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Within the context of machine learning-based closure mappings for Reynolds-averaged
Navier Stokes turbulence modelling, physical realisability is often enforced using
ad hoc postprocessing of the predicted anisotropy tensor. In this study, we address the
realisability issue via a new physics-based loss function that penalises non-realisable
results during training, thereby embedding a preference for realisable predictions into the
model. Additionally, we propose a new framework for data-driven turbulence modelling
which retains the stability and conditioning of optimal eddy viscosity-based approaches
while embedding equivariance. Several modifications to the tensor basis neural network
to enhance training and testing stability are proposed. We demonstrate the conditioning,
stability and generalisation of the new framework and model architecture on three
flows: flow over a flat plate, flow over periodic hills and flow through a square duct.
The realisability-informed loss function is demonstrated to significantly increase the
number of realisable predictions made by the model when generalising to a new flow
configuration. Altogether, the proposed framework enables the training of stable and
equivariant anisotropy mappings, with more physically realisable predictions on new
data. We make our code available for use and modification by others. Moreover, as part
of this study, we explore the applicability of Kolmogorov—Arnold networks to turbulence
modelling, assessing its potential to address nonlinear mappings in the anisotropy tensor
predictions and demonstrating promising results for the flat plate case.
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It is prohibitively expensive to resolve all relevant scales of turbulence for industrially
relevant flows. Even with increasing computational capacity, Kolmogorov microscale-
resolving techniques such as direct numerical simulation (DNS) will be out of reach for
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decades (Slotnick et al. 2014). In order to enable the practical simulation of turbulent
flows, a variety of techniques are currently in use, such as Reynolds-averaged Navier
Stokes (RANS), detached eddy simulation (DES) and large eddy simulation (LES). Each
technique comes with its own advantages. The user’s available computational resources
are the primary consideration. The RANS technique, which models turbulence as a single-
scale phenomenon, remains the most popular industrial technique due to the computational
costs of scale-resolving simulations (Witherden & Jameson 2017).

In recent years, a new menu item for industrial turbulence modelling is emerging.
Machine learning has been used to augment RANS, DES, LES and DNS, with various
objectives, such as accelerating simulation times (Kochkov et al. 2021), inferring optimal
coefficient fields (Singh, Duraisamy & Zhang 2017), model calibration (Matai & Durbin
2019) and turbulence model augmentation (Duraisamy, laccarino & Xiao 2019; Brunton,
Noack & Koumoutsakos 2020). For LES, emerging research on training in situ and within
a differentiable solver offers the prospect of a generalisable subgrid model (List, Chen &
Thuerey 2022; Sirignano & MacArt 2023). It is clear that for LES, allowing the model
to interact with a solver for an unsteady flow vastly improves the generalisability of
the learned closure relationship (List et al. 2022). Within the context of steady-state
RANS simulations, a promising new menu item is the ability to train a specialised
turbulence model with a given industrial dataset. Significant attention has been given
to the development of machine learning-augmented closure models. Specifically, flow-
specific sensitisation of the stable but often inaccurate linear eddy viscosity relationship
via machine learning is an area of major interest. In their seminal work, Ling, Kurzawski &
Templeton (2016) proposed a neural network architecture based on a tensor basis expansion
of the anisotropy tensor, referred to as a tensor basis neural network (TBNN). This
architecture was extended to random forests by Kaandorp (2018) and Kaandorp & Dwight
(2020). The TBNN architecture has been used in several studies, such as by Song et al.
(2019) and Zhang et al. (2019). Further modifications to the TBNN framework within
the context of simple channel flows have been proposed by Cai er al. (2022, 2024).
Specifically, Cai et al. studied issues related to non-unique mappings between the closure
term and input features for plane channel flow, an issue reported by Liu et al. (2021). This
issue primarily occurs when a small input feature set is used, such as the 5 invariants
(several of which are zero for two-dimensional flows) used in Ling et al.’s original TBNN
(Ling et al. 2016). Several strategies have been proposed to address the issue of a non-
unique mapping, including incorporation of additional input features by Wu, Xiao &
Paterson (2018), and ensembling through a divide and conquer approach by Man et al.
(2023). In the present investigation, we address the issue related to non-uniqueness of the
mapping via use of a rich input feature set. In an effort to make these mappings more
transparent, Mandler & Weigand (2023) analysed predictions made via an anisotropy
mapping using input feature importance metrics such as Shapley additive explanation
values. Interpretability analysis sheds light on which RANS features contain more
information about different flow physics, which helps guide future input feature selection
(Mandler & Weigand 2023). The TBNN-type models are not the only architecture in
use — others include the eigenvalue reconstruction technique proposed by Wu et al. (2018,
2019a), and the Reynolds force vector approach proposed by Cruz et al. (2019), and further
investigated by Brener et al. (2022) and Amarloo, Forooghi & Abkar (2022).

Here, we consider the specific problem of training data-driven anisotropy mappings
between RANS and a higher fidelity closure term from LES or DNS. Several open
questions remain in the area of machine learning anisotropy mappings for RANS, with
perhaps the most popular question being whether a ‘universal turbulence model’ could be
produced via machine learning (Duraisamy 2021; Spalart 2023). However, when it comes
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to generalisability of these mappings, the no-free-lunch theorem is at play as demonstrated
in McConkey et al. (2022b). Accurate sensitisation of the anisotropy mapping for a given
flow comes at the cost of generalisation to completely new flows. Nevertheless, numerous
studies show that the sensitised mapping generalises well within the same flow type
(Wu et al. 2018; Kaandorp & Dwight 2020; McConkey et al. 2022b; Man et al. 2023).
While this lack of new flow generalisability means that a machine learning-augmented
turbulence model is off the menu for some applications, it remains on the menu for
many industrial applications. For example, an industrial user with LES data can leverage
these techniques to develop an augmented RANS turbulence model sensitised to a flow of
interest. Our opinion is that this lack of generalisability is due to a lack of sufficient data.
Despite numerous datasets for this purpose being available, we believe the entire space
of possible mappings between RANS input features and higher fidelity closure terms is
still sparsely covered by available data. For the foreseeable future, these mappings will
therefore be limited to flow-specific sensitisation.

While the generalisability question is perhaps the most popular one, several other key
issues remain in training anisotropy mappings for RANS. How can predicted quantities
be injected in a stable and well-conditioned manner? How can eddy viscosity-based
approaches be united with TBNN-type approaches? How can we incorporate alternatives
to the traditional fully connected layers in a TBNN? In this investigation, we address
several of these remaining questions. We formulate an injection framework which
unites TBNN-type model architectures with the more stable optimal eddy viscosity-
based techniques. This unification enables stable use of the equivariance-enforcing
TBNN within the momentum equation, without the use of stabilising blending factors
(Kaandorp & Dwight 2020). The proposed framework also has the advantage of
producing a well-conditioned solution without the use of an optimal eddy viscosity, an
often-unstable quantity that is difficult to predict via a machine learning model. We also
target the problem of producing realisable predictions via a TBNN-type architecture
via a physics-based loss function penalty (viz., incorporation of a learning bias in the
framework). To further improve the flexibility and representational capacity of TBNN-
type models, we investigate the inclusion of a Kolmogorov—Arnold network (KAN) (Liu
et al. 2024) into the framework to replace the multi-layer perception in the TBNN. We also
further investigate the invariant input feature sets commonly used for TBNN architectures,
and provide new insights as to which input features are appropriate for use in flows with
certain zero gradient directions. We demonstrate good generalisation performance of the
‘realisability-informed” TBNN. We also demonstrate that the realisability-informed loss
function greatly reduces non-realisable predictions when generalising.

The present work unites TBNN-type frameworks (for example Ling et al. 2016;
Kaandorp 2018; Kaandorp & Dwight 2020; and Man et al. 2023) with optimal eddy
viscosity frameworks (e.g. Wu et al. 2018; Brener et al. 2021; and McConkey et al. 2022a).
The advantage here is maintaining a stable injection environment (Wu et al. 2019b; Brener
et al. 2021), while also retaining the simplicity, elegance and implicit equivariance of the
TBNN architecture. Additionally, the present work is the first to implement a way to inform
the TBNN of physical realisability during the training process. Whereas most existing
techniques to enforce realisability of the neural network involve an ad-hoc post-processing
step, our technique leverages physical realisability as an additional training target, thereby
embedding an additional physics-based (learning) bias into the model. This idea extends
the learning bias proposed by Riccius, Agrawal & Koutsourelakis (2023). Lastly, despite
widespread use of minimal integrity basis input features for two-dimensional flows, and
flows through a square duct, the present investigation is the first to systematically examine
these input features for flow through a square duct. This examination leads to several
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unsuitable input features being identified, and a codebase for investigating other flows
of interest.

This manuscript is organised as follows. Section 1 describes the novel techniques in
detail, including the injection framework ((1.1)—(1.2)), realisability-informed loss function
(1.3) and improved TBNN architecture (1.4). Details on the datasets, input features,
hyperparameters, implementation and code availability are given in § 1.5. Two primary
results are presented in § 2: generalisation tests of the realisability-informed TBNN (2.1),
and an examination of how realisability-informed training produces more realisable
predictions when generalising (2.2). Conclusions and future work are discussed in § 3.

1. Methodology
1.1. Injecting Reynolds stress tensor decompositions used in data-driven closure
modelling frameworks

The steady-state, RANS momentum equations for an incompressible, Newtonian fluid are
given by (Reynolds 1895)

aU; 19P U, Aty
i—L=———— 4 -, (1.1)
3xl’ P 3)Cj axiax,- axi

where U; is the mean velocity, P is the mean pressure, o is the fluid density, v is the
kinematic viscosity and t;; is the Reynolds stress tensor.
The continuity equation also applies to this flow

awv;
0x; o

0. (12)

Together, (1.1) and (1.2) are unclosed. In the most general case, there are four equations
(continuity + 3 momentum), and 10 unknowns: P, 3 components of U; and 6 components
of 7;;. The goal of turbulence closure modelling is to express t;; in terms of P and U;.

