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Abstract

Let p be a prime and b a primitive root of p2. In this paper, we give an explicit formula for the number
of times a value in {0, 1, . . . , b − 1} occurs in the periodic part of the base-b expansion of 1/pm. As
a consequence of this result, we prove two recent conjectures of Aragón Artacho et al. [‘Walking on
real numbers’, Math. Intelligencer 35(1) (2013), 42–60] concerning the base-b expansion of Stoneham
numbers.
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1. Introduction
Let b > 2 be an integer. A real number α ∈ (0, 1) is called b-normal if in the
base-b expansion of α the asymptotic frequency of the occurrence of any word
w ∈ {0, 1, . . . , b − 1}∗ of length n is 1/bn. A canonical example of such a number is
Champernowne’s number,

C10 := 0.123456789101112131415161718192021 · · · ,

which, given here in base 10, is the size-ordered concatenation of N (each number
written in base 10) proceeded by a decimal point. Champernowne’s number was
shown to be 10-normal by Champernowne [5] in 1933 and transcendental by
Mahler [9] in 1937.

In 1973, Stoneham [12] defined the following class of numbers. Let b, c > 2 be
relatively prime integers. The Stoneham number αb,c is given by

αb,c :=
∑
n>1

1
cnbcn .
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Stoneham [12] showed that α2,3 is 2-normal. A new proof of this result was given
by Bailey and Misiurewicz [4], and finally, in 2002, Bailey and Crandall [3] proved
that αb,c is b-normal for all coprime integers b, c > 2; see also Bailey and Borwein [2].
Transcendence of αb,c follows easily by Mahler’s method; the interested reader can see
the details Appendix A.

Recently Aragón Artacho et al.[1] made two conjectures concerning properties of
the base-4 expansion of the Stoneham number α2,3 and the base-3 expansion of α3,5,
respectively. In this paper, we prove their conjectures, and as such they are stated here
as theorems (we have fixed a few small typos in their published conjectures).

Theorem 1.1. Let the base-4 expansion of α2,3 be given by α2,3 :=
∑

k>1 dk4−k, with
dk ∈ {0, 1, 2, 3}. Then, for all n > 0:

(i)
∑ 3

2 (3n+1)+3n−1

k= 3
2 (3n+1)

(eπi/2)dk = −

i if n is odd,
1 if n is even;

(ii) dk = d3n+k = d2·3n+k for k = 3
2 (3n + 1), 3

2 (3n + 1) + 1, . . . , 3
2 (3n + 1) + 3n − 1.

Theorem 1.2. Let the base-3 expansion of α3,5 be given by α3,5 :=
∑

k>1 ak3−k, with
ak ∈ {0, 1, 2}. Then, for all n > 0:

(i)
∑1+5n+1+4·5n

k=1+5n+1 (eπi/3)ak = (−1)neπi/3;
(ii) ak = a4·5n+k = a8·5n+k = a12·5n+k = a16·5n+k for k = 5n+1 + j, with j = 1, . . . , 4 · 5n.

We note here that the Stoneham numbers αb,c are in some ways very similar to
Champernowne’s numbers. They are not concatenations of consecutive integers, but
the concatenation of periods of certain rational numbers. Let b, c > 2 be coprime
integers and let wn be the word w ∈ {0, 1, . . . , b − 1}∗ of minimal length such that( 1

cn

)
b

= 0.wn,

where (x)b denotes the base-b expansion of the real number x and w denotes the
infinitely repeated word w. Then the Stoneham numbers are similar to the numbers

0.w1w2w3w4w5 · · ·wn · · · ,

which are given by concatenating the words wn. Indeed, the Stoneham number has this
structure, but with the w j repeated and cyclicly shifted.

Remark. While we will be considering the base-4 expansion of α2,3 we are still
dealing with a normal number; α2,3 is also 4-normal. This is given by a result of
Schmidt [11] who proved in 1960 that the r-normal real number x is s-normal if
log r/logs ∈ Q.

2. Base-b expansions of rationals

To prove the above theorems in as much generality as possible we will need to
consider how we write a reduced fraction a/k in the base b. Such an algorithm is
well known, but we remind the reader here, as it will be useful to have the general
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Base-b Algorithm for a/k < 1.

Let b, k > 2 be integers and a > 1 be an integer coprime to k. Set r0 = a and write

r0b = q1k + r1

r1b = q2k + r2

...

r j−1b = q jk + r j

...

where q j ∈ {0, 1, . . . , b − 1} and r j ∈ {0, 1, . . . , k − 1} for each j. Stop when rn = r0.
Then (a

k

)
b

= 0.q1q2 · · · qn.

