# AN ARITHMETICAL EXCURSION VIA STONEHAM NUMBERS

#### **MICHAEL COONS**

(Received 20 December 2012; accepted 29 November 2013; first published online 27 March 2014)

Communicated by J. Borwein

To Professor Peter Borwein on his 60th birthday

#### Abstract

Let p be a prime and b a primitive root of  $p^2$ . In this paper, we give an explicit formula for the number of times a value in  $\{0, 1, \ldots, b-1\}$  occurs in the periodic part of the base-b expansion of  $1/p^m$ . As a consequence of this result, we prove two recent conjectures of Aragón Artacho *et al.* ['Walking on real numbers', *Math. Intelligencer* **35**(1) (2013), 42–60] concerning the base-b expansion of Stoneham numbers.

2010 Mathematics subject classification: primary 11K16; secondary 11B50.

Keywords and phrases: Stoneham numbers, base-b expansions, normal numbers.

#### 1. Introduction

Let  $b \ge 2$  be an integer. A real number  $\alpha \in (0, 1)$  is called *b-normal* if in the base-b expansion of  $\alpha$  the asymptotic frequency of the occurrence of any word  $w \in \{0, 1, ..., b-1\}^*$  of length n is  $1/b^n$ . A canonical example of such a number is Champernowne's number,

$$C_{10} := 0.123456789101112131415161718192021 \cdots$$

which, given here in base 10, is the size-ordered concatenation of  $\mathbb{N}$  (each number written in base 10) proceeded by a decimal point. Champernowne's number was shown to be 10-normal by Champernowne [5] in 1933 and transcendental by Mahler [9] in 1937.

In 1973, Stoneham [12] defined the following class of numbers. Let  $b, c \ge 2$  be relatively prime integers. The *Stoneham number*  $\alpha_{b,c}$  is given by

$$\alpha_{b,c} := \sum_{n \ge 1} \frac{1}{c^n b^{c^n}}.$$

The research of M. Coons is supported by Australian Research Council grant DE140100223.

© 2014 Australian Mathematical Publishing Association Inc. 1446-7887/2014 \$16.00

304 M. Coons [2]

Stoneham [12] showed that  $\alpha_{2,3}$  is 2-normal. A new proof of this result was given by Bailey and Misiurewicz [4], and finally, in 2002, Bailey and Crandall [3] proved that  $\alpha_{b,c}$  is *b*-normal for all coprime integers  $b,c \ge 2$ ; see also Bailey and Borwein [2]. Transcendence of  $\alpha_{b,c}$  follows easily by Mahler's method; the interested reader can see the details Appendix A.

Recently Aragón Artacho *et al.*[1] made two conjectures concerning properties of the base-4 expansion of the Stoneham number  $\alpha_{2,3}$  and the base-3 expansion of  $\alpha_{3,5}$ , respectively. In this paper, we prove their conjectures, and as such they are stated here as theorems (we have fixed a few small typos in their published conjectures).

THEOREM 1.1. Let the base-4 expansion of  $\alpha_{2,3}$  be given by  $\alpha_{2,3} := \sum_{k \ge 1} d_k 4^{-k}$ , with  $d_k \in \{0, 1, 2, 3\}$ . Then, for all  $n \ge 0$ :

(i) 
$$\sum_{k=\frac{3}{2}(3^n+1)+3^n-1}^{\frac{3}{2}(3^n+1)+3^n-1}(e^{\pi i/2})^{d_k}=-\begin{cases} i & \text{if $n$ is odd,}\\ 1 & \text{if $n$ is even;} \end{cases}$$

(ii) 
$$d_k = d_{3^n + k} = d_{2 \cdot 3^n + k}$$
 for  $k = \frac{3}{2}(3^n + 1), \frac{3}{2}(3^n + 1) + 1, \dots, \frac{3}{2}(3^n + 1) + 3^n - 1$ .

THEOREM 1.2. Let the base-3 expansion of  $\alpha_{3,5}$  be given by  $\alpha_{3,5} := \sum_{k \ge 1} a_k 3^{-k}$ , with  $a_k \in \{0, 1, 2\}$ . Then, for all  $n \ge 0$ :

(i) 
$$\sum_{k=1+5^{n+1}+4\cdot 5^n}^{1+5^{n+1}+4\cdot 5^n} (e^{\pi i/3})^{a_k} = (-1)^n e^{\pi i/3};$$

(ii) 
$$a_k = a_{4 \cdot 5^n + k} = a_{8 \cdot 5^n + k} = a_{12 \cdot 5^n + k} = a_{16 \cdot 5^n + k}$$
 for  $k = 5^{n+1} + j$ , with  $j = 1, \dots, 4 \cdot 5^n$ .

We note here that the Stoneham numbers  $\alpha_{b,c}$  are in some ways very similar to Champernowne's numbers. They are not concatenations of consecutive integers, but the concatenation of periods of certain rational numbers. Let  $b, c \ge 2$  be coprime integers and let  $w_n$  be the word  $w \in \{0, 1, \dots, b-1\}^*$  of minimal length such that

$$\left(\frac{1}{c^n}\right)_b = 0.\overline{w_n},$$

where  $(x)_b$  denotes the base-*b* expansion of the real number *x* and  $\overline{w}$  denotes the infinitely repeated word *w*. Then the Stoneham numbers are similar to the numbers

$$0.w_1w_2w_3w_4w_5\cdots w_n\cdots$$

which are given by concatenating the words  $w_n$ . Indeed, the Stoneham number has this structure, but with the  $w_i$  repeated and cyclicly shifted.

