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Abstract

Slow catalyst poisoning can result in the sudden failure of a chemical reactor
operating isothermally with substrate-inhibited kinetics. At failure, a satisfactory
steady state is exchanged for one of low conversion. The method of matched
asymptotic expansions is used to give a detailed description of the exchange process
in the phase plane. The structure of the jump is ascertained by separate asymptotic
expansions across two adjoining transition regions in which the independent
variables contain unknown shifts.

1. Introduction

The use of catalysts to promote the rate at which one chemical species is converted to
another, more valuable one, is of central importance to the chemical and
pharmaceutical industries. In the context of catalysts, we include here not only those
of conventional inorganic type but also enzymes, particularly in an immobilized
form. A common method of studying the activity of heterogeneous catalysts involves
the use of a spinning highly-porous basket which is filled with catalyst and immersed
in a well-stirred vessel containing the reactant. This is the so-called constant-flow
stirred-tank reactor or CSTR. Thus, the reactant is uniformly distributed through-
out the reactor, and within the catalyst particles themselves for highly porous
materials. The kinetics can then be studied divorced from diffusional resistances; the
equations governing the behaviour of the reactor are ordinary differential equations
in time, and we deal with a lumped parameter system.

It is well known that certain classes of chemically reacting systems can exhibit a
multiplicity of steady states. Examples include non-isothermal systems obeying
Arrhenius chemistry in which the activation energy is sufficiently large [3] and
isothermal systems in which the kinetics is of Langmuir-Hinshelwood (substrate
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inhibited) type and the kinetic parameters bear particular relationships [2].
Existence, uniqueness and stability of steady states have been extensively discussed
by Aris [3] in the context of heterogeneous catalysis and DeVera and Varma [7] for
enzyme catalyzed reactions.

Much of the work reported on the dynamics of the exchange of steady states has
been done within the framework of combustion theory, dealing in particular with
thc so-called ignition phenomenon. Lifian and Williams have calculated the ignition
time for a semi-infinite slab of combustible material experiencing a constant energy
flux [15] and exposed to a step change in surface temperature [16]. Both lumped
and distributed parameter systems have been successfully treated, usually through
asymptotic analysis in the limit of large activation energy. In particular, Kapila[11]
and Kapila and Matkowsky [13] have treated both the ignition and extinction
processes for distributed systems while the spatially homogeneous or lumped
parameter equivalent has been examined by Kassoy [14]. All of this work, including
that of Buckmaster et al. [ 5], was done using large activation energy asymptotics and
a history of the ignition or extinction event obtained.

Our interest in the current work is in a description of the dynamics of the exchange
of steady states in catalytic systems which takes place as a result of the slow passage
of one of the system parameters (catalyst activity) through criticality. We deal witha
lumped system, governed by a set of ordinary differential equations. Such problems
have recently been addressed by Haberman [9] who showed that the transition
region is governed by a Riccati equation whose solution could only be matched with
one of the steady states. This has been extended to distributed systems in the context
of ignition by Kapila [12] who used large activation energy asymptotics. We find a
similar state of affairs here.

A common rate expression for heterogeneously catalysed reactions is

R = _4C, kCy

A 1.1
dt ~ Ci+KsC, +K’ (L)

which is the well-known Langmuir-Hinshelwood [17] or substrate inhibited [2]
form. Here C, is the concentration of reactant or substrate and k, K, K are kinetic
parameters. Examples of this type of kinetics include carbon monoxide oxidation
over platinum as in the automobile catalytic converter, and the reduction of nitrate
by Nitrobacter winogradski in the context of biological systems.