The Reynolds stress tensor can be decomposed into isotropic (hydrostatic) and
anisotropic (deviatoric) components

2
Tij = gkélj + ajj, (L.3)
where k = (1/2) 1y is half the trace of the Reynolds stress tensor, and a;; is the anisotropy

tensor. The isotropic component ((2/3)ké;;) in (1.3) can be absorbed into the pressure
gradient term in (1.1) to form a modified pressure

g2 L L0 (2 ) U b (1.4)
—t = ——— = v - —. :
' 8xl’ 1Y 3x]' p 3x,’3xi 3)61'

Equation (1.4) is the form of the RANS momentum equation commonly used in RANS
turbulence closure modelling. Several data-driven closure modelling frameworks are based
on modelling the Reynolds stress tensor itself, or it’s divergence (as in Brener et al.
(2022)), which imply the use of (1.1). In our work, we model the Reynolds stress anisotropy
tensor a;;, implying the use of (1.4). In either case, the term ‘injection’ refers to using a
model prediction as the closure term in the momentum equation and numerically solving
the momentum equation with this predicted closure term.
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In an eddy viscosity hypothesis, the anisotropy tensor a;; is postulated to be a function
of the mean strain rate S; and rotation rate R;; tensors

ajj = aij(Sjj, Rij), (1.5)
1 (oU; | 3y

S = —), 1.6

v (ax, + 8x,-> (1.6)
1 (8U; 3V

Ri==(—--2). (1.7)
2\ 0x;  0x;

The eddy viscosity hypothesis implies the following important constraints:

(1) The anisotropy tensor can be predicted locally and instantaneously. In (1.5), there is
no temporal dependence.
(i) The anisotropic turbulent stresses are caused entirely by mean velocity gradients.

There are many examples of turbulent flows where these assumptions are violated
(Pope 2000). For example, history effects occur in boundary layers (Bobke et al. 2017).
Nevertheless these approximations remain widely used in eddy viscosity modelling. The
most common eddy viscosity hypothesis is the linear eddy viscosity hypothesis

aj = —2v; S, (1.8)

where v; is the eddy viscosity, a scalar. This linear hypothesis draws direct analogy from
the stress—strain rate relation for a Newtonian fluid. Along with the important constraints
implied by invoking an eddy viscosity hypothesis, the linear eddy viscosity hypothesis
implies the following:

(1) The anisotropy tensor is aligned with the mean strain rate tensor.
(i) The mapping between mean strain rate and anisotropic stress is isotropic, in that it
can be represented using a single scalar (v;).

More general nonlinear eddy viscosity hypotheses have been used in several models.
The primary advantage of these models is that they permit a misalignment of the principal
axes of a;; and S;;, which occurs for even simple flows. Applying Cayley—Hamilton theorem
(Hamilton 1853; Cayley 1858) to (1.5), Pope (1975) derived the most general expression
for a nonlinear eddy viscosity model

a,,_ZngnT("), (1.9)
n=1
where n =1, 2, ... 10 indexes the scalar coefficients g,, and the following basis tensors:
7 =3, T = Rix RisSii + Six Ria Ri; — 28 Rim Ryuic S5
if ijs i = ik kIO ik Nkl N]j 3Okl Nim Nmk9ij»
A 2 A 7 A A~ A A A A A A
T,-; ) = lkRkj - leSk,, T-; )= Rik Ski Rim Rmj — Rik Rict Sim Rnj »

A

(3

T,-; ) SikSkj - -SkISZk&;, T( ) SszlelmSm] - SszszlmSm],

A 4 9 A A ~ A A

TJ( =R; kRk,—-RklleSy, T,-; )=RikRkISImSmj—I-SikSszszmj—gSszszmoRok&j,

5 S(10) _p & & B B B B & & B
T,-; )=RikSlelj_SikSkllea T,-; ):RikSlelmRmoRoj_RikRlelmSmoRoj- (1.10)
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The tensors S; and R;; above are the non-dimensionalised strain rate and rotation rate
tensors. In Pope’s original work, these tensors are given by

k

8= gS,,-, (1.11)
.k
Rij= Ry (1.12)

However, other normalisation constants are possible, and in several nonlinear eddy
viscosity models, different basis tensors use different normalisation constants. To our
knowledge, varying the basis tensor normalisation has not been explored in data-driven
turbulence closure modelling.

With Pope’s general expression for the anisotropy tensor, (1.4) becomes

aU; 19 2 92U;
U—L=—— " [P+ Zpk J 2k 7). 113
0x; P ox; ( —|—3,0 )+v8xi8xl 8xl ( Zg" (1.13)

This is the form of the momentum equation used in several studies which aim to
augment the closure relationship via machine learning. For example, in Ling et al.’s TBNN
investigation (Ling et al. 2016), (1.13) was used. Kaandorp (2018) and Kaandorp & Dwight
(2020) also used this form of the momentum equation. The TBNN-based approaches
are advantageous for several reasons. The TBNN architecture is motivated by a tensor
algebra-based argument that if the anisotropy tensor is to be expanded in terms of the
mean strain and rotation rate tensors (a dominant approach in eddy viscosity modelling),
the TBNN is the most general form of this expansion (Pope 1975). Additionally, other
techniques to incorporate equivariance are cumbersome, requiring learning and predicting
in an invariant eigenframe of some tensorial quantity (Wu ef al. 2018; Brener et al. 2022).
The TBNN-based architectures do not require computing eigenvalues of the strain rate
tensor at every evaluation data point. Lastly, this closure term is highly expressive, in
that ten different combinations of S; and R;; can be used to represent the anisotropy
tensor. However, a major disadvantage with numerically solving (1.13) is that the closure
term is entirely explicit, greatly reducing numerical stability and conditioning (Brener
et al. 2021). For this reason, Kaandorp & Dwight (2020) needed to implement a blending
function, which blends the fully explicit closure term in (1.13) with the more stable implicit
closure term treatment made possible with a linear eddy viscosity hypothesis. Here,
implicit treatment refers to the way the velocity discretisation matrix is constructed in
the numerical solver. When a term is treated implicitly, it contributes to the U; coefficient
matrix. In contrast, explicit treatment refers to treating a term as a fixed source term in the

discretised equation. Assuming the closure term takes the form a;; = —2v,Sj;, (1.4) can be
written as
Uan L9 P+2k + i v+ )8Uj (1.14)
——=——— = — [ +v)—|. .
' 3)6,' P ax]' 3p 8x,~ ! 8xi

Equation (1.14) has the major advantage of increasing diagonal dominance of the U;
coefficient matrix obtained from discretisation of this equation, via the eddy viscosity.
However, this closure framework only permits the inaccurate linear eddy viscosity closure
approximation.

In the present work, we propose the following hybrid treatment of the closure term:

AU; 19 2 3 AU;
ul% 2% (paiZoe)+ L ) B 7 7). (115
,BXi P 3Xj ( + 3/) )"l' ox; |:(V—|-V;) 3)Ci:| 9x; ( Zgn ( )
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In (1.15), the n = 1 (linear) term has been separated and receives implicit treatment, while
the remaining n =2, 3, ... 10 terms grant an opportunity for a machine learning model to
provide rich representation of the nonlinear part of a;;. As we will discuss, the separation
of the linear term requires special treatment during training and closure term injection.

1.2. Conditioning analysis

Various decompositions of the Reynolds stress tensor were investigated by Brener
et al.’s conditioning analysis (Brener et al. 2021). Conditioning analysis for data-driven
turbulence closure frameworks is important, since ill-conditioned momentum equations
have the potential to amplify errors in the predicted closure term. Brener et al. (2021)
concluded that an optimal eddy viscosity approach is necessary to achieve a well-
conditioned solution, since it incorporates information about the DNS mean velocity field.
In the present work, we demonstrate that the following closure decomposition:

aj=—201S0 +ai (1.16)

also achieves a well-conditioned solution. We follow the nomenclature of Duraisamy et al.
(2019) in that the 6 superscript indicates a quantity that comes from a high-fidelity source
such as DNS. The R superscript indicates a quantity taken from the corresponding baseline
RANS simulation.

The decomposition in (1.16) permits an augmented turbulence closure framework
that treats the machine learning correction only in an explicit term in the momentum
equation. Separating the machine learning model prediction has several advantages. It
allows the model correction to be easily ‘turned off’ in unstable situations. It also is
more interpretable — rather than correcting both the eddy viscosity and also injecting an
explicit correction term, the correction is contained entirely within an explicit term in the
momentum equation. Lastly, it avoids the necessity for an optimal eddy viscosity to be
computed from high-fidelity data. Although there are methods to increase the practicality
of computing the optimal eddy viscosity (McConkey et al. 2022a), this quantity is often
unstable and difficult to predict via a machine learning model.

Figures 1 and 2 demonstrate a conditioning test similar to the tests conducted by
Brener et al. (2021). Several different decompositions of the DNS Reynolds stress tensor
are injected into a RANS simulation, to identify which decompositions permit a well-
conditioned solution. Comparing panels (b) and (c) in both figures 1 and 2, we can see
that the proposed decomposition of the Reynolds stress tensor (1.16) achieves an equally
well-conditioned solution as the optimal eddy viscosity framework. To our knowledge, this
is the first result in the literature showing that a well-conditioned solution can be achieved
without the use of an optimal eddy viscosity to incorporate information about the DNS
velocity field (Brener et al. 2021). We further confirm the findings of Brener et al. (2021)
with respect to the requirement that the closure decomposition includes information about
the DNS mean velocity field in order to achieve a well-conditioned solution. We confirm
the notion from Wu et al. (2019a) that implicit treatment helps address the ill-conditioning
issue, but using the DNS strain rate tensor Sg. to calculate the explicitly injected al.j*.