**Remark.** While we will be considering the base-4 expansion of  $\alpha_{2,3}$  we are still dealing with a normal number;  $\alpha_{2,3}$  is also 4-normal. This is given by a result of Schmidt [11] who proved in 1960 that the *r*-normal real number *x* is *s*-normal if  $\log r/\log s \in \mathbb{Q}$ .

#### 2. Base-*b* expansions of rationals

To prove the above theorems in as much generality as possible we will need to consider how we write a reduced fraction a/k in the base b. Such an algorithm is well known, but we remind the reader here, as it will be useful to have the general

### Base-*b* Algorithm for a/k < 1.

Let  $b, k \ge 2$  be integers and  $a \ge 1$  be an integer coprime to k. Set  $r_0 = a$  and write

$$r_0b = q_1k + r_1$$

$$r_1b = q_2k + r_2$$

$$\vdots$$

$$r_{j-1}b = q_jk + r_j$$

$$\vdots$$

where  $q_j \in \{0, 1, \dots, b-1\}$  and  $r_j \in \{0, 1, \dots, k-1\}$  for each j. Stop when  $r_n = r_0$ . Then

$$\left(\frac{a}{k}\right)_{h} = 0.\overline{q_1q_2\cdots q_n}.$$

FIGURE 1. The base-*b* algorithm for the reduced rational a/k < 1.

framework for the proofs of Theorems 1.1 and 1.2. To write a/k in the base b, we use a sort of modified division algorithm; see Figure 1.

We record here facts about the base-b algorithm which we will need.

**Lemma 2.1.** Suppose that  $b, k \ge 2$  are coprime, and that  $r_j$  and  $q_j$  are defined by the base-b algorithm for a/k. Then  $gcd(r_i, k) = 1$ .

**PROOF.** Suppose that p|k, and proceed by induction on i. Firstly,  $r_0 = a$  and by assumption  $gcd(r_0, k) = gcd(a, k) = 1$ .

Now suppose that  $gcd(r_i, k) = 1$ , so that also  $gcd(r_i b, k) = 1$ . Then

$$r_{i+1} = r_i b - q_{i+1} k \equiv r_i b \not\equiv 0 \mod p,$$

since gcd(b, k) = 1. Thus  $gcd(r_{i+1}, k) = 1$ .

Also, we have that equivalent  $r_i$  give equal  $q_i$ .

**Lemma 2.2.** Suppose  $b, k \ge 2$  are coprime, and that  $r_j$  and  $q_j$  are defined by the base-b algorithm for the reduced fraction a/k. Then  $r_i \equiv r_j \pmod{b}$  if and only if  $q_i = q_j$ .

**PROOF.** Suppose that  $r_i \equiv r_j \pmod{b}$ . By considering the difference between  $r_{i-1}b = q_ik + r_i$  and  $r_{j-1}b = q_jk + r_j$  modulo b, we see that  $b|(q_i - q_j)k$ , so that since  $\gcd(b, k) = 1$ , we have that  $b|(q_i - q_j)$ . Since  $q_i, q_j \in \{0, 1, ..., b-1\}$ , we thus have that  $q_i = q_j$ .

Conversely, suppose that  $q_i = q_j$ . Here, again, we can consider the difference between the defining equations for  $q_i$  and  $q_j$  modulo b; this gives the desired result.  $\square$ 

306 M. Coons [4]

Indeed, the value of  $q_j$  is determined by the residue class of  $r_j$  modulo b and the value of  $k^{-1}$  modulo b.

**Lemma** 2.3. Suppose that  $b, k \ge 2$  are coprime, and that  $r_j$  and  $q_j$  are defined by the base-b algorithm for the reduced fraction a/k. Then  $r_i \equiv j \pmod{b}$  if and only if  $q_i \equiv -jk^{-1} \pmod{b}$ , where  $q_i \in \{0, 1, \dots, b-1\}$ .

**PROOF.** If  $r_i \equiv j \pmod{b}$ , then the equation  $r_{i-1}b = q_ik + r_i$  gives  $q_ik \equiv -j \pmod{b}$ , which in turn gives that  $q_i \equiv -jk^{-1} \pmod{b}$ . Since  $q_i \in [0, b-1]$  we are done with this direction of proof.

Conversely, suppose that  $q_i = (-jk^{-1} \mod b)$ . Then surely  $q_i \equiv -jk^{-1} \pmod b$  and so  $q_ik \equiv -j \pmod b$ . Thus, again using  $r_{i-1}b = q_ik + r_i$ , we have that  $r_i \equiv j \pmod b$ .  $\square$ 

The following lemma is a direct corollary of Lemma 2.3.

**Lemma 2.4.** Suppose that  $b, k \ge 2$  are coprime, and that  $r_j$  and  $q_j$  are defined by the base-b algorithm for the reduced fraction a/k. Then  $r_i \equiv 0 \pmod{b}$  if and only if  $q_i = 0$ .