Despite their indispensible nature, all catalysts suffer from a common
complaint—they slowly become deactivated with continued use over long periods of
time. The mechanism of deactivation may involve poisoning by some component
present in the feed material in small amounts (impurity poisoning), poisoning by the
chemical reactant itself (parallel deactivation) or by some product of the reaction
(series poisoning). The latter mechanisms are also referred to as self-poisoning and
are common in enzyme systems. As we have pointed out previously [8], a study of
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chemical reaction mechanisms indicates that the catalyst must lose activity
according to a rate expression which closely resembles that of the main reaction.
Thus, if a represents the activity of a catalyst a typical deactivation rate expression
for parallel poisoning is

rR__da__ kCaa
T dt  Ci+K C,u+K’

(1.2)
in which k, is the deactivation rate constant. Activity is a measure of the chemical
reaction rate at any time, relative to the rate when the catalyst is fresh. Thus
ae[0,1]. When the catalyst is deactivating, the rate constant k in (1.1) must be
replaced by ka. Thus

ac, _ kC,a
dt  Ci+K;C,+K

R=- (1.3)

is the appropriate rate expression for the main reaction.

It is well established that a reactor, in which a reaction is proceeding according to
therate expression (1.1), can operate at any one of a multiplicity of steady states, even
under isothermal conditions [4, 10]. When this is combined with a slow loss in
catalyst activity we are faced with the possibility of a reactor suddenly jumping from
one pseudo-steady state to another. Suddenly, and without warning, a reactor which
has been operating satisfactorily fails and a rapid loss in performance (as measured
by the fractional conversion of reactants to products) is experienced.

The equivalent slowly varying parameter in the theory of ignition and extinction
may be, for example, the surface temperature or surface energy flux. It must be
emphasized, however, that all previous work on the ignition problem has been based
on asymptotics in the limit of large activation energy, the phenomenon itself
resulting from the interaction of the slowly varying parameter with Arrhenius type
nonlinear kinetics. In the present case of an isothermal system, it is the interaction of
slowly varying catalyst activity with nonlinear Langmuir-Hinshelwood kinetics,
which results in the exchange of steady states. We have no additional large or small
parameter equivalent to activation energy about which an asymptotic analysis can
be made; the sole parameter at our disposal is a measure of the slowness of
deactivation. In a future communication, we shall report on an investigation of the
ignition problem when the assumption of large activation energy is relaxed.

The purpose of this paper is to develop solutions to the reactor failure problem
which allow prediction of the conditions at failure. We will use the method of
matched asymptotic expansions and certain results of bifurcation theory to give a
complete description of reactor behaviour throughout its entire time of operation.
The events taking place during the jump will be analysed in some detail.
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2. Formulation and approach

The transient non-dimensional mass balance equation for the concentration of
reactant in a CSTR is

dA Aa
= Ay 2.1
@ - HO A= ae 2.1)
and the rate-of-change of catalyst activity is
da Aa 22)

dr _£B+yA+A2'

Here the reactant concentration has been scaled on its value C , in the feed stream to
the reactor, H is the non-dimensional flow rate into the vessel and ¢ is the non-
dimensional deactivation rate constant (k, C, /k). We shall assume ¢ < 1; if the rate
of deactivation was fast, the catalyst would be of little use. Initially the reactor
contains only inert material and the catalyst has unit activity:

A(0) =0, (2.3)
a(0) = 1. (2.4

We shall investigate the system in the phase plane where the appropriate
equations are

dA

¢ = h(A, a), (2.5
h(A,a) = 1- H(1— A)(B+7yA + A*)/Aa, (2.6)

with the condition
a=1,A4=0. 2.7

When there are multiple steady states the direct application of matched
asymptotic expansions in the start-up and deactivating periods breaks down
because the outer, or long time, solution possesses two separate branches. At some
stage, which we call the branching time, the outer solution jumps discontinuously
from one quasi-steady state to the other.

The case of two stable quasi-steady states is shown in Figure 1 where it can be seen
that the concentration of reactant, A, rises smoothly from a pseudo steady level A*,
achieved shortly after start-up, to a value A4,. But because the catalyst slowly
continues to be deactivated, the slope of the line marked H(l— A)/a becomes
increasingly negative and operation at A4, ceases in a very short time. This
corresponds to a jump in the solution from the lower branchin which 4* < 4 < A,
and a, <a <1 to an upper branch where A > A* and 0 <a < a,. The catalyst
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Fig. 1. Schematic of quasi-steady states.

activity does not experience a sudden change because the rate of deactivation is
always slow. Thus, when the reactant concentration reaches A*, reactor conversion
suddenly drops to a low level despite the fact that the catalyst may still be relatively
active.