Figure 1. The base-b algorithm for the reduced rational a/k < 1.

framework for the proofs of Theorems 1.1 and 1.2. To write a/k in the base b, we use
a sort of modified division algorithm; see Figure 1.

We record here facts about the base-b algorithm which we will need.

Lemma 2.1. Suppose that b, k > 2 are coprime, and that r j and q j are defined by the
base-b algorithm for a/k. Then gcd(ri, k) = 1.

Proof. Suppose that p|k, and proceed by induction on i. Firstly, r0 = a and by
assumption gcd(r0, k) = gcd(a, k) = 1.

Now suppose that gcd(ri, k) = 1, so that also gcd(rib, k) = 1. Then

ri+1 = rib − qi+1k ≡ rib . 0 mod p,

since gcd(b, k) = 1. Thus gcd(ri+1, k) = 1. �

Also, we have that equivalent r j give equal q j.

Lemma 2.2. Suppose b, k > 2 are coprime, and that r j and q j are defined by the base-b
algorithm for the reduced fraction a/k. Then ri ≡ r j (mod b) if and only if qi = q j.

Proof. Suppose that ri ≡ r j (mod b). By considering the difference between ri−1b =

qik + ri and r j−1b = q jk + r j modulo b, we see that b|(qi − q j)k, so that since gcd(b, k) =

1, we have that b|(qi − q j). Since qi, q j ∈ {0, 1, . . . , b − 1}, we thus have that qi = q j.
Conversely, suppose that qi = q j. Here, again, we can consider the difference

between the defining equations for qi and q j modulo b; this gives the desired result. �
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Indeed, the value of q j is determined by the residue class of r j modulo b and the
value of k−1 modulo b.

Lemma 2.3. Suppose that b, k > 2 are coprime, and that r j and q j are defined by the
base-b algorithm for the reduced fraction a/k. Then ri ≡ j (mod b) if and only if
qi ≡ − jk−1(modb), where qi ∈ {0, 1, . . . , b − 1}.

Proof. If ri ≡ j (mod b), then the equation ri−1b = qik + ri gives qik ≡ − j (mod b),
which in turn gives that qi ≡ − jk−1 (mod b). Since qi ∈ [0, b − 1] we are done with this
direction of proof.

Conversely, suppose that qi = (− jk−1 mod b). Then surely qi ≡ − jk−1 (mod b) and
so qik ≡ − j (mod b). Thus, again using ri−1b = qik + ri, we have that ri ≡ j (mod b). �

The following lemma is a direct corollary of Lemma 2.3.

Lemma 2.4. Suppose that b, k > 2 are coprime, and that r j and q j are defined by the
base-b algorithm for the reduced fraction a/k. Then ri ≡ 0 (mod b) if and only if
qi = 0.

Proof. Apply Lemma 2.3 with j = 0. �

We will use the following classical theorem (see [10, Theorem 12.4]) and lemma.

Theorem 2.5. Let b be a positive integer. Then the base-b expansion of a rational
number either terminates or is periodic. Further, if r, s ∈ Z with 0 < r/s < 1 where
gcd(r, s) = 1 and s = TU, where every prime factor of T divides b and gcd(U, b) = 1,
then the period length of the base-b expansion of r/s is the order of b modulo U, and
the preperiod length is N, where N is the smallest positive integer such that T |bN .

Theorem 2.5 tells us that the base-b expansion of a/k is purely periodic (recall that
gcd(b, k) = 1), and that the minimal period is ordkb, which divides ϕ(k), so that this
also is a period. This result can be exploited using the following number-theoretic
result, a proof of which can be found in most elementary number theory texts; for
example, see [10, Theorem 9.10].

Lemma 2.6. A primitive root of p2 is a primitive root of pk for any integer k > 2.

Applying Lemma 2.6 gives the following result.

Lemma 2.7. Let 0 < a/pm < 1 be a rational number in lowest terms and let b > 2 be an
integer that is a primitive root of p2. Suppose that (1/pm)b = .q1q2 · · · qn is given by
the base-b algorithm. Then ( a

pm

)
b

= .qσ(1)qσ(2) · · · qσ(n)

where σ is a cyclic shift on n letters.

