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ABSTRACT. We propose an infinite-dimensional adjoint-based inexact Gauss-Newton method for the
solution of inverse problems governed by Stokes models of ice sheet flow with nonlinear rheology and
sliding law. The method is applied to infer the basal sliding coefficient and the rheological exponent
parameter fields from surface velocities. The inverse problem is formulated as a nonlinear least-squares
optimization problem whose cost functional is the misfit between surface velocity observations and
model predictions. A Tikhonov regularization term is added to the cost functional to render the problem
well-posed and account for observational error. Our findings show that the inexact Newton method is
significantly more efficient than the nonlinear conjugate gradient method and that the number of Stokes
solutions required to solve the inverse problem is insensitive to the number of inversion parameters. The
results also show that the reconstructions of the basal sliding coefficient converge to the exact sliding
coefficient as the observation error (here, the noise added to synthetic observations) decreases, and
that a nonlinear rheology makes the reconstruction of the basal sliding coefficient more difficult. For
the inversion of the rheology exponent field, we find that horizontally constant or smoothly varying

parameter fields can be reconstructed satisfactorily from noisy observations.

1. INTRODUCTION

Here we consider the problem of estimating unknown
parameters characterizing an ice sheet flow model governed
by the nonlinear full-Stokes equations from surface flow
observations. The central aims of the paper are (1) to present
an efficient method for the solution of ice sheet flow inverse
problems that is suitable for high-dimensional parameter
spaces and (2) to employ this method to study how well
finite-amplitude perturbation of a sliding coefficient in the
basal boundary condition, and rheological parameters in
the constitutive equation, can be recovered from surface
observations that contain some degree of error.

Ice sheet flow models usually contain parameters that are
unknown, due either to our inability to directly observe
them, or their role as phenomenological parameters that
must be constrained by data. The parameter field that relates
the basal traction to the rate of basal slip arguably presents
the largest uncertainty in determining the rate of ice flow.
The basal sliding coefficient cannot be obtained from direct
observations; instead, we may seek to infer it from surface
flow data. Rheological parameters can be estimated in the
laboratory, but their values may not adequately characterize
field ice. By treating them as uncertain parameters to be
inferred from data, we may be able to improve models of
field ice sheets. Additional unknown or uncertain inputs to
ice sheet models include the geothermal heat flux, the basal
topography and the ice thickness.

Our goal is to devise inversion methods that target three-
dimensional (3-D), large-scale inverse ice sheet problems
with linear or nonlinear rheology, handle arbitrary geom-
etry and boundary conditions, account for errors in the
observations, and are capable of inverting for basal as well
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as rheology parameters. We formulate the inverse problem
as an infinite-dimensional optimization problem governed
by the nonlinear Stokes equations. The cost functional we
minimize is the sum of the squared misfit between observed
and predicted surface velocities and a regularization term
that makes the ill-posed inverse problem well-posed. The
basal sliding and Glen’s flow law exponent coefficients
constitute the inversion parameter fields.

Discretization of this infinite-dimensional inverse problem
results in a large-scale numerical optimization. Gradient-
based methods offer the only hope of solving such high-
dimensional optimization problems. Here we advocate
(inexact, Gauss—)Newton methods, which employ Hessian
information (i.e. second derivatives or curvature) to greatly
speed up convergence relative to gradient-only methods
(Dennis and Schnabel, 1996; Kelley, 1999; Nocedal and
Wright, 2006). In many cases, convergence is obtained
in a number of iterations independent of problem size
(Deuflhard, 2004). We provide systematic derivations of
the gradient and Hessian for both basal and rheology
parameters, which invoke the solution of associated adjoint
Stokes problems. Explicitly constructing the Hessian matrix
at each Newton iteration is usually intractable for inverse
problems governed by expensive forward simulations, since
each column of the Hessian (which corresponds to a distinct
parameter) requires solution of a linearized forward problem.
Here, however, we do not explicitly construct the Hessian
matrix; instead, we solve the linear system arising at each
Newton iteration by the (linear) conjugate gradient (CQ)
method, which requires only the application of the Hessian
matrix to a vector at each CG iteration. This requires solution
of a pair of forward/adjoint linearized Stokes problems, and
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makes the method well suited to large-scale problems when
the number of CG iterations is small, as is often the case for
inverse problems.