The lower branch of the outer solution does not satisfy the initial condition (2.7);
thus an inner solution is constructed near a = 1 using the stretched variable

c=(-a)e (2.8)

and this is matched with the lower branch of the outer solution.

The upper and lower branches are connected through a branching inner solution,
valid within a thin layer about the branching activity a,, and of thickness determined
largely by the residence time in the reactor. The stretched variable appropriate to the
jump is

a=[a—a*—d(e)]/e 29)
As will be shown in a subsequent section, this branching inner solution can be
matched successfully only with the upper branch of the outer solution (where
A > A*);itfails to match with the lower branch. This failure is due to the existence of
a distinguished (singular) limit which necessitates the analysis of another transition
region across which the lower-branch outer solution can be matched with the
branching inner solution [6]. It turns out that the proper stretched variable for this
second transition expansion is
a* = [a—a*—p(g))/e?? (2.10)
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This transition layer is much thicker than the first branching inner layer. The
quantities d(g) and p(e) are shifts determined by matching.

The net result is that the concentration of reactant A4 will be described as a
continuous function of activity even across the jump. The situation is depicted in
Figure 2, where it can be seen that the five solutions: I inner, II lower-branch outer,
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Fig. 2. Schematic of the five solutions in the phase plane.

III transition, I'V branching inner and V upper-branch outer are all required to be
determined and matched for a complete description of reactor performance.

3. Outer solution
The governing equation in the outer region is (2.5). We assume that A has the
following asymptotic expansion
Aa,8) = Ay(a)+eA,(a@)+.... (3.1)
This leads to the following sequence of subproblems:

_H(U-A0)(B+yAo+4}) _
Aga

1 0, (3.2
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H2A3+ A3y - 1)+ 14, _ d4,

< . 33
aAd da G
The solutions are readily found to be
— b, A | 2 -~
= BUZAB+y4+ 40 _ iz ) gy, (3.4)
Ao

- A}

A(a) = 470 (3.5)

T HM2A3+ A3y - D+ B
These solutions do not satisfy (2.7). Their asymptotic behaviour in the limita — 1
is required for later matching. Rewriting the variable a in terms of &, we find that, as

-0,
A+2€
~ At 2
Ao~ A" ¥ e g e+ 06 (3.6)
+4
A, ~ A +0(e), 3.7)

TH2413+ A (y—1)+ ]2

where A% is the smallest root of h(4,1) = 0.
The outer solution (3.4) is multivalued in that it possesses two separate branches.
On linearizing (2.5) about the solution (3.4) we find asymptotic stability if

243+ ANy —1)+ 8 > 0. (3.8)

There are two distinct (positive) branch points, 4, and A%, determined by solving
(3.8) as an equality. The lower branch outer solution is valid in the domain (a,, 1)
where

a, = Hl1—A)(B+yA,+ A})/A, (3.9)

and concentration of reactant varies in the range (4™, A4, ). The upper branch is valid
in (0, a,) where concentration varies from A* to unity. In addition to being a root of
(3.8), A, is also a double root of (3.9). Another root of (3.9) is A* and

A* = B/A2. (3.10)

For later matching with the transition expansions to be constructed in the vicinity
of ax, we require the asymptotic behaviour of the lower and upper branches as
a - a,. The lower branch of the outer solution as a — a, is asymptotically

-

5 Va-a,
A,}}a—a*) +‘iﬁ‘__i+"-’ @3.11)
i) | (la)
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A, ~ _(-A)B+yA,+4])  (1-A,)(B+yA,+A4))(B/A)
52
;%—A*)(a—a*) 4./H \/A*(/%—A*> / (a—a,)?

while the upper branch has the following behaviour:

(ﬂ) (13 \ 2
= )a,-a | —+A4, a,—a)
g~ B Me) T ] (ﬂ) A, Y +.,  (3.13)