1.3. Realisability-informed training

The Reynolds stress tensor is symmetric positive semidefinite. A set of constraints on the
non-dimensional anisotropy tensor b;; arise from this property, as determined by Banerjee
et al. (2007). These constraints are

s i=, (1.17)

W | ==
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Figure 1. Conditioning test comparing the errors in U; after injecting: (a) the DNS anisotropy tensor fully
explicitly, (b) the optimal eddy viscosity (implicitly) and the remaining nonlinear part of the anisotropy tensor
calculated using Sg (explicitly), (c) the eddy viscosity estimated by the k-w shear stress transport (SST) model
(implicitly) and the remaining nonlinear part of the anisotropy tensor calculated using Sg (explicitly) and (d) the
eddy viscosity estimated by the k-w SST model (implicitly), and the remaining nonlinear part of the anisotropy
tensor calculated using Sif (explicitly), & is the turbulent kinetic energy (TKE), w is the TKE specific dissipation
rate and RSME is the Root mean squared error.

| o
—Eébij\i, i #J, (L.18)
3| — A
PSS i (119)
2
1
s (1.20)
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Figure 2. Conditioning test comparing the errors in U; after injecting: (a) the DNS anisotropy tensor fully
explicitly, (b) the optimal eddy viscosity (implicitly) and the remaining nonlinear part of the anisotropy tensor
calculated using Sg (explicitly), (c) the eddy viscosity estimated by the k-w SST model (implicitly) and the
remaining nonlinear part of the anisotropy tensor calculated using Sg- (explicitly) and (d) the eddy viscosity
estimated by the k-w SST model (implicitly), and the remaining nonlinear part of the anisotropy tensor
calculated using Sj¢ (explicitly).

where the non-dimensional anisotropy tensor b;; is calculated by

a
bj= i (1.21)

and the eigenvalues of b;; are given by 4 > A2 > A3.

A given Reynolds stress tensor is physically realisable if it satisfies these constraints.
While the physical realisability of the closure term may seem an important constraint
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for turbulence models, many commonly used turbulence models such as the k-&¢ model,
¢ is the TKE dissipation rate (Launder & Spalding 1974), k- (Wilcox 1988) and k-w
SST model (Menter 1994; Menter, Kuntz & Langtry 2003) do not guarantee physical
realisability.

Based on the widespread acceptance and popularity of non-realisable turbulence
models, it is fair to say that realisability is not a hard constraint on a new turbulence
model. Nevertheless, the true Reynolds stress tensor is realisable, and if a machine learning
model is able to learn to predict realisable closure terms, it may be more physically
accurate. Unfortunately, Pope’s tensor basis expansion for the anisotropy tensor (and
machine learning architectures based on this expansion) do not provide a means to
achieve realisability. To enforce realisability, a variety of ad hoc strategies have been used,
including in the original TBNN paper by Ling et al. (2016). Most of these strategies involve
postprocessing predictions by the TBNN, such as shrinking the predicted anisotropy tensor
in certain directions until it is physically realisable (Jiang et al. 2021).

In the present work, we propose including a penalty for violating realisability constraints
in the loss function. In a similar spirit of physics-informed neural networks (PINNs)
(Raissi, Perdikaris & Karniadakis 2019), we term the use of this loss function ‘realisability-
informed training’. Whereas PINNs encourage the model to learn physics by penalising
violations of conservation laws, realisability-informed TBNNs learn to predict physically
realisable anisotropy tensors.

The realisability penalty R(b;) is given as follows:

2
(o [P
1 2
+ (max [11— (g—az),o}) } (1.22)

where the ~ above a symbol denotes a model prediction for the quantity associated with
the symbol.

Equation (1.22) can be thought of as the mean squared violation in the components of
b,j, plus the mean squared violation in the eigenvalues of blj To help visualise this penalty
function, figure 3 shows the penalties incurred by violating various realisability constraints
on the anisotropy tensor.

It should be noted that in the same way that a PINN’s prediction cannot be guaranteed to
satisfy a conservation law, a realisability-informed TBNN cannot be guaranteed to predict
a physically realisable anisotropy tensor. The goal is that the incorporation of a physics-
based loss at training time will encode into the model a tendency to predict physically
realisable anisotropy tensors. At training time, when the model predicts a b;; component
outside the realisability zone, then it is penalised in two ways: the error in this prediction
will be non-zero (since all label data are realisable), and the realisability penalty will be
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Figure 3. Realisability penalty for the (@) diagonal components of b;;, and (b) off-diagonal components of b;;.

non-zero. Therefore, the realisability penalty serves as an additional driving factor towards
the realisable, true b;; value. The merits of this approach are demonstrated in § 2.2.

Another important metric in the loss function is the error-based penalty £ (Eij). When
the model predicts a certain anisotropy tensor, it is evaluated against a known high-
fidelity anisotropy tensor available in the training dataset. Typically, mean-squared error
loss functions are used to train machine learning-augmented closure models. However, we
propose the following modifications to the loss function of a TBNN.

(i) Since bj; is a symmetric tensor, we propose to sum the squared errors as follows:

- 1 - 2
Eby) = ¢ > (By-b)) ¢ (1.23)
ije{11,12,13,
22,23,33}

Calculating the squared error in this way avoids double penalising the off-diagonal
components, a situation which arises when summing over all components of b;;.

(ii) Although the TBNN model predicts b;;, we propose to use a loss function based on
the error in a;;. Near the wall, f"l.;") — 0, but b;; -+ 0. The vanishing of fl;") with non-
vanishing b;; causes instabilities during training, leading to g, — o0 here. Since ajj
is the tensor injected into the momentum equation, its accurate prediction should be
the focus of the training process. To dimensionalise bj;, the turbulent kinetic energy
k must be used. This leads to the following error-based loss:
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_ 1 - 2(k%)? ~
Eay) =¢ S (kb - 24%00)7 } = *7) RN

jje(11,12,13, 3 jje(11,12,13,
22,23,33) 22,23,33)
(1.24)
or stated more simply
E(@y) = k"2 E (by). (1.25)

The reason for the use of k¥ in (1.24) and (1.25) is discussed in § 1.4.

The final loss function includes an error-based metric and a realisability-violation
penalty. This loss function L is given by

1 (2k%)?
L=5)
b Z/%ICk (p)
k=1

(E(Bij.p) +aR(bij.p)), (1.26)

where « is a factor used to control the relative importance of the realisability penalty. Here,
N is the total number of points in the dataset. The points are indexed by p=1,2,..., N.
The cases in the dataset are indexed k =1, 2, ..., 5. Z¢, (p) is an indicator function

1, ifpecCy,

1.27
0 otherwise. ( )

ICk (p) = {

For a given point p, Zc, (p) selects all points which come from the same case as p. The
denominator for all points from the same case Cy is the same — normalisation is applied on
a case-by-case basis. A given point is normalised by the mean-squared Frobenius norm of
the anisotropy tensor over all the points from the case it comes from. The mean Frobenius
norm over a case is given by

1
Zi=ior D Iyl k=L2.s, (128)
k PeCi

where |Cy| is the cardinality of the case Cy (viz., the number of points in the kth case Cy).
Here, Z; is simply the average of the Frobenius norm || - || ¢ of the anisotropy tensor a;;
for all points p (viz., a;j(p)) in case Cy. The objective of this denominator in (1.26) is to
promote a more balanced regression problem, since data points from various cases or flow
types may have ||a;]|| that differ by orders of magnitude. Normalisation on a case-by-case
basis is made in an effort to normalise all a;; error magnitudes to a similar scale.

In this study, we use o = 10? to encode a high preference for realisable results in § 2.
Lower values of « will reduce the penalty applied to realisability violations, which may be
necessary for flows in which the anisotropy tensor is difficult to predict via a TBNN. As
discussed, the multiplicative term (2k%)? is used to formulate the loss function in terms of
predicting a;; rather than b;. However, R(l;ij) is also multiplied by (2k?)? to ensure that
the realisability penalty and mean-squared error in a;; are of similar scales.

1.4. Neural network architecture

Motivated by improving the training and injection stability, as well as generalisability, we
propose several modifications to the original TBNN (Ling et al. 2016).
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Figure 4. Model architecture and training configuration for the original TBNN proposed by Ling et al. (2016).

The original TBNN is shown in figure 4. At training time, this network predicts the
non-dimensional anisotropy tensor b;. All basis tensors used in this prediction at training
time come from RANS, and during training the prediction l;l-j is evaluated against a
known value of bfj from a high-fidelity simulation. At injection time, the network is used

in this same configuration to predict Bij. Here, I;,-j is injected into a coupled system of
equations consisting of the continuity/momentum equations (explicit injection), as well as
the turbulence transport equations. This system of equations is iterated around a fixed l;ij,
to obtain an updated estimate for the turbulent kinetic energy k, and therefore an updated
estimate for a;; = 2kl;,~j.

The modified TBNN is shown in figure 5. This TBNN relies on the same tensor basis
expansion as the original TBNN. However, the linear term has been modified in this
expansion. Whereas the original TBNN uses

7 = ua SR 1.29
T R (1.29)
our modified TBNN uses
7 = —vtR s (1.30)
Nl |

Further, while the original TBNN calculates the linear (denoted by superscript L)
component of b;; as

A k
j=aily’ =¢1-5; (1.31)
our modified TBNN uses
L 2(1) Vi
bl.j:—Tl.j == Si (1.32)

where the superscript R denotes a quantity that comes from the original RANS simulation.
These changes are motivated by the following.

(i) Atinjection time, we use implicit treatment of the linear term f"i}l) to formulate (1.15)
in a stable manner. After injection, §; will continue to evolve. In a similar spirit
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Figure 5. Model architecture and training configuration proposed in the present investigation. Note that
during training, Sg is used in f};l), whereas all other quantities come from the original RANS simulation.

as optimal eddy viscosity frameworks, we therefore use Sg to compute the linear
component at training time. In optimal eddy viscosity based frameworks, using S;; =
Sg at training time helps drive U; — Uje at injection time (the cause of this behaviour
is currently unknown). In Ling et al. (2016), all basis tensors (and therefore b;;) remain
fixed after injection. We also fixed v; = vR at injection time (viz., no further evolution
of the eddy viscosity is permitted).

(i1) At training time, we dimensionalise l;,-j using kY aj = 2kel;,-j. At evaluation time,
we do not have k. However, the need for k¥ is avoided, since we only use the
nonlinear part of I;ij at test time. The reason we only need l;i]L. at test time is that
the training process has been designed to use the linear part of b;; estimated by the
RANS turbulence model, and augment this by the TBNN’s equivariant prediction
for Z;UL

(ii1) Using v;/k to normalise the basis tensors and fixing g; = —1 in (1.32) results in the
RANS prediction for biLj being implicitly used in the TBNN. Therefore, the TBNN
learns to correct b;; using bler in a way that allows a realisability-informed training
process, and fully implicit treatment of the linear term at injection time.