Proof. Apply Lemma 2.3 with j = 0.

We will use the following classical theorem (see [10, Theorem 12.4]) and lemma.

**THEOREM** 2.5. Let b be a positive integer. Then the base-b expansion of a rational number either terminates or is periodic. Further, if  $r, s \in \mathbb{Z}$  with 0 < r/s < 1 where gcd(r, s) = 1 and s = TU, where every prime factor of T divides b and gcd(U, b) = 1, then the period length of the base-b expansion of r/s is the order of b modulo U, and the preperiod length is N, where N is the smallest positive integer such that  $T|b^N$ .

Theorem 2.5 tells us that the base-*b* expansion of a/k is purely periodic (recall that gcd(b, k) = 1), and that the minimal period is  $ord_k b$ , which divides  $\varphi(k)$ , so that this also is a period. This result can be exploited using the following number-theoretic result, a proof of which can be found in most elementary number theory texts; for example, see [10, Theorem 9.10].

**Lemma 2.6.** A primitive root of  $p^2$  is a primitive root of  $p^k$  for any integer  $k \ge 2$ .

Applying Lemma 2.6 gives the following result.

**Lemma 2.7.** Let  $0 < a/p^m < 1$  be a rational number in lowest terms and let  $b \ge 2$  be an integer that is a primitive root of  $p^2$ . Suppose that  $(1/p^m)_b = \overline{(q_1q_2\cdots q_n)}$  is given by the base-b algorithm. Then

$$\left(\frac{a}{p^m}\right)_b = .\overline{q_{\sigma(1)}q_{\sigma(2)}\cdots q_{\sigma(n)}}$$

where  $\sigma$  is a cyclic shift on n letters.

**PROOF.** This is a direct consequence of the base-b algorithm.

As a consequence of the above lemmas we are able to provide the following characterisation of certain base-*b* expansions.

**PROPOSITION** 2.8. Let  $m \ge 1$  be an integer, p be an odd prime,  $b \ge 2$  be an integer coprime to p, and  $q_j$  and  $r_j$  be given by the base-b algorithm for the reduced fraction  $a/p^m$ . If b is a primitive root of p and  $p^2$ , then  $period(a/p^m) = \varphi(p^m)$  and

$$\#\{j \leqslant \varphi(p^m) : q_j = 0\} = \left\lfloor \frac{p^m}{b} \right\rfloor - \left\lfloor \frac{p^{m-1}}{b} \right\rfloor.$$

**PROOF.** The fact that  $period(a/p^m)_b = \varphi(p^m)$  follows directly from b being a primitive root of p and  $p^2$ , Lemma 2.6 and Theorem 2.5. This further implies that the  $\varphi(p^m)$  values of  $r_i$  given by the base-b algorithm for  $a/p^m$  are distinct. Applying Lemma 2.1 gives that

$$\{r_1, r_2, \dots, r_{\varphi(p^m)}\} = \{i \le p^m : \gcd(i, p) = 1\}.$$
 (2.1)

Also recall that

$$\left(\frac{a}{p^m}\right)_b = .\overline{q_1q_2\cdots q_{\varphi(p^m)}},$$

and that by Lemma 2.4,  $q_i = 0$  if and only if  $r_i \equiv 0 \pmod{b}$ . Note that there are exactly

$$\left\lfloor \frac{p^m}{b} \right\rfloor - \left\lfloor \frac{p^m}{bp} \right\rfloor = \left\lfloor \frac{p^m}{b} \right\rfloor - \left\lfloor \frac{p^{m-1}}{b} \right\rfloor$$

elements of  $\{i \leq p^m : \gcd(i,p) = 1\}$  which are divisible by b. Thus using the set equality (2.1), we have that there are exactly  $\lfloor p^m/b \rfloor - \lfloor p^{m-1}/b \rfloor$  elements of  $\{r_1, r_2, \ldots, r_{\varphi(p^m)}\}$  divisible by b. Appealing to Lemma 2.4, we then have that there are  $\lfloor p^m/b \rfloor - \lfloor p^{m-1}/b \rfloor$  of  $q_1, q_2, \ldots, q_{\varphi(p^m)}$  such that  $q_j = 0$ .

Note that while we record the  $q_i = 0$  case because of its simplicity, the method can be applied to count any value of  $q_i$  that is desired by using the appropriate case of Lemma 2.3. In fact, we will do this in a few special cases to prove Theorems 1.1 and 1.2.

### 3. The base-b expansion of the Stoneham number $\alpha_{b,p}$

We will need properties for both the base-b and base- $b^2$  expansions of the Stoneham number  $\alpha_{b,p}$ .