A2 B 2 g2\ 42 B 5
N
*

4, ~ U —A,)(B+yA, + A2)(B/A2)
ey

4, Inner solution

+... (3.12)

. (3.14)

We now obtain the solution valid near the boundary a = 1. Using the stretched
variable & defined in (2.8) and assuming the following asymptotic expansion for
reactant concentration,

A~ A& +eA(E)+..., 4.1)
we obtain the equations
ddy
v h(Ao, 1), 42
Ao0) =0, 4.3)
and
d4, __, dh(4,,1) 0h(Ag, 1)
&= M T T e “44)
4,0 =0, (4.5)
at leading order and O(¢), respectively, where
Oh(Ao 1) _ HI243+ A3y — )+ 5] @6)
d0A A} ’ ’
Oh(Ap 1) _ H(1— A (B+yAo+ 4] @)

da Ao

The solutions to (4.2) and (4.4) are

Ao(®) xdx
L H(1-x)(B+yx+x*)—x =¢ (438)
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and

¢ Bh[Ay(S),1] ¢ Oh[ Ay(m), 1]
Ay = J.O s—g—a—-—exp{— st g—Adm}ds, (49)

with the following asymptotic behaviour in the limit £ — oo,
Ag(§) = A +TST, (4.10)

A B A+4 A+2§
(8 = THTZAT A - D)+ B THRAT A G-+ B’

@.11)

Here, TST denotes transcendentally small terms.

5. Matching of inner and lower-outer solutions

We define the following intermediate variable

0 =(1-a)n, (5.1)
where
tegn <kl (5.2
The inner solution, written in terms of the intermediate variable, 6, is
A~A+_ 8A+4 + A+2P16
HY2A34+ A Y y— 1)+ B1*> HRAV*+ A (y—1)+B]
+0(e?)+ O(en)+ 0(n?) (5.3)

and this is identical with the lower branch of the outer solution written in the same
variables. Clearly, the two expansions match and the common part is

£A+4 8A+2£

A - BEAT T A G- D AT+ A G- D T A

6. Branching inner region

In an attempt to join the lower and upper branches of the outer solution, we
stretch the variable a around the branch point according to

a=[a—a,—d(e)]/e 6.1)
This transforms (2.5) to
dA _ _H(l—A)(ﬂ+yA+A2) 62)
da Ala, + ea+ () '
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We now seek a solution of the form

A(@;8) ~ Ay@)+eA (@) +... (6.3)
and this leads to the following O(I) and O(e) equations:
dA _
7‘—1_0 = h(AOs a*)’ (64)
dA4, - 0h(Ag,a,) _0Oh(Aga,)
da ~MTaa AT o 65)

on the assumption that d(g) < . We note that a, is defined in (3.9) and A4, satisfies
(3.8) under equality. Then (6.4) can be rearranged as
ad, __H

da ~ a,Ao

(Ao— A" (Ao~ B/AY) (6.6)

and we require the following asymptotic limits:
a—+o0, Ay— A, 6.7)
a——o, Ay— p/A2. (6.8)

The solution to (6.6) is
(:B/Ai) In (Zg‘ﬂ/“ﬁ:) 3 A* _ = (6.9)
(B/A; —AL? Ao—A, ) [(B/A)-A,1(A,—4,) a,

where the constant of integration has been absorbed into the quantity shift &(g).
The asymptotic behaviour of 4,(a@) as @ » — o0 is

Ag(@) ~ B/AL+0(e™), (6.10)

where
_H(B/A,-A,)
B (B/A2) a* (6.11)

while for a — + o0 we find that

(1—A4)(B+74,+4))  BU—AJ(B+yA, + A Ina

A~ At gz, AAp/AZ-A) @

6.12)
We are not interested in the full solution for 4,, but only in its asymptotic

behaviour in the limits @ — + co. By using the asymptotic behaviour of 4, as
a — + oo, we obtain the corresponding behaviour of A, as follows:
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A.a (B/AY)alna
4H(1—-A)(B+74, + A2 ) 6H([3/A2 *)2

A (@ ~ _( _ *)(ﬂ+'}’A*+A*)(ﬂ/A‘)2 _ (ﬁ/A )a
‘ HAB/AZ— A, HB/AZ—4,)°

A@ ~

as a — + 00; (6.13)

+.. asa— —oo.