Lastly, the use of k? to dimensionalise 15,7 is also enabled by our use of a separate neural

network to correct kX at injection time. This neural network is called the k-correcting
neural network (KCNN), and is a simple fully connected feed-forward neural network that
predicts a single output scalar A (Figure 6)

k9
A =log (k—R), (1.33)

such that at injection time, an updated estimate for k can be obtained k = e2k*®, without
the need to re-couple the turbulence transport equations. The KCNN shares the same input
features as the TBNN.
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Figure 6. Test-time injection configuration proposed in the present investigation. The hatching over g; and
Tl; Y indicates that they are not used at injection time.

Together, the KCNN and TBNN predict the anisotropy tensor in the following manner:

10
aj=2(e*k") Y guTy". (1.34)
n=1

With the linear component of a; being treated implicitly during injection, the entire
closure framework is summarised as explicit injection of the following term into the
momentum equation:

10
ay =2(ek®) Y a7 (1.35)
n=2

1.4.1. Tensor basis Kolmogorov-Arnold network (TBKAN)
The tensor basis KAN shown in figure 7 in the training configuration replaces the multi-
layer perceptron in the modified TBNN with a KAN introduced by Liu et al. (2024).
The Kolmogorov—Arnold representation theorem states that any continuous multivariate
function can be expressed as a composition of continuous univariate functions. KANs are
based on this theorem, replacing the typical linear weight matrices in neural networks
with learnable one-dimensional (1-D) functions (Liu et al. 2024). These functions are
parameterised using splines, offering a flexible and computationally efficient approach
to represent continuous functions. The KANs utilise B-splines, which are piecewise
polynomial functions, to model local variations in data. Each spline segment corresponds
to a polynomial function, and their piecewise nature allows KANSs to approximate the
local variations in the data during training. This adaptability enables KANSs to capture
intricate functional relationships more effectively, merging the advantages of B-splines
with the traditional neural network framework, thereby enhancing both accuracy and
interpretability.

In the TBKAN architecture, KAN replaces the hidden layers of the standard TBNN,
while the anisotropy mapping portion remains unchanged. The TBKAN’s output layer is
designed to predict the coefficients of the tensor basis.
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Figure 7. Model architecture and training configuration for TBKAN which replaces the multi-layer
perceptron in the modified TBNN (see figure 5) with a KAN.

1.5. Machine learning procedure

The KCNN, TBNN and TBKAN architectures proposed in § 1.4 were implemented
in PyTorch, along with the proposed realisability-informed loss function (1.26).
These models were trained using an open-source dataset for data-driven turbulence
modelling (McConkey, Yee & Lien 2021). The objective of this study is to train and
evaluate models trained on various flows, to determine whether the proposed realisability-
informed loss function and architecture modifications are significantly beneficial. All code
is available on Github (McConkey & Kalia 2024).

1.5.1. Datasets
The training flows consist of flow over periodic hills (Xiao et al. 2020), flow through
a square duct (Pinelli e al. 2010) and flow over a flat plate with zero pressure gradient
(Rumsey 2021). These flows are selected because they contain several challenging physical
phenomena for RANS, including separation, reattachment and Prandtl’s secondary flows.
The flat plate case is also included, to demonstrate how machine learning can improve
the anisotropy estimates within the boundary layer. For each flow type, both a hold-out
validation set and a hold-out test set are selected. The validation set is used during training
to help guide when to stop training in order to prevent overfitting, but the validation set loss
is not back propagated through the network to update weights and biases. While we hold
out an entire case for the test set (the usual procedure in data-driven turbulence modelling),
we also generate the validation sets by holding out entire cases at a time. We recommend
this method for generating validation sets in data-driven turbulence modelling — it is
analogous to grouped cross-validation, a practice used in machine learning where several
data points come from a single observation. Here, we consider each separate flow case as a
single observation, each containing many data points. It is therefore prudent to ensure that
two data points from the same observation are not used in both the training and test set.
Table 1 outlines the three training/validation/test splits considered. The objective in
splitting the dataset this way is to determine whether a realisability-informed model can
generalise to a new case for a given flow. Machine learning-based anisotropy mappings
do not generalise well to entirely new flows (Duraisamy 2021; McConkey et al. 2022b;
Man et al. 2023). However, they can be used to dramatically enhance the performance
of a RANS simulation for a given flow type. In this same spirit, we aim to test how our
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Flat plate Square duct Periodic hills
Data points 1396 147456 73755
Parameter varied Reg Rey o
Training set 1000, 2000, 1100, 1150, 1250, 1350, 0.5,1.0, 15
2540, 3270, 1400, 1500, 1600, 2205,

3970 2400, 2600, 2900, 3500
Validation set 1410, 3030, 1300, 1800, 3200 0.8

4060
Test set 3630 2000 1.2

Table 1. Datasets used for training, validation and testing. Varied parameters are defined in § 2.1.

modifications improve the generalisability of the learned anisotropy mapping to an unseen
flow, albeit within the same class of flow.

1.5.2. Input features

The input features here are all derived from the baseline RANS k- SST simulation. The
input features form the vector xX. The superscript R has been dropped in this section to
avoid crowded notation, but it applies to all quantities discussed in § 1.5.2.

The input features must be Galilean invariant in order to generate an appropriately
constrained anisotropy mapping. Most data-driven anisotropy mapping investigations use a
mixture of heuristic scalars and scalars systematically generated from a minimal integrity
basis for a set of gradient tensors (Wu et al. 2018). We emphasise that all scalars must
be Galilean invariant — without this criterion, the RANS equations will lose Galilean
invariance. Despite the importance of this constraint, several data-driven anisotropy
mappings include scalars like the turbulence intensity, which breaks Galilean invariance.

We use a mixture of heuristic scalars and scalars systematically generated from a
minimal integrity basis (Wu et al. 2018). We use the following heuristic scalars:

Viyw
=min | ——, 2], 1.36
g1 =min | — " (1.36)
(1.37)
(1.38)
(1.39)
500v
5= —7%> (1.40)
Yp@
) 2.0k
g6 = min | max (g4, gs), 5 (1.41)
Vi 0k dw
max (| =& ——
w 0X; 0X;
with ¢ = 0.09w, and y,, is the distance to the nearest wall.
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Model Dataset Learning rate Epochs Hidden layers Neurons per layer
TBNN Flat plate 5(10)~4 7959 4 20
KCNN Flat plate 2.5(10)~* 2478 5 30
TBNN Square duct 5(10)~* 100 7 30
KCNN Square duct 5(10)~4 1150 7 30
TBNN Periodic hills 1(10)73 19140 7 30
KCNN Periodic hills 1(10)~6 13138 11 30

Table 2. Hyperparameters selected for each model.

These input features correspond to: the wall-distance-based Reynolds number (g1), the
ratio of turbulent time scale to mean strain time scale (¢g»), the ratio of total Reynolds stress
to k (g3) and different blending scalars used within the k-w SST model (¢4, g5, g¢). The full
list of integrity basis tensors is given in Appendix A. We use the first invariant (the trace,

Aj;;) of the following tensors: B;l), B(3) 3154), B;@, B(7) B(l6) nd B§35) We use the sec-

ond invariant, 1 /2((A,-l~)2 AjjAji), of the following tensors: Bf), 3156), Bly), B(S) These
input features were hand picked from the full set of 94 invariants listed in Appendlx A (Wu
et al. 2018; McConkey et al. 2022a). As discussed in McConkey et al. (2022a), many of the
invariants are zero for 2-D flows. However, different conditions cause different invariants
to be zero. For example, in the present study, there are a different set of zero invariants
for flow through over periodic hills, and flow through a square duct. This difference
occurs because different components of 9()/0x; are to be zero. We have performed a
systematic investigation using a symbolic math toolbox (sympy (Meurer et al. 2017)) to
determine which invariants are zero for the duct case, and general 2-D flows. We make the
results and code available in Appendix A and on Github (McConkey 2023), respectively.
Input features used in this investigation were selected based on the results in Appendix A.
Therefore, the input features are not uniformly zero on any of the considered flows.

To ensure all input features are of the same magnitude during training, they are scaled
according to the following formula:

xR_m "M (1.42)

Om

where x X is the input feature vector for the neural network, XX is the raw input feature
vector from the RANS simulation, w,, is a vector containing the mean of each input feature
over the entire training dataset and oy, is a vector containing the standard deviation of each
input feature over the entire training dataset.

When making predictions on the hold-out validation and test sets, the mean and standard
deviation values from the training data are used to avoid data leakage.

1.5.3. Hyperparameters and training procedure

The hyperparameters for each neural network were hand tuned based on validation set
performance. The hidden layers for all TBNNs and KCNNs are fully connected, feed-
forward layers with Swish activation functions (Ramachandran, Zoph & Le 2017). The
appropriate hyperparameters vary between flows, since each dataset contains a different
number of data points, and the anisotropy mapping being learned is distinct. Table 2 shows
the final hyperparameters used. All training runs used a mini-batch size of 32, except the
periodic hill TBNN run, which used a mini-batch size of 128.
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Figure 8. Loss function vs epoch for the () TBNN and (b)) KCNN models on the flat plate dataset; the
(c) TBNN and (d) KCNN models on the square duct dataset; and the (¢) TBNN and (f) KCNN models on
the periodic hill dataset.

The AMSGrad Adam optimiser (Reddi, Kale & Kumar 2018) was found to achieve better
performance than the standard Adam optimiser (Kingma & Ba 2015) for training TBNNs.
The learning rate and number of epochs for each optimiser is given in table 2. Satisfactory
performance was achieved with a constant learning rate; for training on more complex
flows we recommend the use of learning rate scheduling to achieve better performance.
The training/validation loss curves for each model are shown in figure 8.
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Figure 9. Loss function vs epoch for the TBKAN model trained on the flat plate dataset, with the best-
performing KAN configuration given by a network width of w =9, a grid size of g =8 and a polynomial
order of k =3 (cubic B-spline).

1.5.4. Hyperparameter tuning for TBKAN

The performance of the TBKAN was extensively optimised through a combination
of systematic hyperparameter tuning and manual adjustments. The architecture of the
TBKAN model was configured as [6, 9, 10], where 6 corresponds to the number of input
features, 9 represents the network width (number of neurons per hidden layer) and 10
denotes the output size of the network. The depth of the network, representing the number
of hidden layers, was fixed to 2 for the flat plate case.