Proposition 3.1. Let  $b, p \ge 2$  be coprime integers with p a prime. Denote the base-b expansion of  $\alpha_{b,p}$  as

$$\alpha_{b,p} = \sum_{i \geqslant 1} \frac{1}{p^j b^{p^j}} = \sum_{k \geqslant 1} \frac{a_k}{b^k},$$

where  $a_k$  ∈ {0, 1, . . . , b − 1}, and write

$$\left(\frac{\sum_{j=0}^{m-1} p^j}{p^m}\right)_b = .\overline{q_1 q_2 \cdots q_n},$$

where  $q_i$  is determined by the base-b algorithm, for each i, so  $n = \operatorname{ord}_{p^m} b$ . Then  $q_i = a_{p^m + jn + i}$  for each  $i \in \{1, 2, ..., n\}$  and each  $j \in \{0, 1, 2, ..., p \cdot \varphi(p^m) / \operatorname{ord}_{p^m} b - 1\}$ .

It is worth noting that Proposition 3.1 is the full generalisation of Theorem 1.1(ii).

We require the following lemma.

**Lemma 3.2.** Let  $b, c \ge 2$  be coprime. Then, for any  $m \ge 1$ ,

$$\alpha_{b,c} - \sum_{n=1}^{m} \frac{1}{c^n b^{c^n}} < \frac{1}{b^{c^{m+1}}}.$$

That is, the base-b expansion of  $\alpha_{b,c}$  agrees with the b-ary expansion of its mth partial sum up to the  $c^{m+1}$ th place.

PROOF. Let  $m \ge 1$  and note that

$$\sum_{n \ge m+1} \frac{1}{c^n} = \frac{1}{c^{m+1} - c^m} < 1.$$

Using this fact, we have that

$$\alpha_{b,c} - \sum_{n=1}^m \frac{1}{c^n b^{c^n}} = \sum_{n \geq m+1} \frac{1}{c^n b^{c^n}} < \frac{1}{b^{c^{m+1}}} \sum_{n \geq m+1} \frac{1}{c^n} < \frac{1}{b^{c^{m+1}}},$$

which is the desired result.

PROOF OF PROPOSITION 3.1. Let  $m \ge 1$ ,  $s_m = p^m b^{p^m}$ , and define the positive integer  $r_m$  by

$$\frac{r_m}{s_m} = \sum_{n=1}^m \frac{1}{p^n b^{p^n}}.$$

Then

$$gcd(r_m, s_m) = gcd(r_m, p^m b^{p^m}) = gcd(r_m, pb) = 1.$$

We apply Theorem 2.5 with b = b,  $r = r_m$ ,  $s = s_m$ ,  $T = b^{p^m}$ , and  $U = p^m$  to give that the period length of the base-b expansion of  $r_m/s_m$  is the order of b modulo  $p^m$ , which we will write as

$$\operatorname{period}(r_m/s_m) = \operatorname{ord}_{p^m} b,$$

and the preperiod length of  $r_m/s_m$  is  $p^m$ , which we will write as

$$preperiod(r_m/s_m) = p^m$$
.

Combining the observations of the previous paragraph with Lemma 3.2 gives that

$$a_{p^m+1}a_{p^m+2}\dots a_{p^{m+1}} = \underbrace{www\cdots w}_{(p\cdot \varphi(p^m)/\operatorname{ord}_{p^m}b) \text{ times}},$$

where  $w = q_1 q_2 \cdots q_{\text{ord}_{p^m}b}$  is a word on the alphabet  $\{0, 1, \dots, b\}$  with length  $\text{ord}_{p^m}b$ . To finish the proof of this proposition, it is enough to appeal to Lemma 3.2 to show that

$$\left(\frac{\sum_{j=0}^{m-1} p^j}{p^m}\right)_b = .\overline{w}$$

where w is as defined in the previous sentence, which follows directly from the definition of  $\alpha_{b,p}$ .

Theorem 1.1 concerns a base- $b^2$  expansion; we will provide some specialised results for this case only when b = 2, in order to specifically prove Theorem 1.1, as the more interesting case for generalisations is the base-b case.

Lemma 3.3. Let  $b, c \ge 2$  be coprime. Then, for any  $m \ge 1$ ,

$$\alpha_{b,c} - \sum_{n=1}^{m} \frac{1}{c^n b^{c^n}} < \frac{1}{(b^2)^{c^{m+1}/2}}.$$

That is, the base- $b^2$  expansion of  $\alpha_{b,c}$  agrees with the base- $b^2$  expansion of its mth partial sum up to the  $\lceil c^{m+1}/2 \rceil$ th place.

Proof. This is a direct consequence of Lemma 3.2.

Proposition 3.4. Let p be an odd prime such that 2 is a primitive root of p and  $p^2$ . Denote the base-4 expansion of  $\alpha_{2,p}$  as

$$\alpha_{2,p} = \sum_{i \geqslant 1} \frac{1}{p^j 2^{p^j}} = \sum_{k \geqslant 1} \frac{d_k}{4^k},$$

*where*  $d_k \in \{0, 1, ..., 3\}$ *, and write* 

$$\left(\frac{\sum_{j=0}^{m-1} p^j}{p^m}\right)_4 = .\overline{q_1 q_2 \cdots q_n},$$

where the  $q_i$ s are determined by the base-4 algorithm, so  $n = \operatorname{ord}_{p^m} 4 = \varphi(p^m)/2$ . Then  $q_i = d_{(p^m+1)/2+jn+i}$  for each  $i \in \{1, ..., n\}$  and each  $j \in \{0, 1, 2, ..., p-1\}$ .