(6.14)

By using the intermediate variable

0 = [a—a*—d(e)]/n

in which n meets the condition (5.2), it is easy to see that the branching inner solution
automatically matches with the upper branch of the outer solution. However,
matching with the lower branch fails because the branching inner solution exhibits
only algebraic decay in the limit @ — + co. The implication of the failure is the
existence of another layer and a separate expansion in which the matching is carried
out.

7. Transition expansion

We define the following stretched variable

* = [a—a,—p©IMe) (7.1

in which the shift quantity p(¢) and the scaling factor v(g) are to be determined. The
concentration A is assumed to possess the following local expansion

A~A,+u()A(at)+pye)Ay(a*)+.... (7.2)
Combining (7.1) and (7.2) with (2.5) and noting that

oA, a 0%*h(A,,a
hA,,a,) = ( a:: o) _ a( ABa J_o (7.3)

leads to the equation

o dA,(@") , eusle) dAya®)

v da* v da*
, 0%h Oh(A,,a
= (A*,at)'*'%#l A aAz (A*’ 4)+p( )#‘——)
o%h w o PhA,a )
+p, 1y Ay AzaA2 (A,,a,)+ ‘A3—6A';—!— (7.4)
The first three principal terms balance if
e /v =v = pf (1.5)
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with the result that

= 81/3’
v =g’
The remaining terms balance for
py = 3,
and we are led to the following subproblems:
dA, , Oh, ,0%h,
L gl 142
da* da ;T34 6A2 ’
a4, 0*h, 0%h
dar =M —A?6A3’
where
0%h, _ 2B/AL—A,)
04> (1—A)(B+7A4,+A42)
oh, A,

3h 6B

oA T A=A BrrA,+AD)

Equation (7.9) can be rewritten as

% =—A}+Ka**,
where

-5
and

P h*\2
=W%MC§MJ

This equation is of Ricatti type and can be solved by the transformation

1 ay,
A1=71W+1:,'

then (7.14) becomes

d2
da++ _’Ka++ Vl —O
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Define
a=K'at = [H(l A*()g{;im *:—A )2]1/3a+' (719)
Then (7.18) reduces to
Eh v, —o, (7.20)

which is the familiar Airy equation. Solutions can be written in terms of modified
Bessel functions [1].

l/l c\/(a)Kl/S( 3/2) (=1 > 0 (7.21)
\/3 = s2/— DY+ T a2~ 8P}, G <.

To match with the lower branch of the outer expansion we require the asymptotic
behaviour of this transition solution in the limit @ — oo. This is

_ ApA2-4) e
4@~ C{[Hu T4 V(74 ¥ Aif] Ve

1| H1—-A)%B+yA,+ A4 '3 1
+Z[ A*(,B/A:—A*) ] a—++...}. (1.22)

8. Matching of transition and lower branch outer solutions

Define an intermediate variable

0 = [a—a,—p(e)I/n, (8.1

where ¢*° <y < 1. Combining (3.11) and (3.12) and rewriting in terms of the
intermediate variable 0 gives

A0 (B/AD0 (1—A4)A.e
AB) ~ A*‘[ HA ] T IHA? aAn0

_(-4)A.(B/4)) e A, |
A ATAT? (rof | aHAmE | PO

LPO-(B/AD | (1-A4,)A00)
2HA? 4An* 6*

(1—A4,)AB/AL )éple) |
TTRHAA PO ¢

2/3
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where
A=B+yA,+ AL (8.3)
and
A= B/A2—A,. (8.4)
The transition expansion, written in terms of 0, is
A. A Trre c[HO1-4 )2A2 13 ¢
A~ A —_— - | —+.... .
*+C[H(1—A*)2A2J Vno+3 [ A ot @9
Equations (8.2) and (8.5) match at leading order when
[ A, (1—4,)A]"
cC=— L——W— (8.6)
and A,(a”") has the following form
(A a" F(1-A)A
Yy | L *
Aia®) | “HA :l AAat +.. (8.7)

for a* — oo. This can be used in (7.10) and the result integrated to obtain an
expression for A,(a*), valid in the limit a* — o0