Hyperparameter tuning focused on refining the grid size (g), network width (w), spline
order and input feature combinations. An initial set of 27 runs, conducted with randomly
selected configurations, broadly explored the hyperparameter space. These runs were used
as a warm start for Bayesian optimisation, which further utilised 143 trials to systematically
refine the hyperparameters. The configuration employed a grid size of 8 control points for
the B-spline basis representation, with the polynomial order k of the splines fixed at a value
of three (viz., k = 3 corresponding to cubic splines). This choice was found to provide the
best balance between flexibility and computational efficiency.

The final hyperparameters for the best-performing model were as follows: architecture
[6,9, 10], a depth of 2 layers, a grid size of 8 control points and a learning rate of
4.9 x 1073, This configuration achieved a mean-squared error (MSE) of 0.22 on the flat
plate case. Input feature selection was refined by fixing three core features while sampling
from a broader set to enhance the model’s adaptability in predicting finer details of the
anisotropy tensor. The AMSGrad Adam optimiser (Reddi et al. 2018) was used for all
training runs, with a mini-batch size of 32, which ensured stable convergence. Training
and validation loss curves for the best-performing model for the flat plate, corresponding
to a KAN configuration with w =9, g = 8 and k = 3 (cubic splines), are shown in figure 9.

1.6. Computational costs

The inference-time cost for the proposed methodology varies significantly from case to
case. A prediction requires (i) running a baseline RANS simulation, (ii) evaluating the
Machine learning (ML) model predictions and (iii) running a corrected RANS simulation.
Compared with steps (i) and (iii), the cost of step (ii) (model inference) is negligible.
Additionally, since the converged fields from step (i) are used to initialise the simulation
in step (iii), the cost of the corrected RANS simulation is also reduced. Generally, we
found that combined inference-time costs for steps (i), (ii) and (iii) were between 1.5 and

1019 A49-20


https://doi.org/10.1017/jfm.2025.10618

https://doi.org/10.1017/jfm.2025.10618 Published online by Cambridge University Press

Journal of Fluid Mechanics

Top plane Xy L
X1
L| | Inlet Outlet
Symmetry NO-Slip wall
L2 2L

Figure 10. Computational domain for the zero pressure gradient flat plate boundary layer case.

3 times the cost of the baseline simulation (i.e. steps (i), (ii) and (iii) cost approximately
1.5-5 times as much as step (i)), depending on how much the injected closure fields differ
from the original linear eddy viscosity-based field. The training cost also varies depending
on the dataset. For the periodic hills and square duct datasets here, the training time was
approximately 16 GPU hours on a single NVIDIA RTX 3090 GPU.

2. Results for proposed TBNN and TBKAN architectures
2.1. Generalisation tests

It was of interest to determine how well the trained models generalise to unseen variations
of their training flows. This section demonstrates generalisation results for flow over a flat
plate with zero pressure gradient, flow through a square duct and flow over periodic hills.

For all cases, the original RANS solution was generated using OpenFOAM v2212,
assuming an isothermal, incompressible and Newtonian fluid. Simulation parameters such
as solver, schemes and solution methodology for the zero pressure gradient flat plate case
were identical to those discussed in McConkey et al. (2021).

It should be noted that the a;; predictions shown for the TBNN/KCNN use Sg for
predicting the linear part of the anisotropy tensor. The nature of the proposed TBNN
training process is to utilise Sg during training, so that the remaining nonlinear part can
be extracted during injection.

2.1.1. Flat plate (TBNN)

This case features a developing turbulent boundary layer on a flat plate with zero pressure
gradient, based on the NASA ‘2DZP’ validation case (Rumsey 2021). Figure 10 shows the
domain for the flat plate case. The NASA-provided meshes are sufficient to resolve the
viscous sublayer region, with a total number of cells N ~2 00 000. However, this mesh
was further refined to increase the number of solution data points available for training and
testing. The goal of this case is to learn how the anisotropy tensor evolves in a turbulent
boundary layer, therefore substantial mesh refinement was required to generate data points
in this region. The total number of cells in the mesh is N =4 673 130. The plate-length
Reynolds number is Re; = 5(10)° to match the NASA reference data. The reference data
for this case consist of a series of wall-normal profiles, for various Reg, defined as

Ut
Rep = —=—, (2.1)
v
where the momentum thickness 6 is given as
* U U
o=[" ok (1 - _1) dx. 22)
0 U U
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Figure 11. Streamwise velocity profile in the Reg = 3630 boundary layer predicted by the k-w SST model,
compared with the reference data from Schlatter & Orlii (2010). Here, U 1+ =U,/ur, where u; = /7y, /p is

the friction velocity, and T, is the wall shear stress. A density of 1 kgm™3 was used to be consistent with
OpenFOAM’s kinematic units. The wall-normal coordinate is y™ = xou; /v.

and Uy is the free-stream velocity. The following boundary conditions and fluid properties
are used for the domain in figure 10. At the inlet boundary, U;, k and w are uniform:
Uj = (69.4,0,0)m s~!, k=1.08(10)"> m*>s™2, ©=8675 s~! and P is zero normal
gradient. At the outlet, P is zero, and all other variables are zero normal gradient. At the
symmetry plane, all variables are zero normal gradient, and normal velocity is zero. At the
top plane, all flow variables are zero normal gradient. At the no-slip wall, U; =0, k =0,
w = 6v/B1y? (here, B1 = 0.075) and P is zero normal gradient. A kinematic viscosity of
v =1.388(10) > ms~2 was used.

The DNS reference data for a developing turbulent boundary layer come from
Schlatter & Orlii (2010). This dataset contains a variety of turbulent boundary layer
profiles, at various Rey shown in table 1. As discussed in § 1.5.1, the TBNN model was
trained on various Reg, with Rey = 3630 serving as a hold-out test case. The results shown
in this section are for this hold-out test case.

The baseline k-w SST model performs well for the test case flow in terms of predicting
the mean velocity profiles. Figure 11 shows a sample mean velocity profile predicted by
the baseline k-w SST model, and figure 12 shows the predicted evolution of Rey along the
plate. The excellent performance of the k- SST model demonstrated by figures 11 and 12
is expected. This case features a fully attached boundary layer with zero pressure gradient,
which is one of the fundamental calibration scenarios for RANS models. The zero pressure
gradient turbulent boundary layer is considered a ‘solved problem’ for modern RANS
models (Spalart 2023).

While the mean velocity profile is predicted well, figure 13 shows that the evolution of
the near-wall anisotropy tensor is not predicted well. For this reason, the model architecture
discussed in § 1.4 was used to correct the anisotropy tensor in the near-wall region. This
test also aims to determine whether the input feature set is sufficiently expressive to enable
predicting the evolution of the anisotropy tensor within a boundary layer. Figure 13 shows
the wall-normal profiles of various anisotropy tensor components predicted by the k-w
SST model, the ML-augmented k-w SST model and the reference DNS simulation for the
hold-out test case. As discussed in § 1.5.1, these models were trained on flat plate data
at various values of Rey. The results in figure 13 are designed to test these models on

1019 A49-22


https://doi.org/10.1017/jfm.2025.10618

https://doi.org/10.1017/jfm.2025.10618 Published online by Cambridge University Press

Journal of Fluid Mechanics

15000

== DNS (Schlatter and Orlii, 2010)
— k- SST

12500

10000

>
S 7500
5000

2500

T T T
0 0.5 1.0 1.5 2.0
X1

Figure 12. Momentum thickness Reynolds number growth along the flat plate as predicted by the k- SST
model, and the reference DNS data from Schlatter & Orlii (2010).

input features from an unseen boundary layer profile, to determine whether the learned
anisotropy mapping was generalisable.

Figure 13(a) shows the predicted evolution of aj; in the turbulent boundary layer.
The baseline k-w SST model predicts aj; =0, since dU1/dx; &~ 0 in the boundary layer.
However, the DNS data clearly show that aj; is non-zero in the boundary layer. The
TBNN/KCNN model combination is able to correct the aj; term to a high degree of
accuracy in the boundary layer on this test case, indicating that the anisotropy mapping
for the aj; component generalises well. Similar evolutions of azy (figure 13¢) and as3
(figure 13d) are observed in the DNS data. Again, the k-w SST model predicts aj) = az =
az3z = 0, which is not physically correct. The TBNN/KCNN models are able to correct the
baseline prediction to a high degree of accuracy on this unseen boundary layer profile.

Figure 13(b) shows the predicted evolution of aj>. The baseline RANS model predicts
the evolution of ajp well, and this is likely the reason that the mean velocity profile of
U; is predicted well (see figure 11). While the TBNN/KCNN is not needed to correct
this off-diagonal component, it is able to correct minor inaccuracies in the k-w SST
model predictions in the buffer region (5 < y* < 30). Nevertheless, the baseline k- SST
model achieves a satisfactory accuracy level for this flow. As discussed, this is expected,
given that low Reynolds number RANS models are able to predict a zero pressure
gradient boundary layer with a high degree of accuracy. Figure 13 demonstrates that this
performance is the result of an accurate prediction of aj, by the k-w SST model.

2.1.2. Flat plate (TBKAN)
The predicted evolution of the various components of the anisotropy tensor for the flat plate
case obtained using the TBKAN/KCNN model combination is displayed in figure 14(a)—
14(d) for the hold-out test case Reg = 3630. These predictions are compared with both the
baseline k-w SST model and DNS data from Schlatter & Orlii (2010). For this test case, the
predictive accuracy of the TBKAN/KCNN model combination for the anisotropy tensor
components is compared with that of the baseline model.

The predicted evolution of a1 is shown in figure 14(a). Unlike the k-w SST model,
which predicts a;; =0 due to its linear stress assumptions, the TBKAN captures the
non-zero nature of a1 in the turbulent boundary layer. The TBKAN aligns closely with
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Figure 13. Evolution of (a)

the DNS data, indicating its ability to generalise and represent anisotropy accurately,

log(y")

ar, (b)_.alz, (¢) ax and (d) azs in the Rey = 3630 boundary layer, as predicted by
the DNS data from Schlatter & Orlii (2010), the TBNN/KCNN model and the baseline k-w SST model.

particularly for components where the baseline model is limited.

Figure 14(b) presents the predicted evolution of aj». The baseline k-w SST
model predicts this off-diagonal component with reasonable accuracy. However, the
TBKAN/KCNN exhibits better conformance with the reference DNS data in the buffer
correcting minor deviations in the predictions of this quantity

region (5 <yt <30),

provided by the baseline k- SST model.