**PROOF.** This proposition follows as a corollary of Proposition 3.1. Indeed, by Proposition 3.1, we have a prefix u of odd length p and words  $w_m$  of even length  $\varphi(p^m)$  such that

$$(\alpha_{2,p})_2 = .u \underbrace{w_1 w_1 \cdots w_1}_{p \text{ times}} \underbrace{w_2 w_2 \cdots w_2}_{p \text{ times}} \cdots \underbrace{w_m w_m \cdots w_m}_{p \text{ times}} \cdots .$$

Now the word  $w_m$  is the minimal repeated word given by the base-2 expansion of  $(\sum_{j=0}^{m-1} p^j)/p^m$ . But

$$0 < \frac{\sum_{j=0}^{m-1} p^j}{p^m} = \frac{p^m - 1}{p^m(p-1)} < \frac{1}{p-1} \le \frac{1}{2},$$

and so the first letter of  $w_m$ , for each m, is necessarily 0. Define the word  $v_m$  by  $w_m = 0v_m$ . Then

$$(\alpha_{2,p})_{2} = .u \underbrace{w_{1}w_{1} \cdots w_{1}}_{p \text{ times}} \underbrace{w_{2}w_{2} \cdots w_{2}}_{p \text{ times}} \cdots \underbrace{w_{m}w_{m} \cdots w_{m}}_{p \text{ times}} \cdots$$

$$= .u \underbrace{0v_{1}0v_{1} \cdots 0v_{1}}_{p \text{ times}} \underbrace{0v_{2}0v_{2} \cdots 0v_{2}}_{p \text{ times}} \cdots \underbrace{0v_{m}0v_{m} \cdots 0v_{m}}_{p \text{ times}} \cdots$$

$$= .u \underbrace{0v_{1}0v_{1}0 \cdots v_{1}0}_{p \text{ times}} \underbrace{v_{2}0v_{2}0 \cdots v_{2}0}_{p \text{ times}} \cdots \underbrace{v_{m}0v_{m}0 \cdots v_{m}0}_{p \text{ times}} \cdots, \tag{3.1}$$

where the word u0 is of even length p + 1 and the word  $v_m0$  is of even length  $\varphi(p^m)$ .

As in the statement of Proposition 3.1, let  $a_k$  be the kth letter in the base-2 expansion of  $\alpha_{2,p}$ , and as in the statement of the current proposition, let  $d_k$  be the kth letter in the base-4 expansion of  $\alpha_{2,p}$ . Then

$$d_k = 2a_{2k-1} + a_{2k}.$$

Using this fact, it is an immediate consequence of (3.1) that there are words U of length (p+1)/2 and  $W_m$  of length  $\varphi(p^m)/2$  such that

$$(\alpha_{2,p})_4 = .U \underbrace{W_1 W_1 \cdots W_1}_{p \text{ times}} \underbrace{W_2 W_2 \cdots W_2}_{p \text{ times}} \cdots \underbrace{W_m W_m \cdots W_m}_{p \text{ times}} \cdots .$$

As in Proposition 3.1, to finish the proof of this proposition, it is enough to apply Lemma 3.3 to show that

$$\left(\frac{\sum_{j=0}^{m-1} p^j}{p^m}\right)_4 = .\overline{W_m},$$

where  $W_m$  is as defined in the previous sentence, which follows directly from the definition of  $\alpha_{2,p}$ .

## 4. The Aragon, Bailey, Borwein and Borwein conjectures

In this section, we apply the results of Section 3 to prove Theorems 1.1 and 1.2. As it turns out, the proof of Theorem 1.2 is a bit more straightforward, so we present its proof first.

PROOF OF THEOREM 1.2 For convenience let us write  $\omega := e^{\pi i/3}$  and let  $r_i$  and  $q_i$  be given by the base-3 algorithm for  $1/5^n$ . Note that, by Proposition 3.1,

$$\sum_{k=1+5^{n+1}+4\cdot 5^n}^{1+5^{n+1}+4\cdot 5^n}\omega^{a_k}=\sum_{j=0}^2\#\{i\leqslant \varphi(5^{n+1}):q_i=j\}\cdot \omega^j.$$

Now  $\#\{i \le \varphi(5^n) : q_i = j\}$  can be given by looking at where the number  $5^n$  lies modulo 15. Since, for every 15 consecutive numbers, 12 of them are coprime to 5, and these 12 fall into the three equivalence classes modulo 3 with an equal frequency of 4 times each, we need only look at the remainder of  $5^n$  modulo 15. An easy calculation gives that

$$5^n \equiv \begin{cases} 5 \pmod{15} & \text{if } n \text{ is odd,} \\ 10 \pmod{15} & \text{if } n \text{ is even.} \end{cases}$$