Proof. This is a direct consequence of the base-b algorithm. �

As a consequence of the above lemmas we are able to provide the following
characterisation of certain base-b expansions.
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Proposition 2.8. Let m > 1 be an integer, p be an odd prime, b > 2 be an integer
coprime to p, and q j and r j be given by the base-b algorithm for the reduced fraction
a/pm. If b is a primitive root of p and p2, then period(a/pm) = ϕ(pm) and

#{ j 6 ϕ(pm) : q j = 0} =
⌊ pm

b

⌋
−

⌊ pm−1

b

⌋
.

Proof. The fact that period(a/pm)b = ϕ(pm) follows directly from b being a primitive
root of p and p2, Lemma 2.6 and Theorem 2.5. This further implies that the ϕ(pm)
values of ri given by the base-b algorithm for a/pm are distinct. Applying Lemma 2.1
gives that

{r1, r2, . . . , rϕ(pm)} = {i 6 pm : gcd(i, p) = 1}. (2.1)

Also recall that ( a
pm

)
b

= .q1q2 · · · qϕ(pm),

and that by Lemma 2.4, qi = 0 if and only if ri ≡ 0 (mod b). Note that there are exactly⌊ pm

b

⌋
−

⌊ pm

bp

⌋
=

⌊ pm

b

⌋
−

⌊ pm−1

b

⌋
elements of {i 6 pm : gcd(i, p) = 1}which are divisible by b. Thus using the set equality
(2.1), we have that there are exactly bpm/bc − bpm−1/bc elements of {r1, r2, . . . , rϕ(pm)}

divisible by b. Appealing to Lemma 2.4, we then have that there are bpm/bc − bpm−1/bc
of q1, q2, . . . , qϕ(pm) such that q j = 0. �

Note that while we record the qi = 0 case because of its simplicity, the method can
be applied to count any value of qi that is desired by using the appropriate case of
Lemma 2.3. In fact, we will do this in a few special cases to prove Theorems 1.1
and 1.2.

3. The base-b expansion of the Stoneham number αb,p

We will need properties for both the base-b and base-b2 expansions of the Stoneham
number αb,p.

Proposition 3.1. Let b, p > 2 be coprime integers with p a prime. Denote the base-b
expansion of αb,p as

αb,p =
∑
j>1

1
p jbp j =

∑
k>1

ak

bk ,

where ak ∈ {0, 1, . . . , b − 1}, and write(∑m−1
j=0 p j

pm

)
b

= .q1q2 · · · qn ,

where qi is determined by the base-b algorithm, for each i, so n = ordpm b. Then
qi = apm+ jn+i for each i ∈ {1, 2, . . . , n} and each j ∈ {0, 1, 2, . . . , p · ϕ(pm)/ordpm b − 1}.

It is worth noting that Proposition 3.1 is the full generalisation of Theorem 1.1(ii).
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We require the following lemma.

Lemma 3.2. Let b, c > 2 be coprime. Then, for any m > 1,

αb,c −

m∑
n=1

1
cnbcn <

1
bcm+1 .

That is, the base-b expansion of αb,c agrees with the b-ary expansion of its mth partial
sum up to the cm+1th place.

Proof. Let m > 1 and note that∑
n>m+1

1
cn =

1
cm+1 − cm < 1.

Using this fact, we have that

αb,c −

m∑
n=1

1
cnbcn =

∑
n>m+1

1
cnbcn <

1
bcm+1

∑
n>m+1

1
cn <

1
bcm+1 ,

which is the desired result. �

Proof of Proposition 3.1. Let m > 1, sm = pmbpm
, and define the positive integer rm

by
rm

sm
=

m∑
n=1

1
pnbpn .

Then
gcd(rm, sm) = gcd(rm, pmbpm

) = gcd(rm, pb) = 1.

We apply Theorem 2.5 with b = b, r = rm, s = sm, T = bpm
, and U = pm to give that the

period length of the base-b expansion of rm/sm is the order of b modulo pm, which we
will write as

period(rm/sm) = ordpm b,

and the preperiod length of rm/sm is pm, which we will write as

preperiod(rm/sm) = pm.

Combining the observations of the previous paragraph with Lemma 3.2 gives that

apm+1apm+2 . . . apm+1 = www · · ·w︸      ︷︷      ︸
(p · ϕ(pm)/ordpm b) times

,

where w = q1q2 · · · qordpm b is a word on the alphabet {0, 1, . . . , b} with length ordpm b.
To finish the proof of this proposition, it is enough to appeal to Lemma 3.2 to show that(∑m−1

j=0 p j

pm

)
b

= .w

where w is as defined in the previous sentence, which follows directly from the
definition of αb,p. �
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Theorem 1.1 concerns a base-b2 expansion; we will provide some specialised
results for this case only when b = 2, in order to specifically prove Theorem 1.1, as the
more interesting case for generalisations is the base-b case.