Figures 14(c) and 14
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Figure 14. Evolution of (a) ayi, (b) ai, (¢) axy and (d) azz in the Reg = 3630 boundary layer, as predicted by
the DNS data from Schlatter & Orlii (2010), the TBKAN/KCNN model and the baseline k-w SST model.

the TBKAN/KCNN captures their evolution with good accuracy compared with the DNS
data. Overall, TBKAN/KCNN enhances the predictive accuracy of the anisotropic stress
components across the boundary layer. While ajy predictions are marginally improved
compared with the baseline model, TBKAN/KCNN shows substantial improvements for
the normal stress components. Furthermore, a visual perusal of figures 13 and 14 shows
that the conformance of the predictions of the anisotropy tensor components with the
reference DNS data obtained with TBKAN/KCNN is marginally worse than that obtained
with TBNN/KCNN. However, it is noted that the TBKAN is simpler than TBNN in
this case in the sense that the former network used only one hidden layer with 9 nodes
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Figure 15. Computational (@) domain and (b) RANS mesh for the square duct flow.

(where the information from the edges encoded in the B-splines are simply accumulated),
whereas the latter network used four hidden layers consisting of 20 nodes each (where the
information embodied by the linear weights in the edges is transformed by the nonlinear
activation function).

2.1.3. Square duct
Turbulent flow through a square duct is a challenging case for RANS models, since linear
eddy viscosity models cannot predict the secondary flows that occur in the cross-sectional
plane. The goal of the square duct test case is to determine whether the proposed closure
framework could enable the k- SST model to predict these Prandtl secondary flows
(Nikitin, Popelenskaya & Stroh 2021). The square duct DNS dataset generated by Pinelli
et al. (2010) was used as reference data, and the RANS data from McConkey et al. (2021)
was used.

Figure 15 shows the computational set-up and mesh for the square duct case. The mesh
is designed to achieve y+t <1 for all square duct cases. As discussed in § 1.5.1, the duct
half-height H Reynolds number varies between cases, calculated by

Repy = ——, 2.3)

where Up is the mean (bulk) cross-sectional velocity. A kinematic viscosity of v =
5(10)~° m?s~! was used for all square duct cases. With the geometry fixed as shown
in figure 15, the bulk velocity was adjusted to vary the Reynolds number. More details on
the computational set-up for the square duct case are provided by McConkey et al. (2021).
The boundary conditions are periodic at the inlet/outlet, and no-slip walls were applied
along the sides of the duct. As discussed in § 1.5.1, the modified TBNN was trained on
several values of Rey, with Rey = 2000 serving as a hold-out test case.

Figure 16 shows the components of the anisotropy tensor a;; predicted by RANS, DNS
and the TBNN/KCNN models for the square duct test case. The k-w SST model is a linear
eddy viscosity model, and therefore predicts zero a; where S;; is zero. Figure 16 shows that
aii, ax, apz and asz are all non-zero in the duct, and that the k- SST model is unable to
capture this behaviour. The TBNN/KCNN models predict an accurate evolution of almost
all anisotropy tensor components across the duct cross-section (viz. ay, a1z, a3, a2 and
az3 are all predicted well on this test case). The anisotropy tensor component a3 is not
predicted well, likely because it is at least an order of magnitude smaller than the other
components, and therefore errors in a3 are not penalised as heavily in the loss function.
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Figure 16. Components of a;; predicted by the DNS data from Pinelli ez al. (2010), the k- SST model, and the
TBNN/KCNN model from the present investigation. Shown here are contours of a;; components in the lower
left xo <0, x3 <0 quadrant.

Figure 17 shows the turbulent kinetic energy k after being corrected by the KCNN model
for the square duct test case. Accurate prediction of k is critical to an accurate estimate of
ajj, since ajj = 2kbjj. The k-w SST model generally under-predicts k. After correction via
the KCNN, the k field is predicted well compared with the DNS data. The primary feature
in the k field that is absent from the k-w SST prediction is the high-k region along the
sidewalls of the duct. The KCNN introduces a correction to the baseline RANS field, and
is able to predict this high-k region.

Ultimately, it is the goal of the proposed framework to improve the estimated mean fields
in the RANS simulation. To determine whether the corrected closure term would produce
corrected mean velocity fields, the predicted &ij— was injected into the RANS momentum
equation as shown in (1.15). The momentum and continuity equations converged around
the fixed Zzif until numerical convergence was achieved. In OpenFOAM v2212, a modified
version of the Pressure implicit splitting of operators - semi implicit method for pressure
linked equations (PIMPLE) solver was implemented for the purpose of this injection. The
PIMPLE solver was used to incorporate an unsteady term into the system of equations
during iteration, to promote stability. Although this unsteady term affects the solution
during convergence, the simulation ultimately achieved a steady-state condition, thereby
reducing this unsteady term to zero.

Figure 18 shows that the TBNN/KCNN model is able to produce secondary flows after
injecting Ezi]L. into the momentum equation. This a posteriori prediction of the mean field is
ultimately the main prediction of interest for a ML-augmented RANS closure framework.
Whereas the original k- SST model does not predict formation of any secondary flows in
the duct, figure 18 shows that the ML-augmented k-@ SST model predicts corner vortices.
However, the in-plane kinetic energy is generally underpredicted by the ML-augmented
RANS model.

To further examine the ability of the ML-augmented k-w SST model to predict
secondary flows in the duct test case, profiles of U and Uz are plotted in figure 19.
While the ML-augmented model is able to produce this nonlinear feature, the corner
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Figure 17. Contours of turbulent kinetic energy k predicted by (a) the k- SST model, (b) the KCNN in the
present investigation and (c¢) the DNS data from Pinelli ez al. (2010). Shown here is the lower left x, <0, x3 <0
quadrant.

vortex strengths are reduced compared with the reference DNS data. Both the U, and
Us components are under-predicted. Nevertheless, the k- SST model (which predicts
U, = U3 =0) has clearly been improved via a ML-augmented correction to the closure
term in the momentum equation. From figure 16, it would appear that the good prediction
of the normal stress anisotropy (the primary mechanism responsible for the streamwise
vorticity determined by U, and Us) should provide good predictions of the streamwise
vorticity. However, once the secondary flow is set in motion by this normal stress
anisotropy, it is the secondary (rather than primary) shear stress component a»3 (generated
by the presence of the secondary flow itself) that is required to maintain this flow and from
figure 16, this secondary component of the shear stress is not well predicted. Therefore,
the underprediction of U, and Us is likely due to inaccurate prediction of as3.

2.1.4. Rectangular duct test case

Duct aspect ratio has an influence on the in-plane kinetic energy 1/2(U22 + Ug) and
behaviour of the corner vortices (Vinuesa et al. 2014, 2015, 2016). It was of interest to
examine the ability of a model trained on square ducts to generalise to a rectangular duct
at similar Reynolds number. The TBNN/KCNN models were applied to a duct with aspect
ratio 3 and Rey = 2600, matching the DNS simulation by Vinuesa, Schlatter & Nagib
(2018). This generalisation test was carried out in the same manner as the Rey = 2000
hold-out test case (i.e. by making a predictive correction to the closure terms in the k-w
SST turbulence model, and injecting them back into the momentum equation).

Figure 20 compares the in-plane kinetic energy and velocity vector field predicted
by the baseline k-w SST model, and the TBNN/KCNN augmented k- SST model.
Examining figure 20 shows that ML-based correction enables the augmented SST model
to predict secondary flows. However, in the same manner as the square duct test case,
the in-plane kinetic energy is underpredicted. Additionally, the strength of the dominant
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Figure 18. Velocity vectors and in-plane kinetic energy predicted by (a) the DNS data from Pinelli ez al. (2010),
(b) the k- SST model and (c) injecting the TBNN/KCNN predictions into the RANS momentum equations.
Shown here is the lower left xo <0, x3 <0 quadrant.

corner vortex is over-predicted by the ML-augmented model, while the strength of the
smaller corner vortex is significantly underpredicted. The magnitude of the in-plane
kinetic energy is similar, however, the peak locations of this field are also shifted due
to a mismatch in predicted corner vortex shape. Nevertheless, the ML-augmented model
shows improvement compared with the k-« SST model, which fails to predict any corner
vortices. In order to promote better generalisation to rectangular geometries, a more
extensive training dataset consisting of rectangular ducts would need to be used to train
the models.
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Figure 20. Velocity vectors and in-plane kinetic energy predicted by (a) the DNS data from Pinelli ez al. (2010),
(b) the k-w SST model and (c) injecting the TBNN/KCNN predictions into the RANS momentum equations.
Shown here is the lower left xo <0, x3 < 0 quadrant.
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Figure 22. Contours of non-zero a; components predicted by the DNS data from Xiao et al. (2020), the k-
SST model and the TBNN/KCNN model predictions from the present investigation.

2.1.5. Periodic hills
Flow over periodic hills is used as a popular benchmark case for turbulence modelling
given the challenging physics of boundary layer separation in an adverse pressure gradient,
reattachment along the bottom wall, and acceleration of the flow before re-entering the
domain. For the purpose of data-driven turbulence modelling, a variety of periodic hill
data have been made available. In this study, we use the Rey =5600 configuration,
simulated using DNS by Xiao et al. (2020). Xiao et al.’s data were included in McConkey
et al. (2021), which is the primary data source for this study.

The geometry and mesh for the periodic hill case are shown in figure 21. For all periodic
hill cases, the hill height-based Reynolds number is 5600, calculated by

UpyH

Rey = , (2.4)
v

where Uy is the bulk (mean) velocity at the domain inlet. The hill geometry is varied
between cases, based on the hill steepness «. Further details on the computational set-up
for the baseline RANS periodic hill simulations are provided in McConkey et al. (2021).
The boundary conditions are periodic at the inlet/outlet, and no-slip walls at the top
and bottom of the domain were imposed. As discussed in § 1.5.1, the TBNN and KCNN
models were trained on several hill steepness values, with « = 1.2 being used as a hold-out
test set.