This allows us to give that

$$\#\{i \leqslant \varphi(5^n) : r_i \equiv 0 \pmod{3}\} = \begin{cases} 4 \cdot \left\lfloor \frac{5^n}{15} \right\rfloor + 1 & \text{if } n \text{ is odd,} \\ 4 \cdot \left\lfloor \frac{5^n}{15} \right\rfloor + 3 & \text{if } n \text{ is even,} \end{cases}$$

$$\#\{i \leqslant \varphi(5^n) : r_i \equiv 1 \pmod{3}\} = \begin{cases} 4 \cdot \left\lfloor \frac{5^n}{15} \right\rfloor + 2 & \text{if } n \text{ is odd,} \\ 4 \cdot \left\lfloor \frac{5^n}{15} \right\rfloor + 3 & \text{if } n \text{ is even,} \end{cases}$$

and

$$\#\{i \leqslant \varphi(5^n) : r_i \equiv 2 \pmod{3}\} = \begin{cases} 4 \cdot \left\lfloor \frac{5^n}{15} \right\rfloor + 1 & \text{if } n \text{ is odd,} \\ 4 \cdot \left\lfloor \frac{5^n}{15} \right\rfloor + 2 & \text{if } n \text{ is even.} \end{cases}$$

Applying Lemma 2.3 to the preceding equalities gives that

$$\#\{i \leqslant \varphi(5^n) : q_i = 0\} = \begin{cases} 4 \cdot \left\lfloor \frac{5^n}{15} \right\rfloor + 1 & \text{if } n \text{ is odd,} \\ 4 \cdot \left\lfloor \frac{5^n}{15} \right\rfloor + 3 & \text{if } n \text{ is even,} \end{cases}$$

$$\#\{i \leqslant \varphi(5^n) : q_i = 1\} = \begin{cases} 4 \cdot \left\lfloor \frac{5^n}{15} \right\rfloor + 2 & \text{if } n \text{ is odd,} \\ 4 \cdot \left\lfloor \frac{5^n}{15} \right\rfloor + 2 & \text{if } n \text{ is even,} \end{cases}$$

and

$$\#\{i \leqslant \varphi(5^n) : q_i = 2\} = \begin{cases} 4 \cdot \left\lfloor \frac{5^n}{15} \right\rfloor + 1 & \text{if } n \text{ is odd,} \\ 4 \cdot \left\lfloor \frac{5^n}{15} \right\rfloor + 3 & \text{if } n \text{ is even.} \end{cases}$$

Thus, since  $1 + \omega + \omega^2 = 0$ ,

$$\sum_{k=1+5^{n+1}+4\cdot 5^n}^{1+5^{n+1}+4\cdot 5^n} \omega^{a_k} = \sum_{j=0}^{2} \#\{i \le \varphi(5^{n+1}) : q_i = j\} \cdot \omega^j$$

$$= \begin{cases} \omega & \text{if } n+1 \text{ is odd,} \\ -\omega & \text{if } n+1 \text{ is even,} \end{cases}$$

$$= (-1)^n \omega,$$

which proves part (i).

Part (ii) follows directly from Proposition 3.1 with b = 3 and p = 5.

Proof of Theorem 1.1. Note that

$$\frac{1}{3^n 2^{3^n}} = \frac{8}{3^n} \cdot \frac{1}{4^{\frac{3}{2}(3^{n-1}+1)}}.$$

Let  $r_i$  and  $q_i$  be given by the base 4 algorithm for  $8/3^n$ . We will use the fact that each of these  $r_i$  is equivalent to 2 modulo 3. This is easily seen as we have for

312 M. Coons [10]

each *i* that  $r_{i-1}4 = q_i3^n + r_i$ , so that, taking this equality modulo 3, we have that  $r_{i-1} \equiv r_i \pmod{3}$ . Recalling that  $r_0 = 8$  shows that indeed  $r_i \equiv 2 \pmod{3}$  for each *i*. Since ord<sub>3</sub>,  $4 = 3^{n-1}$ , we have, by Proposition 3.4, that

$$\sum_{k=\frac{3}{2}(3^n+1)}^{\frac{3}{2}(3^n+1)+3^n-1} (e^{\pi i/2})^{a_k} = \sum_{j=0}^{3} \#\{i \le \varphi(3^{n+1})/2 : q_i = j\} \cdot (e^{\pi i/2})^j.$$

Now  $\#\{i \le 3^n : q_i = j\}$  can be given by looking at where the number  $3^n$  lies modulo 12. Since, for every 12 consecutive numbers, four of them are equivalent to 2 modulo 3, and these four fall into the four distinct equivalence classes modulo 4, we must consider the remainder of  $3^n$  modulo 12. We have that

$$3^n \equiv \begin{cases} 3 \pmod{12} & \text{if } n \text{ is odd,} \\ 9 \pmod{12} & \text{if } n \text{ is even.} \end{cases}$$