Lemma 3.3. Let b, c > 2 be coprime. Then, for any m > 1,

αb,c −

m∑
n=1

1
cnbcn <

1
(b2)cm+1/2

.

That is, the base-b2 expansion of αb,c agrees with the base-b2 expansion of its mth
partial sum up to the dcm+1/2eth place.

Proof. This is a direct consequence of Lemma 3.2. �

Proposition 3.4. Let p be an odd prime such that 2 is a primitive root of p and p2.
Denote the base-4 expansion of α2,p as

α2,p =
∑
j>1

1
p j2p j =

∑
k>1

dk

4k ,

where dk ∈ {0, 1, . . . , 3}, and write(∑m−1
j=0 p j

pm

)
4

= .q1q2 · · · qn ,

where the qis are determined by the base-4 algorithm, so n = ordpm 4 = ϕ(pm)/2. Then
qi = d(pm+1)/2+ jn+i for each i ∈ {1, . . . , n} and each j ∈ {0, 1, 2, . . . , p − 1}.

Proof. This proposition follows as a corollary of Proposition 3.1. Indeed, by
Proposition 3.1, we have a prefix u of odd length p and words wm of even length
ϕ(pm) such that

(α2,p)2 = .u w1w1 · · ·w1︸        ︷︷        ︸
p times

w2w2 · · ·w2︸        ︷︷        ︸
p times

· · ·wmwm · · ·wm︸         ︷︷         ︸
p times

· · · .

Now the word wm is the minimal repeated word given by the base-2 expansion of
(
∑m−1

j=0 p j)/pm. But

0 <

∑m−1
j=0 p j

pm =
pm − 1

pm(p − 1)
<

1
p − 1

6
1
2
,

and so the first letter of wm, for each m, is necessarily 0. Define the word vm by
wm = 0vm. Then

(α2,p)2 = .u w1w1 · · ·w1︸        ︷︷        ︸
p times

w2w2 · · ·w2︸        ︷︷        ︸
p times

· · ·wmwm · · ·wm︸         ︷︷         ︸
p times

· · ·

= .u 0v10v1 · · · 0v1︸          ︷︷          ︸
p times

0v20v2 · · · 0v2︸          ︷︷          ︸
p times

· · · 0vm0vm · · · 0vm︸            ︷︷            ︸
p times

· · ·

= .u0 v10v10 · · · v10︸          ︷︷          ︸
p times

v20v20 · · · v20︸          ︷︷          ︸
p times

· · · vm0vm0 · · · vm0︸            ︷︷            ︸
p times

· · · , (3.1)

where the word u0 is of even length p + 1 and the word vm0 is of even length ϕ(pm).
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As in the statement of Proposition 3.1, let ak be the kth letter in the base-2 expansion
of α2,p, and as in the statement of the current proposition, let dk be the kth letter in the
base-4 expansion of α2,p. Then

dk = 2a2k−1 + a2k.

Using this fact, it is an immediate consequence of (3.1) that there are words U of
length (p + 1)/2 and Wm of length ϕ(pm)/2 such that

(α2,p)4 = .U W1W1 · · ·W1︸         ︷︷         ︸
p times

W2W2 · · ·W2︸         ︷︷         ︸
p times

· · ·WmWm · · ·Wm︸           ︷︷           ︸
p times

· · · .

As in Proposition 3.1, to finish the proof of this proposition, it is enough to apply
Lemma 3.3 to show that (∑m−1

j=0 p j

pm

)
4

= .Wm,

where Wm is as defined in the previous sentence, which follows directly from the
definition of α2,p. �

4. The Aragon, Bailey, Borwein and Borwein conjectures

In this section, we apply the results of Section 3 to prove Theorems 1.1 and 1.2. As
it turns out, the proof of Theorem 1.2 is a bit more straightforward, so we present its
proof first.

Proof of Theorem 1.2 For convenience let us write ω := eπi/3 and let ri and qi be
given by the base-3 algorithm for 1/5n. Note that, by Proposition 3.1,

1+5n+1+4·5n∑
k=1+5n+1

ωak =

2∑
j=0

#{i 6 ϕ(5n+1) : qi = j} · ω j.