Figure 22 shows the components of the anisotropy tensor a; predicted by RANS
(k-w SST), DNS and the ML-augmented RANS simulation. The improvement in all
components of a;; is clear. The baseline k- SST model under-predicts all components,
with severe under-prediction of a1, a»; and as3. The aj» prediction by the k-« SST model
showcases similar trends to the DNS data, but the overall magnitude is lower. However,
after correction, key features of all a;; fields are captured when the TBNN/KCNN augment
the k-w SST model. In particular, the higher magnitudes of the diagonal a;; (normal stress)
components are captured by the augmented model.
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Figure 23. Contours of U; and U, predicted by the DNS data from Xiao et al. (2020), the k-w SST model and
the injected TBNN/KCNN model predictions from the present investigation.
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Figure 24. Contours of error in U; and U, predicted by the k-w SST model and the injected TBNN/KCNN
model predictions, as compared with the DNS data from Xiao et al. (2020).

As was done for the square duct test case (§2.1.3), a modified PIMPLE solver was
used to inject the predicted a;; into the RANS momentum equation for the periodic hill
test case. The numerical set-up for the periodic hill injection was identical to the square
duct case. Figure 23 compares the mean velocity fields before and after the corrected
closure term is used within the RANS simulation. Figure 24 compares the errors in the
velocity components U; and U, estimated by the k-w SST model, and the a posteriori
(post-injection) TBNN/KCNN-augmented SST model.

As seen in figure 23, the primary feature of this flow is a recirculation zone which
appears immediately after the left hill. The recirculation zone is most clearly visualised by
examining the U; fields. The k- SST model over-predicts the size of this recirculation
zone. After correction via injecting the TBNN/KCNN predictions, the recirculation zone
size closely matches the DNS data. In the U; field, a region with U, <0 is seen
immediately above this recirculation region. The baseline k-w SST model under-predicts
the downward velocity here, leading to delayed reattachment, and a longer recirculation
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Dataset o MSE (a;) % non-realisable
Flat plate 0 3.5(10)73 0.6%

102 7.410)73 0%
Square duct 0 2.2(10)° 9.2%

102 2.6(10)° 04 %
Periodic hills 0 3.9(10)~ 13 1.7 %

102 6.3(10)~ 13 03%

Table 3. Comparison of mean squared error and number of non-realisable predictions when training with and
without a realisability-informed loss function.

zone. After correction, the magnitude of U in this shear layer more closely matches the
DNS data. On the right hill, the upward acceleration of the flow under the favourable
pressure gradient is also under-predicted by the k- SST. Here, the injected a;; is able to
better capture the strength of this upward acceleration.

Figure 24 more closely examines the improvements offered by augmenting the k-w SST
model via the TBNN/KCNN. It can be seen that the overall magnitudes of the errors in
U and U, are significantly reduced after injecting the TBNN/KCNN model predictions.
In particular, error in U] is reduced in the reattachment region along the bottom wall, and
the bulk flow above this region. Error in U, is reduced in the previously identified shear
layer above the recirculation region, and the accelerating region before the outlet.

2.2. Impact of realisability-informed training

To determine the impact that including a realisability-informed penalty has on the training
process, the closure term predictions for the three test cases were examined in greater
detail. Two loss functions were used: one with o =0 (representing no realisability
penalty), and one with o = 10> (representing an exaggerated realisability penalty term
in the loss function). The objective of this test was to determine whether including the
realisability penalty during training promotes better generalisation of the closure mapping
to unseen flow variations.

All TBNN hyperparameters were fixed to those given in table 2. Since the realisability-
informed training procedure only applies to the TBNN, a perfect prediction of k via the
KCNN was assumed for calculating error in a;;.

Table 3 compares the MSE in a;; on the hold-out test set, with and without realisability
penalties being used in training. It should be noted that similar to the a priori tests in § 2,
the linear component used when visualising b;; comes from Sg., as is the configuration
when training the TBNN. This linear component is the one used when training the TBNN,
and therefore its use here provides the most fair assessment of how the proposed loss
function promotes more physically realisable results.

As seen in table 3, the realisability-informed loss function significantly reduces
realisability violations on unseen flow variations. Even on hold-out test cases, the model
is able to predict b; without any realisability violations. In some cases, a small tradeoff in
a;j occurs — this tradeoff is expected, as for some difficult points the realisability-informed
loss function involves a tradeoff between error and realisability. However, in all cases,
realisability-informed training also reduces the error in b;;. This error reduction in b; is
expected, since all b;; reference data are realisable. In the case of predicting b;; accurately,
the gradients of the realisability penalty R(b;;) further push the predictions towards an
accurate prediction of b;;, compared with a purely MSE gradient.
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To further visualise the realisability of the TBNN predictions, the barycentric map of
Banerjee ef al. (2007) was used. In the barycentric map, the eigenvalues of a given b;; are
mapped into a triangle, the bounds of which represent the limiting realisable behaviours of
turbulent fluctuations. This triangle is useful to spatially visualise realisability violations,
and types of turbulent flow physics predicted by the baseline turbulence model, the ML-
augmented turbulence model and DNS. Further details on the construction of this mapping
are given in Banerjee et al. (2007) and Emory & Iaccarino (2014).

Figure 25 compares the realisability of the predictions made by a model trained on only a
MSE loss function with a model trained on the realisability-informed loss function for the
three flows in the present study. All predictions are for the hold-out test set for each flow,
representing a generalisation test. The goal of the realisability-informed loss function is to
encode a preference for realisable predictions into the model when generalising outside of
the training dataset. Figure 25 shows a clear improvement in the realisability of the TBNN
predictions. This visualisation supports the results in table 3 in that a realisability-informed
model has significantly lower realisability violations when predicting the anisotropy tensor
on a new flow. Nearly all of the predictions from the realisability-informed model fall
within the realisable boundaries, while the model trained only on MSE predicts several
realisability-violating results when generalising to new cases of complex flows such as
the duct and periodic hill cases. Also, the violations of physical realisability for the
realisability-informed model (when they do occur) are not as severe (as measured from
the magnitude of deviation outside the barycentric map) as those obtained from only a
MSE loss function.

Figure 25 also shows that for all flows in the present study, the original k-w SST
model predicts plane-strain turbulence. All flows in the present study have a strain rate
tensor which results in at least one zero eigenvalue of b;;, for the linear eddy viscosity
approximation (b; = —v;/kS;;), and therefore plane-strain turbulence is predicted for all
flows by the k- SST model.

As discussed in § 1.3, realisability-informed learning function does not guarantee a
fully realisable prediction. Rather, realisability-informed learning encodes a preference
for realisable predictions into the model predictions. This avoids the need for ad hoc
post-processing of the predicted anisotropy tensor, while also encoding a physics-based
(learning) bias into the TBNN. Strict realisability can be further enforced by post-
processing any non-realisable predictions by the TBNN, as the anisotropy tensor can
still be accessed and assessed for realisability in the proposed framework (albeit, with
an evolving linear component).

An important distinction between the dimensional and non-dimensional anisotropy
tensor can also be drawn from the results in this section. In turbulence modelling, it
is often the non-dimensional anisotropy tensor b; that is thought to be of interest —
indeed, it is possible to non-dimensionalise the closure problem (e.g. the generalised
eddy viscosity model proposed by Pope (1975)). However, in the present study, we show
that even with physically realisable DNS data, dimensionalising the anisotropy tensor via
a;j = 2kb;j provides a distinct learning target and loss landscape. The realisability-informed
loss function does not, in principle, compete against a simple error-based loss function in
terms of predicting the non-dimensional b;; — non-realisable predictions will also have high
error. However, setting the dimensional anisotropy tensor as the target creates a tradeoff
between these two objectives, as demonstrated by the results in table 3. Since predicting
the dimensional anisotropy tensor is favourable for the reasons outlined in § 1.3, further
investigation is required to determine the exact source of this tradeoff. This future research
area is particularly relevant for learning anisotropy mappings from data, a major area of
focus for improving RANS via ML.
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Figure 25. Projection of the predicted b;; from the DNS reference data (a,e,i), the k- SST model (b, f, j) and
the TBNN/KCNN with (d,h,/) and without (¢,g,k) realisability-informed learning onto the barycentric triangle.
Panels (a)—(d) show the flat plate data, (e)—(/) show the square duct data and (i)—(/) show the periodic hill data.
Points outside the triangle are not realisable.
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3. Conclusion

The objectives of this study were to propose a physics-informed loss function for training
TBNN anisotropy mappings, a new TBNN architecture and a new injection framework that
accommodates implicit treatment of the linear anisotropy component within a TBNN-type
architecture. This framework addresses an issue related to the stability of injected TBNN
predictions, an issue that has been reported by Kaandorp & Dwight (2020), and consistent
with our own experience. This framework also addresses the issue of realisability within
the context of predicting the anisotropy tensor from RANS input features.

The results here indicate that the proposed model architecture generalises well to
new flow configurations, and the predicted anisotropy tensor can be injected in a
highly stable manner. During the injection procedure in the present investigation, the
Computational Fluid Dynamics solver remained stable, even when testing erratic model
predictions. While this finding corroborates findings from others that frameworks which
leverage implicit treatment of the linear anisotropy component via an eddy viscosity are
numerically stable (Wu et al. 2019b; Brener et al. 2021; Liu et al. 2021), a novelty in
the present investigation is the avoidance of using an optimal eddy viscosity. With the
proposed decomposition of a;; (§ 1.1), a simpler (and more straightforward) baseline k-
SST eddy viscosity is used. The core modification that allows a well-conditioned solution

in this case is the use of S?. within fl.(l) in the TBNN training process. As a result, all

corrections induced by the TBNN are contained in an explicit term in the momentum
equation. Future work includes investigating how new flow generalisation can be improved
by a blending factor that multiplies this explicit term, thereby allowing the correction to
be turned off. For example, a statistics-based scalar or a separate machine learning model
could be used to predict a blending factor. This blending factor could reduce or eliminate
corrections when a test data point departs significantly (is out of distribution) from the
training dataset, and erroneous predictions are likely.

While the realisability-informed loss function does not strictly guarantee physical
realisability of the predictions, the results in §2.2 indicate that the model retains a
realisability bias when generalising. The realisability-informed loss function is not only
applicable to the framework and architecture proposed in this study — it could be used
anytime an anisotropy mapping is generated via machine learning. The use of the
realisability-informed loss function in the present investigation promoted better realisabil-
ity of predictions by a TBNN, but we fully expect the bias induced by this loss function
to also be beneficial for tensor basis random forests (e.g. Kaandorp & Dwight (2020)), or
non-tensor basis frameworks (e.g. Wu et al. (2018)). Since high-quality DNS anisotropy
tensor data are realisable, the realisability penalty can be viewed as an additional boost
to the loss function gradient towards the true value, when a non-realisable prediction is
made. Future work will investigate how the realisability-informed loss function performs
with training data generated by LES, which are not guaranteed to be realisable.

