, Munich, Germany
2Alfred Wegener Institute for Polar and Marine Research, Bremerhaven, Germany

E-mail: malte.thoma@awi.de
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ABSTRACT. Several hundred subglacial lakes have been identified beneath Antarctica so far. Their
interaction with the overlying ice sheet and their influence on ice dynamics are still subjects of
investigation. While it is known that lakes reduce the ice-sheet friction towards a free-slip basal boundary
condition, little is known about how basal melting and freezing at the lake/ice interface modifies the ice
dynamics, thermal regime and ice rheology. In this diagnostic study we simulate the Vostok Subglacial
Lake area with a coupled full Stokes 3-D ice-flow model and a 3-D lake-circulation model. The exchange
of energy (heat) and mass at the lake/ice interface increases (decreases) the temperature in the ice
column above the lake by up to 10% in freezing (melting) areas, resulting in a significant modification
of the highly nonlinear ice viscosity. We show that basal lubrication at the bottom of the ice sheet
has a significant impact not only on the ice flow above the lake itself, but also on the vicinity and far
field. While the ice flow crosses Vostok Subglacial Lake, flow divergence is observed and modelled. The
heterogeneous basal-mass-balance pattern at the lake/ice interface intensifies this divergence. Instead
of interactive coupling between the ice-flow model and the lake-flow model, only a single iteration is
required for a realistic representation of the ice/water interaction. In addition, our study indicates that
simplified parameterizations of the surface temperature boundary condition might lead to a velocity
error of 20% for the area of investigation.

INTRODUCTION
Subglacial lakes are common and widespread beneath the
Antarctic ice sheet. More than 370 of these lakes have
been identified so far (Wright and Siegert, 2011), but just
72 exceed an area of 10 km2. The largest one, Vostok
Subglacial Lake (official name according to the US Board
on Geographic Names; Antarctica ID: 18528), located in
East Antarctica (Fig. 1a), measures 16 000km2 (Studinger and
others, 2004; Filina and others, 2008). Subglacial lakes are
identified from satellite images by their surface, which is flat
compared to the surrounding ice sheet. These lakes have
been isolated from direct exchange with the atmosphere by
several kilometers of ice for millions of years and hence
provide a unique environment for potential life forms.
Drilling at Vostok station revealed that not only does

melting take place at the ice base, but also water refreezes
at the lake/ice interface (Jouzel and others, 1999; Siegert
and others, 2001). At Vostok station a 210m thick layer of
accreted lake/ice was discovered between the meteoric ice
and the lake’s surface. Tikku and others (2004) were able to
estimate the distribution of accreted ice by ice-penetrating
radar feature tracking. However, until drilling into subglacial
lakes (as suggested byWoodward and others, 2010) provides
in situ information, numerical models are needed to quantify
processes at the lake/ice interface (Williams, 2001; Mayer
and others, 2003; Thoma and others, 2007, 2008a, 2009,
2010a; Woodward and others, 2010). According to Bell and
others (2007), the storage capacity of subglacial lakes should
be considered in ice-sheet mass-balance assessments. The
role of these lakes for the subglacial hydrology is still not
clear, but there are indications of an active hydrological
system underneath the ice sheet, which affects the general ice

dynamics (Wingham and others, 2006; Fricker and others,
2007; Bell and others, 2011) and might trigger the onset
of fast-flowing ice streams by basal lubrication (Bell and
others, 2007; Kohler, 2007; Stearns and others, 2008). The
ice flow depends on the temperature-dependent viscosity
of the ice body. The viscosity is modified by basal melting
and freezing, which induce vertical velocities at the ice
base on the order of centimeters per year. A coupled
modelling approach with an idealized setting has been
applied recently in order to investigate the interaction of
subglacial lakes with the overlying ice sheet (Thoma and
others, 2010b).
In this study we take a further step and investigate the

impact of different forcings, such as surface temperature,
basal mass exchange and basal friction, on the ice flow in
the area of Vostok Subglacial Lake.

BOUNDARY CONDITIONS AND MODEL SET-UP
In order to investigate the area around Vostok Subglacial Lake
in a numerical model study, surface elevation and bedrock
for the entire model domain were taken from the BEDMAP
dataset (Lythe and others, 2001). To acquire a more realistic
representation of the Vostok Subglacial Lake domain, we
merged the most up-to-date regional bedrock geometry
model by Filina and others (2008) into the continental
BEDMAP model (Figs 1b and 2a and b).
The surface accumulation rate is given by Arthern

and others (2006). The initial temperature distribution
within the ice is calculated according to Robin (1955),
based on a spatially varying surface temperature and the
basal pressure-dependent freezing point of the ice-sheet
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an average temperature of T ≈ −30◦C and a deviation
of ΔT ≈ 2◦C. Hence the ice flow in warmer areas is
slightly more decoupled from the surrounding flow field,
and the local surface gradient gains more relevance for the
flow direction. However, ice-sheet models, which neglect
basal processes, misinterpret the impact of basal temperature
because basal melting cools the ice while basal freezing
leads to higher ice temperatures. We strongly recommend
improving the treatment of subglacial hydrology in further
model investigations. A prognostic version of the presented
model might indicate that only the consideration of the
complex basal-mass-balance pattern at the lake/ice interface
is able to maintain the observed southward surface slope
across Vostok Subglacial Lake, which would otherwise level
(Pattyn and others, 2004). Interaction of ice sheets with
subglacial water systems is not limited to subglacial lakes;
in the transition zone between ice sheets and ice shelves
(the grounding line), this interaction also plays a crucial role
(e.g. Vieli and Payne, 2005; Schoof, 2007; Docquier and
others, 2011; Favier and others, 2011). In future work we will
expand our model to address these effects at the grounding
line and over ice shelves and ice rises.
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