Now #{i 6 ϕ(5n) : qi = j} can be given by looking at where the number 5n lies
modulo 15. Since, for every 15 consecutive numbers, 12 of them are coprime to 5, and
these 12 fall into the three equivalence classes modulo 3 with an equal frequency of 4
times each, we need only look at the remainder of 5n modulo 15. An easy calculation
gives that

5n ≡

5 (mod 15) if n is odd,
10 (mod 15) if n is even.

This allows us to give that

#{i 6 ϕ(5n) : ri ≡ 0 (mod 3)} =


4 ·

⌊ 5n

15

⌋
+ 1 if n is odd,

4 ·
⌊ 5n

15

⌋
+ 3 if n is even,
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#{i 6 ϕ(5n) : ri ≡ 1 (mod 3)} =


4 ·

⌊ 5n

15

⌋
+ 2 if n is odd,

4 ·
⌊ 5n

15

⌋
+ 3 if n is even,

and

#{i 6 ϕ(5n) : ri ≡ 2 (mod 3)} =


4 ·

⌊ 5n

15

⌋
+ 1 if n is odd,

4 ·
⌊ 5n

15

⌋
+ 2 if n is even.

Applying Lemma 2.3 to the preceding equalities gives that

#{i 6 ϕ(5n) : qi = 0} =


4 ·

⌊ 5n

15

⌋
+ 1 if n is odd,

4 ·
⌊ 5n

15

⌋
+ 3 if n is even,

#{i 6 ϕ(5n) : qi = 1} =


4 ·

⌊ 5n

15

⌋
+ 2 if n is odd,

4 ·
⌊ 5n

15

⌋
+ 2 if n is even,

and

#{i 6 ϕ(5n) : qi = 2} =


4 ·

⌊ 5n

15

⌋
+ 1 if n is odd,

4 ·
⌊ 5n

15

⌋
+ 3 if n is even.

Thus, since 1 + ω + ω2 = 0,

1+5n+1+4·5n∑
k=1+5n+1

ωak =

2∑
j=0

#{i 6 ϕ(5n+1) : qi = j} · ω j

=

ω if n + 1 is odd,
−ω if n + 1 is even,

= (−1)nω,

which proves part (i).
Part (ii) follows directly from Proposition 3.1 with b = 3 and p = 5. �

Proof of Theorem 1.1. Note that
1

3n23n =
8
3n ·

1

4
3
2 (3n−1+1)

.

Let ri and qi be given by the base 4 algorithm for 8/3n. We will use the fact that
each of these ri is equivalent to 2 modulo 3. This is easily seen as we have for
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each i that ri−14 = qi3n + ri, so that, taking this equality modulo 3, we have that
ri−1 ≡ ri (mod 3). Recalling that r0 = 8 shows that indeed ri ≡ 2 (mod 3) for each i.

Since ord3n 4 = 3n−1, we have, by Proposition 3.4, that
3
2 (3n+1)+3n−1∑

k= 3
2 (3n+1)

(eπi/2)ak =

3∑
j=0

#{i 6 ϕ(3n+1)/2 : qi = j} · (eπi/2) j.

Now #{i 6 3n : qi = j} can be given by looking at where the number 3n lies modulo
12. Since, for every 12 consecutive numbers, four of them are equivalent to 2 modulo
3, and these four fall into the four distinct equivalence classes modulo 4, we must
consider the remainder of 3n modulo 12. We have that

3n ≡

3 (mod 12) if n is odd,
9 (mod 12) if n is even.

Thus

#{i 6 ϕ(3n)/2 : ri ≡ 0 (mod 4)} =


⌊ 3n

12

⌋
if n is odd,⌊ 3n

12

⌋
+ 1 if n is even,

#{i 6 ϕ(3n)/2 : ri ≡ 1 (mod 4)} =


⌊ 3n

12

⌋
if n is odd,⌊ 3n

12

⌋
+ 1 if n is even,

#{i 6 ϕ(3n)/2 : ri ≡ 2 (mod 4)} =


⌊ 3n

12

⌋
+ 1 if n is odd,⌊ 3n

12

⌋
+ 1 if n is even,

and

#{i 6 ϕ(3n)/2 : ri ≡ 3 (mod 4)} =


⌊ 3n

12

⌋
if n is odd,⌊ 3n

12

⌋
if n is even.