The KCNN used in the proposed framework to correct k& could also be replaced by
coupling the k equation to the momentum equation, as exists in the original turbulence
model, and the TBNN approach originally proposed by Ling et al. (2016). At training
time, k? is used to dimensionalise bjj in the present study, since k is corrected via the
KCNN. This direct correction produced satisfactory results in the present work, but it is
possible that generalisation could be further enhanced by the re-coupling the k equation
with an updated closure term. This enhanced generalisation would result from the fact
that a physics-based coupled equation system is used to correct k, rather than a simple
multiplicative corrector (the KCNN in the present investigation). However, this coupling of
an additional partial differential equation introduces the possibility for instability, an issue

1019 A49-36


https://doi.org/10.1017/jfm.2025.10618

https://doi.org/10.1017/jfm.2025.10618 Published online by Cambridge University Press

Journal of Fluid Mechanics

which is common in machine learning anisotropy modelling. Future work will investigate
the merits of this route.

Ultimately, this investigation demonstrates that with sufficient modifications, TBNN-
type anisotropy mappings can be injected in a stable and well-conditioned manner. Further,
with appropriate physics-based loss function penalties, the mapping can be sensitised
to more physically informative targets than MSE. Moreover, we provided a preliminary
investigation of the utility of KANs for turbulence closure modelling. While TBKAN did
not outperform TBNN in this context, they nevertheless demonstrated the potential for
capturing the complex relationships in the anisotropy tensor (at least in the flat plate case),
suggesting that future research work should be conducted on the use of KANs for turbulent
closure modelling applications. While industrial use of machine learning-based anisotropy
mappings is currently not widespread, the continual development of techniques which
increase the practicality of training and injecting model predictions will help accelerate
more widespread use. Machine learning-augmented turbulence closure modelling is an aid
that the turbulence modelling community can use to help bridge the current computational
gap between RANS and widespread use of LES (Witherden & Jameson 2017).
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Appendix A. Integrity basis input features

Wu et al’s integrity basis is derived from four gradient tensors: S, R, A p and Ay
(Wu et al. 2018). These tensors are calculated as follows:

n 1 (oU; aU;

S;i=Cs= | —+—, Al

v SZ(BXj+axi) A

Ro—cpl (2Y_2Ui (A2)

v 2 \ 0x; ax; )’

N ap

APZCApEl'ﬂa—x[, (A3)

A ok

A =Ca€ji—, (Ad)
0x;

where Cs, Cgr, Ca p and C4, are scalars which non-dimensionalise their corresponding
gradient tensors, and ¢€;; is the Levi-Civita symbol. For example, Ling er al. (2016) chose

Cs =Cg=k/e, so that S is dimensionless.
1019 A49-37
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Without loss of generality, the scalars p and & in the above can be swapped out for other
scalars, such as ¢, or w, thereby replacing A p.ij and Ak ij with Cij i and DU

) 9
G = Coejr—r, (AS)
dx;
RY)
Dy=Coeyiy 2. (A6)

where s1 and s; are two scalar fields. For example, in the present study, s| = , and s, = k.
In 3-D Cartesian coordinates, the strain rate, rotation rate and antisymmetric tensors
associated with the two scalar gradients are

zél.j_%_
éycc_
bl,:cD-

28U1 8U1+8U2 U  dU3
0Xx1 0x2 0x;  0x3 0x1
U, daU;, 23U2 U, 9oU3
dx1 0x) 0x2 0x3 dx2
oU oU, U oU. oU
3+ 1 3+ 2 ) 3
0x1 0x3  0xp 0x3 0x3
0 oUu; dU, 0dU; 0dUs
x> dx1 0x3 ax]
U, aU; 0 aUy 09Uz
0x1 0x2 0x3 0x2
aUs doU; doUz 0Up 0
dx1 dx3 0xp  0x3
o o s
0x3 0x2
051 951
0x3 0x1
0 0
BCLIC
0x2 0x] i
o _do m]
0x3 0x2
O
0x3 0x1
BEY) RY)
0x2 0x]

(AT)

(A8)

(A9)

(A10)

Under some conditions, input features derived from invariants of the minimal integrity
basis derived by Wu et al. (2018) can vanish. These conditions occur when there are
zero gradients in the flow, as all tensors in Wu’s ef al.’s integrity basis are derived from

gradient-based tensors.

Here, we consider two cases.

(i) Two-dimensional flow.

The zero pressure gradient boundary layer and periodic hill cases in the present study
fall into this category. With the coordinate system defined as it was in § 2.1.5, the
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velocity vector is U; = (Uy, Uz, 0), and the gradient tensors take the following form

in 3-D space:
oU oU oU
) 1 1+ 2 0
) Cq ax] d0x2 dxg
Sij - U, oU, 23[@
0x1 0x2 0x2
0 0 0
oU oU
0 a—’—a—z 0
X Cr X2 X1
Ri=— | U oU
U T 0 0
0x1 0x2
0 0 0
— _—
0 0 951
0x2
Ci=Ce| 0 o -
j—=LC 8)61 s
0 0
IR
| dx2 Ox A
— 95, ]
0 0 952
0x2
bi=cp| o o 2%
y==b dx1
as 0
L0
0x2  0x] |

(i) Three-dimensional flow with zero gradients in one direction.
The square duct case in the present study falls into this category. With the coordinate
system defined as it was in §2.1.3, the velocity vector is U; = (Uy, U, Uz). All
gradients in the x; direction are zero: d()/dx; = 0. In this case, the gradient tensors
take the following form in 3-D space:

B 0 U U
0x2 0x3
o Cg | U, U, Uy 0oU3
Si=— | — 2
2 d0x2 0x) 0x3 0x)
Uy dU3z 9oUp 23L@
| 0x3  dxp  Ox3 dx3
B U U
0 - -
0x2 0x3
N C aU oU oU
g Cr|2U B 0l
2 x> 0x3 0x2
oU; dUz 00U, 0
| 0x3 Jx2 0x3

(A1)

(A12)

(A13)

(A14)

, (AL5)

, (A16)
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B dsy 08517
0x3 0xp
A as
Ci=Cc| =L 0o o0 [, (A17)
0x3
d
_ﬂ 0 0
0x2 _
[ o e dn]
0x3 0xp
N as
Di=Cp| — 0 0 | (A18)
0x3
d
_ﬁ 0 0
0x2 1

Cases (i) and (ii) were analysed using sympy (Meurer et al. 2017) to determine which
integrity basis tensor invariants are non-zero, and therefore suitable as potential input
features. The first and second invariants of a rank two tensor are scalar functions,
defined by

11 (Aj) = Aji, (A19)
|
h(Aj) =5 ((A,-,-)2 - A,-,-A,-,-). (A20)

The third invariant, /3 = det(A;) is zero for all of the integrity basis tensors, since they
are either antisymmetric, or symmetric and zero trace. Table 4 shows the results of this
analysis.

Source code which supports the analysis in this appendix and enables further
investigation is available on Github (McConkey 2023).

Tensor Expression D1 #0 D1 #0 amin #0 NI, #0
B Sk Sk v v v v
Bij(-z) S','kS'kIS'lj — v — v
B;” Rix Ry, v v v v
B;” CirCry v v v v
B;” DiyDy; v v v v
Bij('6) Iéikﬁk,@j — v — Ve
By Rit Rit S S, v v v v
Bij(-g) Rik Rit Sim Ronn SnoSo — v — v
Bij(-g) CA',‘kCA'kIS']j v — — v
Bij(-lo) C‘ikéklﬁlmﬁmj v — v v
Bij(-ll) Cit Crt SimConnSnoSoj — — v v
B DixDuSy; v — — v
B;IS) 5ik bklglm Smj v — v v

Table 4. For caption see next page.
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Tensor Expression D5 #0 ML #0 anf #£0 L #0
B;M) bikﬁklﬁzmﬁm,,.?mi,j — — v v
B RixCy; — — v v
B Cix Dy v v v v
Bl;m Rix Dy — — v v
Bl;»lg) lkclelJ — — — v
Bl.j.”) RixCr1Sim S — — v v
Bl;zo) Rik Rit Cim Sim;j — — — v
B;ZI) éiké'klli’lmﬁmj v — v v
B[;ZZ) Iéikﬁklélmgmngnj — — — v
B;»B) é,kékﬂi’lms‘mngnj — — — N
B> Ri Rt Sim Con $10805 — — — v
B> CirCra Sim Rinn SnoS0,j v — v v
B Rix DSy — — — v
B;" Rik D S S — — v v
B;ZS) Iéik Iékl [)lm S'mj — — — N
B/ Dix Dt Rim S v — v v
B;?O) Ié,klék[f)[mgmngnj — — — Ve
Bl.]<.31) Dix Dt Rim Sm,, Sy — — — v
31532) Ritc Ri Sim Dyun Sno o — — — v
Bi]('33) D élezm Rmn S',,OS'OJ v — v v
Bi(j34) éik ﬁkl S'lj v — — v
BI-?S) éik[)klﬁ]mﬁmj N — v v
B,-;%) Cik Cri Dim Sim;j — — v v
315,37) é,k bk[é[,n Sm/ — — v v
,']('38) Clkckl Dlm Smn Snj - - - v
Bl;;g) Dix Dyt Cron Spn Sn] — — — v
BU(.4O) CitCat Sim Dnn SnoSo) — — v v
B{'(j4l) ﬁikﬁklS'lm(A:mnsvnosoj - - v v
3342) f\’ikék[ﬁlj v — — v
B;Y Rix Cra Dim S, v — v v
Bi§44) I’é,kbk[élmgm] v — v v
,']('45) tkckl Dlm Smn Snj v - - v
B Rix DitCom Syun S v — — v
gy RixCrt S Dinn Sno S0 — — — v

Table 4 (cntd). Non-zero invariants of the minimal integrity basis tensor formed by 3',-]-, I@,-j, ¢ ;j and ﬁ,}
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