Several studies have focused on inverse problems for the
basal boundary conditions in ice sheet models. There are
three approaches commonly used to compute derivatives in
this case. The first approach, which is related to the methods
presented in this paper, uses adjoint equations to compute
first derivatives with respect to basal sliding parameters.
The approach was introduced in the context of glaciology
problems by MacAyeal (1993), who employed the framework
of optimal control theory. Applications of this method to
inverse ice sheet flow problems governed by simplifications
of the full-Stokes equations are presented by Vieli and Payne
(2003), Joughin and others (2004), Larour and others (2005),
Morlighem and others (2010) and Goldberg and Sergienko
(2011). These contributions make use of the steepest descent
or the nonlinear conjugate gradient method to solve the
optimization, both of which use gradient information only
and are thus slower than Newton-type methods.

A second approach to computing derivatives uses
analytical transfer functions to describe the effects of
two-dimensional, small-amplitude perturbations in basal
conditions on the ice surface velocity (Gudmundsson, 2003;
Thorsteinsson and others, 2003; Raymond and Gudmunds-
son, 2005; Gudmundsson and Raymond, 2008). Raymond
(2007), Raymond and Gudmundsson (2009) and Pralong
and Gudmundsson (2011) use the full-Stokes equations to
model ice flow, but the derivatives needed in the inversion
procedure are approximated through analytical transfer
functions, which limits the accuracy of the gradient.

A third method uses gradients of a different cost functional,
which compares the flow fields of two Stokes problems, one
with Neumann and the other with Dirichlet surface boundary
conditions (Arthern and Gudmundsson, 2010). The Dirichlet
problem uses the observation data as boundary condition,
while the Neumann problem satisfies given (zero) traction
conditions. A gradient-based minimization algorithm adjusts
the inversion parameters until the difference between the
Dirichlet and the Neumann problem is small. Note that
an appropriate termination of this iteration is important,
especially since the observations always contain some noise.
An attempt to overcome this problem by introducing a
regularization term was recently made by Jay-Allemand and
others (2011). This Dirichlet-Neumann problem approach,
which has similarities to the method proposed by Maxwell
and others (2008), only requires a Stokes solver that imple-
ments different types of boundary conditions. However, the
method is derived for linear rheology and a basal sliding law,
in which case the adjoint Stokes equations, as required in
the first approach described above, also reduce to the usual
linear Stokes equations. This method has also been applied
successfully to inverse problems with nonlinear rheology
(Arthern and Gudmundsson, 2010; Jay-Allemand and others,
2011), but it is not guaranteed to work for these cases.

To the best of our knowledge, inversion for the exponent
parameter in Glen’s flow law, and in particular its spatial
variability, has not been addressed previously. Here we
wish to develop the capability to construct a more realistic
description of the ice viscosity as influenced by impurities
and/or weakening and damage of the ice, which may not be
accounted for by constant rheological parameters. Note that
a first step towards addressing this problem has been taken
by Arthern and Gudmundsson (2010), where they invert for
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the spatially varying effective ice viscosity, 1, using a linear
rheology (employing the third approach described above).
We go beyond this prior work by inverting for the Glen’s flow
law exponent, n, under a nonlinear rheology (using the fast
Gauss—-Newton method advocated here). Alternatively, one
could also invert for parameters in the rate factor in Glen'’s
flow law, which depends on the ice temperature, using the
methodology presented here.

The remaining sections of this paper are organized as
follows. We begin (Section 2) by describing the forward ice
sheet problem and the corresponding inverse problem for the
basal sliding coefficient field and for the flow law exponent
parameter. In Section 3, we present the adjoint-based inexact
Gauss—Newton method for solving the inversion problem.

Inversion and performance results are given in Section 4,
where we compare the performance of the proposed method
with the nonlinear conjugate gradient (NCG) method. Our
results show that compared with NCG, the number of
iterations (and thus the number of Stokes solutions) required
by the Newton method is significantly smaller. We also find
that the number of Stokes solutions for the Newton method is
insensitive to the number of inversion parameters, a crucial
requirement for the efficient solution of large-scale problems.
Next, we study the quality of basal inversions for linear and
nonlinear rheology and for different levels of observational
error. The results show that the quality of the reconstruction
of the basal coefficient depends on the wavelength of
the variation in the true basal sliding coefficient, and
on the noise level. Moreover, the reconstruction is less
accurate for nonlinear rheology than for linear, in agreement
with earlier work based on analytical transfer functions
(Raymond, 2007; Gudmundsson and Raymond, 2008). Next,
we invert for the exponent in Glen’s flow law. Although
the problem is highly underdetermined, due to the ratio of
surface observations to volume parameters, we find good
reconstructions for the location of viscosity anomalies and
for smoothly varying exponent fields. Section 5 summarizes
our findings. Finally, in the Appendices we give systematic
derivation of the adjoint and incremental equations used
to compute the gradient and the Hessian, and discuss
discretization and Newton’s method for the nonlinear Stokes
equations.