By Lemma 2.3, we have that

#{i 6 ϕ(3n)/2 : qi = 0} =


⌊ 3n

12

⌋
if n is odd,⌊ 3n

12

⌋
+ 1 if n is even,

#{i 6 ϕ(3n)/2 : qi = 1} =


⌊ 3n

12

⌋
if n is odd,⌊ 3n

12

⌋
if n is even,
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#{i 6 ϕ(3n)/2 : qi = 2} =


⌊ 3n

12

⌋
+ 1 if n is odd,⌊ 3n

12

⌋
+ 1 if n is even,

and

#{i 6 ϕ(3n)/2 : qi = 3} =


⌊ 3n

12

⌋
if n is odd,⌊ 3n

12

⌋
+ 1 if n is even.

Since 1 + (eπi/2) + (eπi/2)2 + (eπi/2)3 = 0, we thus have that
3
2 (3n+1)+3n−1∑

k= 3
2 (3n+1)

(eπi/2)ak =

3∑
j=0

#{i 6 ϕ(3n+1)/2 : qi = j} · (eπi/2) j

=

−1 if n + 1 is odd,
−i if n + 1 is even,

= −

i if n is odd,
1 if n is even,

which proves part (i).
Part (ii) follows directly from Proposition 3.4 with b = 2 and p = 3. �
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Appendix A. Transcendence of Stoneham numbers

In this appendix, we give details of the transcendence of the Stoneham number
αb,c for any choice of integers b, c > 2. In fact, Mahler’s method gives much stronger
results, which imply this desired conclusion.

We start out by letting c > 2 be an integer and define

Fc(x) :=
∑
n>1

xcn

cn .

Notice that Fc(x) satisfies the Mahler functional equation

Fc(xc) = cFc(x) − xc. (A.1)
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Now suppose that Fc(x) ∈ C(x). Then there are polynomials a(x), b(x) ∈ C[x] such that

Fc(x) −
a(x)
b(x)

= 0.

Since Fc(x) ∈ C[[x]] is not a polynomial, we may assume, without loss of generality,
that gcd(a(x), b(x)) = 1 and b(0) , 0 and b(x) < C. Sending x→ xc and applying the
functional equation, we thus have that

Fc(x) −
a(x)
b(x)

= 0 = Fc(xc) −
a(xc)
b(xc)

= Fc(x) −
( xc

c
+

a(xc)
b(xc)

)
,

so that
xc

c
+

a(xc)
b(xc)

=
a(x)
b(x)

. (A.2)

Now as functions, the right- and left-hand sides of (A.2) must have the same
singularities. But b(xc) will have more zeros (counting multiplicity if needed) than
b(x) unless b(x) is a constant, which is a contradiction. Thus Fc(x) does not represent
a rational function. In fact, we can now appeal to the following theorem, to give that
Fc(x) is transcendental over C(x).

Theorem A.1 (Nishioka [6]). Suppose that F(x) ∈ C[[x]] satisfies one of the following
for an integer d > 1:

(i) F(xd) = φ(x, F(x)),
(ii) F(x) = φ(x, F(xd)),

where φ(x, u) is a rational function in x, u over C. If F(x) is algebraic over C(x), then
F(x) ∈ C(x).

To prove the transcendence of the Stoneham numbers, we appeal to a classical result
of Mahler [8], We record it here as taken from Nishioka’s monograph [7].

Theorem A.2 (Mahler [8]). Let I be the set of algebraic integers over Q, K be an
algebraic number field, IK = K ∩ I, f (x) ∈ K[[x]] with radius of convergence R > 0
satisfying the functional equation for an integer d > 1,

f (xd) =

∑m
i=0 ai(x) f (x)i∑m
i=0 bi(x) f (x)i , m < d, ai(x), bi(x) ∈ IK[x],

and ∆(x) := Res(A, B) be the resultant of A(u) =
∑m

i=0 ai(x)ui and B(u) =
∑m

i=0 bi(x)ui

as polynomials in u. If f (x) is transcendental over K(x) and ξ is an algebraic number
with 0 < |ξ| < min{1,R} and ∆(ξdn

) , 0 (n > 0), then f (ξ) is transcendental.

Since Fc(x) is transcendental over C(x), Fc(x) satisfies the functional equation
(A.1), and Res(cu − xc, 1) , 0 for all x, we have the following corollary to Mahler’s
theorem.

Corollary A.3. Let c > 2 be an integer. The number
∑

n>1 (1/cn)ξcn
is transcendental

for all algebraic numbers ξ with 0 < |ξ| < 1. In particular, for all b, c > 2, the Stoneham
number αb,c is transcendental.
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