(B/43) . B/ADU-A4)A 1
n/mz)a AT AT 8.8)

Ay(a™) ~

When (8.7) and (8.8) are combined and written in terms of 6, the result is

a0 (B4 .0 1-A4)A, & (BAD(1-4,)A
* HA 2HA? 4A* no \/nB' 2H‘}A3A5/2

(89)

In order for this to match with (8.2) we must have

2 —
ple) = _;_____(ﬁ / A“/)iil AzA*)A . (8.10)

The asymptotic form of A,(a*)inthelimita* — aj < 0, where a is the first zero
of the Airy function, is readily seen to be

Al(a+)~%‘_’*—l%+... (8.11)
and substituting this result into (7.10) and solving for 4,(a*) gives
(B/43)(1= 4, A% In(a* —a})

AN “(at—-ad)? "

Axa®) ~ (8.12)
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where

_ 2 A271173
H(1-A,) .A] _ 8.13)

al = —2.338107[ W
*

These expressions will be needed in the matching of the transition, and branching
inner expansions to follow.

9. Matching of transition and branching inner solutions

We write the branching inner variable as

1
a= F—s[a" —ag —0'(8)], (91)
where ag is defined in (8.13) and
a(e) = —ag i8)+é(i) 9.2)

07T 23T 23
where p(e) has been obtained in (8.10). Define the intermediate variable as

_a’ —ag —ole)
Y

0 9.3

Then the transition expansion (7.2), with 4,(a*)and 4,(a*) givenin (8.11) and (8.12),
respectively, when written in terms of this intermediate variable is

gP.(1-4,)A &Pale(1-4,)A

At (0) ~
6)~ A+ Anb An?6?
(B/A2)(1—A,)*.A? In(On)
4203 * i A3* R0 +.... 9.4)

Similarly, the branching inner expansion for @ — oo assumes the form

eP(1-A4,)A _(82/3 Ineg)(B/A2)(1—A,)* A?

AO) ~ A, +

A.nb 34, A35% 67
A2)(1—A4,)2A? In(nd)
+¢2P3 /4, * . 9.5
& A* A3 ’12 92 ( )
when written in terms of 6.
Equations (9.4) and (9.5) agree if
2301 _ 1/3
oe) = B/ADA1—A) A Ine 9.6)

34, A2
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and d(¢) can be calculated from (9.2). The result is
H(1-A)*A* '3
= — 2/3) A Tl T
o(e) = —2.338¢ [ A, A

_3 (BAD0-4)A  (B/4D(1-A4,)4
20 AN 34, A

.eln(1/e) < 0. .7

Thus, we find that p(¢) and (¢) are both strictly negative so that the jump occurs at
a value of a alittle less than a,,. In terms of time, if the branching time is ¢, then A will
jump to another state a little after t,. The quantity shift p(¢) turns out to be O(g). This
means that in order to obtain the full correction A,(a*) in (7.2) we must return to
(7.10) and include the forcing term dh/6a which has been omitted in going from (7.4)
to (7.10). The additional term which results, must automatically match with the
lower branch of the outer solution written in terms of the appropriate intermediate
variable.

In the case of the shift 4(¢), we have apparently omitted not only a forcing term O(g)
but also two other larger terms 0(¢*?) and O(eln 1/¢). These corrections must be
included by inserting terms of this order between A, and 4, in (6.3); the result will be
two further equations to be solved for the corrections. The corrections must match
automatically with similar terms in the upper branch outer solution written in the
appropriate intermediate variable. The additional terms resulting from both p(e)
and 6(e) must also match across the transition and branching inner regions. All of
this affects the solutions beyond leading order but the quantity shifts necessarily
remain unaltered, and are correct as given here.
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