2. PROBLEM FORMULATION
2.1. The forward problem

We model the flow of ice as a non-Newtonian, viscous,
incompressible, isothermal fluid. The balance of mass and
linear momentum state that (Hutter, 1983; Paterson, 1994;
Marshall, 2005)

V-u=0 (1a)
—V.ou=pg, (1b)

where u = (uy, up, u3)" denotes the velocity vector, oy the
stress tensor, p the density of the ice and g gravity. The stress,
oy, can be decomposed as oy = Tu — Ip, where Ty is the
deviatoric stress tensor, p the pressure and I the unit tensor.
We employ a constitutive law for ice that relates stress and
strain-rate tensors by Glen’s flow law (Glen, 1955),

1—n

T 1 . L
EA " €||Zn , (2)

Tu = 2n(u, n)éy, with n(u, n) =
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where 7 is the effective viscosity, €u = 3(Vu + Vu') the
strain-rate tensor, & = %tr(éf,) its second invariant, n Glen’s
flow law exponent field and A the temperature-dependent
flow rate factor (here taken as constant in isothermal ice).

Without loss of generality, we choose the model domain
to be a 3-D rectangular section of an ice sheet with
the following boundary conditions. On the top surface,
I, we impose a traction-free boundary condition, while
periodic boundary conditions are invoked along the lateral
boundaries, which are denoted I',. The boundary condition
at the base of the ice sheet, T'y,, is given by a Weertman-
type nonlinear sliding law with normal and tangential
components given by (Paterson, 1994)

u-n=0, Toyn+f3|Tu/" 'Tu=0, 3)

where m is the basal sliding exponent, 8 the basal sliding
coefficient field defined on T'y,, oy the stress tensor defined
previously and T = I — n ® n the tangential operator.
Here, ‘®’ represents the tensor (or outer) product, n is
the outward normal vector and I is the second-order unit
tensor. Note that 3, which relates tangential velocity to
tangential traction, subsumes several physical phenomena
and thus does not itself represent a physical parameter. It
depends on the frictional behavior of the ice sheet, on the
roughness of the bedrock and, if present, on the depth of a
plastically deforming layer of till between the ice sheet and
the bedrock.

In summary, the (forward) nonlinear Stokes ice sheet model
we consider in this paper is given by

V-u=0
-V [n(u, n) (Vu + VuT) - lp} =pg

in €, (4a)
in Q, (4b)

ulr, = ulr, and oun|p, = oun|r, on T, (4C)
oun =0 onTy, (4d)
u-n=0 onl}y, (4e)
Toun+B|Tu/™ 'Tu=0 onTy, (4f)

where the effective viscosity is given by Eqn (2) and the stress
is given by oy = n(u, n)(Vu+ Vu')— Ip. In the expressions
above, pairs of opposing boundaries on I'y on which periodic
conditions are imposed are denoted generically by I'j and
I';. The choice of periodic boundary conditions for the
lateral boundaries is, of course, arbitrary; the expressions
for infinite-dimensional gradients and Hessians given in
Section 3 can be derived for other boundary conditions using
the same variational approach.

2.2. The inverse problem

The inverse problem is formulated as follows: given (possibly
noisy) observations u® of the velocity, u, on the surface, T,
of an ice sheet occupying a domain, 2, we wish to infer the
sliding coefficient field, 8, defined on the base of the ice
sheet, and the exponent parameter field, n, in Glen’s flow
law defined within the ice volume, that best reproduce the
observed velocity. This can be formulated as the following
nonlinear least-squares minimization problem,

2
min J(3, n) = 1/ ‘U(/ﬁ,n)—uObS ds+R(B,n), (5
B,n 2 I,

where u depends on (8, n) through the solution of the
nonlinear Stokes problem (Eqn (4)).
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The first term in the cost functional, J(8, n), represents
the misfit between the observed velocity field, u®?, and
that predicted by the nonlinear Stokes model, u. The
regularization term, R(8, n), imposes regularity on the two
inversion fields, such as smoothness in an appropriate
norm. Often this reflects prior knowledge of the model
parameters. In the absence of such a term, the inverse
problem is ill-posed, i.e. its solution is not unique and is
highly sensitive to errors in the observations (Engl and others,
1996; Vogel, 2002). As is common in inverse problems (and
as is discussed in Section 4), small-wavelength components
of the parameter fields 8 or n cannot be identified from
surface observations; as a result, they can appear as arbitrary
noise in the reconstructed parameter fields. As a remedy,
we impose a Tikhonov regularization, which penalizes
oscillatory components of 8 and n, thus restricting the
solution to smoothly varying fields:

R(ﬂ,n):lﬁ/wvmz ds+ﬁ/Vn-Vndx. (6)
2 I, 2 Jg

Here v > 0 and 7, > 0 are regularization parameters that
control the strength of the imposed smoothness relative to
the data misfit. Large values for 5 and -y, in Eqn (6) put the
emphasis in the minimization problem (Eqn (5)) on R, and
thus the solution (8, n) has small gradients (i.e. is smooth).
For small or vanishing regularization parameters, R has little
or no effect and the inverse problem is ill-posed (noise in the
data can result in oscillations in the solution of the inverse
problem).

3. ADJOINT-BASED INEXACT GAUSS-NEWTON
METHOD FOR SOLUTION OF THE INVERSE
PROBLEM

We now present an adjoint-based inexact (Gauss—)Newton
method for solving the nonlinear least-squares optimization
problem, Eqn (5). Starting with an initial guess for the param-
eter fields (8, n), Newton’s method iteratively updates these
parameters based on successive quadratic approximations of
the cost functional, 7, using gradient (i.e. first-derivative) and
Hessian (i.e. second-derivative) information with respect to
(B, n). That is, the parameters are updated by

(B, Mnew = (B, n) + (B/ h) ,

where (8, n) are the current model parameters and the
Newton ‘direction’, (3, 7), is obtained by minimizing the
quadratic approximation, or equivalently solving the linear
system

H(B, m (B, ) = ~G(B, n). @)
Here G is the gradient of the regularized data misfit
functional, J, in Eqn (5), and H is its Hessian operator. To
provide robustness, the new values of the parameters are
found by ‘damping’ the Newton direction, i.e by choosing
a step length, «, such that the cost functional in Eqn (5)
is sufficiently decreased at each iteration. The details of
carrying out this so-called line search are described later in
this section.

The gradient and Hessian in the Newton step (Eqn (7))
are in fact Fréchet derivatives, obtained at the infinite-
dimensional level using variational calculus. Since eval-
uating the functional, J, requires the solution of the
forward Stokes ice sheet model (Eqn (4)), which depends
on (B, n), derivatives of J with respect to (3, n) need to
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take into account this implicit dependence as well. The
main part of this section is devoted to the presentation
of expressions for computing the gradient and Hessian
using so-called adjoint methods. Here we simply state
the resulting expressions; their derivations are given in
Appendix A. Readers wanting more details on procedures for
finding gradients and Hessians of cost functionals defined by
solutions of partial differential equations (PDEs) may consult
Borzi and Schulz (2012), Gunzburger (2003) and Tréltzsch
(2010). All expressions in this section are given in infinite-
dimensional form, which provides a natural and ‘clean’ path
to computing the derivatives. These expressions can then
be discretized using standard finite-element methods, as
discussed in Appendix B.

To facilitate the computation of infinite-dimensional
gradient and Hessians, we introduce a so-called ‘Lagrangian
functional’:

&y dx

Lu,p; v,q; B,n =T, n)+/2n(u, n)éy :

Q

—/(pV-v+qV-u+f~v)dx
Q

+ [ B|ITul™ "Tu- Tvds,
Iy

which augments the regularized data misfit functional, 7,
with additional terms comprising the weak form of the
forward nonlinear Stokes problem (Eqn (4)). This weak form
is obtained by multiplying the nonlinear Stokes system
(Egn (4)) with arbitrary test functions v and g, integrating
over the domain Q, and using integration by parts (Oden
and Reddy, 1976; Braess, 1997; Gockenbach, 2006). The test
functions establishing the weak form are known as Lagrange
multipliers and, since they end up being identified with
solutions of so-called adjoint (Stokes) problems, are also
known as the ‘adjoint velocity’ v and the ‘adjoint pressure’
g. Finally, in the above equation, &, = 7(Vv + v is the
adjoint strain rate tensor and *:’ represents the scalar product
of two tensors.