Thus

$$\#\{i \leqslant \varphi(3^n)/2 : r_i \equiv 0 \; (\text{mod } 4)\} = \begin{cases} \left\lfloor \frac{3^n}{12} \right\rfloor & \text{if } n \text{ is odd,} \\ \left\lfloor \frac{3^n}{12} \right\rfloor + 1 & \text{if } n \text{ is even,} \end{cases}$$

$$\#\{i \leqslant \varphi(3^n)/2 : r_i \equiv 1 \; (\text{mod } 4)\} = \begin{cases} \left\lfloor \frac{3^n}{12} \right\rfloor & \text{if } n \text{ is odd,} \\ \left\lfloor \frac{3^n}{12} \right\rfloor + 1 & \text{if } n \text{ is even,} \end{cases}$$

$$\#\{i \leqslant \varphi(3^n)/2 : r_i \equiv 2 \; (\text{mod } 4)\} = \begin{cases} \left\lfloor \frac{3^n}{12} \right\rfloor + 1 & \text{if } n \text{ is odd,} \\ \left\lfloor \frac{3^n}{12} \right\rfloor + 1 & \text{if } n \text{ is even,} \end{cases}$$

and

$$\#\{i \leqslant \varphi(3^n)/2 : r_i \equiv 3 \pmod{4}\} = \begin{cases} \left\lfloor \frac{3^n}{12} \right\rfloor & \text{if } n \text{ is odd,} \\ \left\lfloor \frac{3^n}{12} \right\rfloor & \text{if } n \text{ is even.} \end{cases}$$

By Lemma 2.3, we have that

$$\#\{i \le \varphi(3^n)/2 : q_i = 0\} = \begin{cases} \left\lfloor \frac{3^n}{12} \right\rfloor & \text{if } n \text{ is odd,} \\ \left\lfloor \frac{3^n}{12} \right\rfloor + 1 & \text{if } n \text{ is even,} \end{cases}$$

$$\#\{i \le \varphi(3^n)/2 : q_i = 1\} = \begin{cases} \left\lfloor \frac{3^n}{12} \right\rfloor & \text{if } n \text{ is odd,} \\ \left\lfloor \frac{3^n}{12} \right\rfloor & \text{if } n \text{ is even,} \end{cases}$$

#{
$$i \le \varphi(3^n)/2 : q_i = 2$$
} =  $\begin{cases} \left\lfloor \frac{3^n}{12} \right\rfloor + 1 & \text{if } n \text{ is odd,} \\ \left\lfloor \frac{3^n}{12} \right\rfloor + 1 & \text{if } n \text{ is even,} \end{cases}$ 

and

$$\#\{i \leqslant \varphi(3^n)/2 : q_i = 3\} = \begin{cases} \left\lfloor \frac{3^n}{12} \right\rfloor & \text{if } n \text{ is odd,} \\ \left\lfloor \frac{3^n}{12} \right\rfloor + 1 & \text{if } n \text{ is even.} \end{cases}$$

Since  $1 + (e^{\pi i/2}) + (e^{\pi i/2})^2 + (e^{\pi i/2})^3 = 0$ , we thus have that

$$\sum_{k=\frac{3}{2}(3^{n}+1)+3^{n}-1}^{\frac{3}{2}(3^{n}+1)+3^{n}-1} (e^{\pi i/2})^{a_{k}} = \sum_{j=0}^{3} \#\{i \le \varphi(3^{n+1})/2 : q_{i} = j\} \cdot (e^{\pi i/2})^{j}$$

$$= \begin{cases} -1 & \text{if } n+1 \text{ is odd,} \\ -i & \text{if } n+1 \text{ is even,} \end{cases}$$

$$= -\begin{cases} i & \text{if } n \text{ is odd,} \\ 1 & \text{if } n \text{ is even,} \end{cases}$$

which proves part (i).

Part (ii) follows directly from Proposition 3.4 with b = 2 and p = 3.

### Acknowledgements

I thank Francisco Aragón Artacho for introducing this problem to me, as well as David Bailey for giving a very interesting talk at CARMA on normality and nonnormality of Stoneham numbers, which sparked my interest in Stoneham numbers. I also thank the anonymous referee for a very careful reading, which greatly improved the exposition of this paper as well as the proof of Proposition 3.4.

### Appendix A. Transcendence of Stoneham numbers

In this appendix, we give details of the transcendence of the Stoneham number  $\alpha_{b,c}$  for any choice of integers  $b,c \ge 2$ . In fact, Mahler's method gives much stronger results, which imply this desired conclusion.

We start out by letting  $c \ge 2$  be an integer and define

$$F_c(x) := \sum_{n \geqslant 1} \frac{x^{c^n}}{c^n}.$$

Notice that  $F_c(x)$  satisfies the Mahler functional equation

$$F_c(x^c) = cF_c(x) - x^c. \tag{A.1}$$

314 M. Coons [12]

Now suppose that  $F_c(x) \in \mathbb{C}(x)$ . Then there are polynomials  $a(x), b(x) \in \mathbb{C}[x]$  such that

$$F_c(x) - \frac{a(x)}{b(x)} = 0.$$

Since  $F_c(x) \in \mathbb{C}[[x]]$  is not a polynomial, we may assume, without loss of generality, that gcd(a(x), b(x)) = 1 and  $b(0) \neq 0$  and  $b(x) \notin \mathbb{C}$ . Sending  $x \to x^c$  and applying the functional equation, we thus have that

$$F_c(x) - \frac{a(x)}{b(x)} = 0 = F_c(x^c) - \frac{a(x^c)}{b(x^c)} = F_c(x) - \left(\frac{x^c}{c} + \frac{a(x^c)}{b(x^c)}\right),$$

so that

$$\frac{x^c}{c} + \frac{a(x^c)}{b(x^c)} = \frac{a(x)}{b(x)}.$$
(A.2)

Now as functions, the right- and left-hand sides of (A.2) must have the same singularities. But  $b(x^c)$  will have more zeros (counting multiplicity if needed) than b(x) unless b(x) is a constant, which is a contradiction. Thus  $F_c(x)$  does not represent a rational function. In fact, we can now appeal to the following theorem, to give that  $F_c(x)$  is transcendental over  $\mathbb{C}(x)$ .

**THEOREM A.1** (Nishioka [6]). Suppose that  $F(x) \in \mathbb{C}[[x]]$  satisfies one of the following for an integer d > 1:

- (i)  $F(x^d) = \phi(x, F(x)),$
- (ii)  $F(x) = \phi(x, F(x^d)),$

where  $\phi(x, u)$  is a rational function in x, u over  $\mathbb{C}$ . If F(x) is algebraic over  $\mathbb{C}(x)$ , then  $F(x) \in \mathbb{C}(x)$ .

To prove the transcendence of the Stoneham numbers, we appeal to a classical result of Mahler [8], We record it here as taken from Nishioka's monograph [7].

**THEOREM** A.2 (Mahler [8]). Let **I** be the set of algebraic integers over  $\mathbb{Q}$ , K be an algebraic number field,  $\mathbf{I}_K = K \cap \mathbf{I}$ ,  $f(x) \in K[[x]]$  with radius of convergence R > 0 satisfying the functional equation for an integer d > 1,

$$f(x^d) = \frac{\sum_{i=0}^{m} a_i(x) f(x)^i}{\sum_{i=0}^{m} b_i(x) f(x)^i}, \quad m < d, \ a_i(x), b_i(x) \in \mathbf{I}_K[x],$$

and  $\Delta(x) := \operatorname{Res}(A, B)$  be the resultant of  $A(u) = \sum_{i=0}^{m} a_i(x)u^i$  and  $B(u) = \sum_{i=0}^{m} b_i(x)u^i$  as polynomials in u. If f(x) is transcendental over K(x) and  $\xi$  is an algebraic number with  $0 < |\xi| < \min\{1, R\}$  and  $\Delta(\xi^{d^n}) \neq 0$   $(n \ge 0)$ , then  $f(\xi)$  is transcendental.

Since  $F_c(x)$  is transcendental over  $\mathbb{C}(x)$ ,  $F_c(x)$  satisfies the functional equation (A.1), and  $\operatorname{Res}(cu - x^c, 1) \neq 0$  for all x, we have the following corollary to Mahler's theorem.

COROLLARY A.3. Let  $c \ge 2$  be an integer. The number  $\sum_{n \ge 1} (1/c^n) \xi^{c^n}$  is transcendental for all algebraic numbers  $\xi$  with  $0 < |\xi| < 1$ . In particular, for all  $b, c \ge 2$ , the Stoneham number  $\alpha_{b,c}$  is transcendental.

#### References

- F. J. Aragón Artacho, D. H. Bailey, J. M. Borwein and P. B. Borwein, 'Walking on real numbers', *Math. Intelligencer* 35(1) (2013), 42–60.
- [2] D. H. Bailey and J. M. Borwein, 'Normal numbers and pseudorandom generators', in: Proceedings of the Workshop on Computational and Analytical Mathematics in Honour of Jonathan Borwein's 60th Birthday (Springer, New York, 2013).
- [3] David H. Bailey and Richard E. Crandall, 'Random generators and normal numbers', *Experiment*. *Math.* **11**(4) (2003), 527–546.
- [4] David H. Bailey and Michał Misiurewicz, 'A strong hot spot theorem', *Proc. Amer. Math. Soc.* 134(9) (2006), 2495–2501.
- [5] D. G. Champernowne, 'The construction of decimals normal in the scale of ten', *J. Lond. Math. Soc.* **8**(4) (1933), 254.
- [6] Keiji Nishioka, 'Algebraic function solutions of a certain class of functional equations', Arch. Math. 44 (1985), 330–335.
- [7] Kumiko Nishioka, Mahler Functions and Transcendence, Lecture Notes in Mathematics, 1631 (Springer, Berlin, 1996).
- [8] Kurt Mahler, 'Arithmetische Eigenschaften der Lösungen einer Klasse vor Funktionalgleichungen', *Math. Ann.* **101**(1) (1929), 342–366.
- [9] Kurt Mahler, 'Arithmetische Eigenschaften einer Klasse von Dezimalbrüchen', *Proc. Kon. Nederlandsche Akad. v. Wetenschappen* **40** (1937), 421–428.
- [10] Kenneth H. Rosen, Elementary Number Theory and Its Applications. 5th edn (Addison-Wesley, Reading, MA, 2005).
- [11] Wolfgang M. Schmidt, 'On normal numbers', Pacific J. Math. 10 (1960), 661–672.
- [12] R. G. Stoneham, 'On absolute  $(j, \varepsilon)$ -normality in the rational fractions with applications to normal numbers', *Acta Arith.* **22** (1972/73), 277–286.

MICHAEL COONS, School of Mathematical and Physical Sciences, University of Newcastle, University Drive, Callaghan NSW 2308, Australia e-mail: mcoons.newcastle@gmail.com