The gradient of 7 can be found by requiring that variations
of the Lagrangian, £, with respect to the forward velocity and
pressure (u, p) and the adjoint velocity and pressure (v, q)
vanish. Variations with respect to (8, n) then result in the
following strong form of the gradient, G:

—V - (ygTVB) + |Tu/" 'Tu-Tv onTy,
_ (vgTVB)-n  on ol
GOM=y v v +2u,meéu:éy  inQ
(vaVn)-n  on ON).

(8)

Here 0T, is the boundary of the basal surface, n is the

outward normal vector on 9T, and g—Z(u, n) is given by

1

%(u, n) = In (An%é"_m) nu, n). 9)

The velocity, u, in Eqn (8) is obtained by solving the forward
Stokes problem (Eqn (4)) for given (3, n), and the adjoint
velocity, v, is obtained by solving the following adjoint
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Stokes problem for given (8, n) and for u satisfying Eqn (4):

V-v=20 inQ, (10a)
—-V-o0,=0 inQ, (10b)
v|r, = v|r, and ovn|r, = ovn|r, on T}, (10c)
ovn=u" —u onTy, (10d)
v.-n=20 on T}, (10e)

Tovn + B|Tu|™ ' Tv
+Bm—=1)|Tu|" 3 (Tu® Tu)Tv =0 onTy. (10f)

Here the adjoint stress, oy, is given by

e
oy = 2(u, n) (I ¥ ”W’) ev—1q,
n Eu:. €u

where | is the fourth-order identity tensor and ‘®" denotes
the outer product between second-order tensors. As can be
seen from Eqn (10), the adjoint Stokes problem is driven by
the misfit between observed and predicted surface velocity
on the top boundary, given by Eqn (10d); all other source
terms are zero. Note that while the forward problem is
a nonlinear Stokes problem, the adjoint Stokes problem
(Egn (10)) is linear in the adjoint velocity and pressure, and
is characterized by a linearized Stokes operator with an
effective anisotropy that depends on the forward velocity,
u, as well as a linearized basal boundary condition with
coefficient depending on u. The effective anisotropy of the
adjoint Stokes operator can be seen in the expression for
the adjoint stress, ov, above: the isotropic action of the unit
tensor, |, is reduced (since n > 1) by the second term in
the viscosity tensor, which acts only in the direction of the
forward strain rate, €,. Note also that the adjoint Stokes
operator is the same operator as the Jacobian that arises in
Newton’s method for the forward (nonlinear) Stokes problem.
This is because the forward problem can be derived from a
(constrained) variational problem (Appendix C), and thus the
Jacobian of the forward problem is self-adjoint. This means
that any forward nonlinear Stokes ice sheet code based on a
Newton solver is already equipped with the operator needed
to solve the adjoint Stokes problem.

The computation of the gradient, G, for a given (8, n) iterate
proceeds as follows. First, given the current estimate of the
parameter fields (3, n), the forward nonlinear Stokes problem
(Egn (4)) is solved using Newton’s method, with a step size
appropriately chosen such that the corresponding energy
functional is decreased (Appendix C). The resulting forward
velocity, u, is then used to construct the effective anisotropic
viscosity tensor, the basal boundary condition coefficient and
the data misfit ‘source’ term for the adjoint Stokes problem
(Egn (10)). This adjoint Stokes problem is then solved (using
the same linear solver used for the forward (linearized) Stokes
problem; Section 4.1) to yield the adjoint velocity, v (and
adjoint pressure, g). The forward and adjoint velocities, along
with the current parameter field iterates (3, n), then enter into
the evaluation of the gradient G in Egn (8). The role of the
forward and adjoint Stokes solutions in the Newton iteration
is summarized in Algorithm 1.

The gradient computation (Eqn (8)) is inexpensive relative
to the forward and adjoint Stokes solutions, since it does
not require the solution of any additional linear systems.
Solution of the adjoint Stokes problem (Eqn (10)), in turn,
is inexpensive relative to the solution of the forward Stokes
problem (Eqn (4)), since the latter is nonlinear and its solution
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typically requires five to ten linear solutions, while the
former is linear. Thus, the gradient can be found using
this adjoint approach at minimal additional cost beyond
solving the forward Stokes problem, independent of the
number of (discretized) inversion parameters. The same
cannot be said about a ‘direct’ method for computing
the gradient (Hinze and others, 2009). Direct methods
compute the sensitivity with respect to each parameter by
solving a linear Stokes problem, and thus require as many
additional linear Stokes solutions as there are discretized
inversion parameters.

Now that the gradient computation forming the right-hand
side of the Newton system (Eqn (7)) has been described,
we present the computation of the Hessian operator, H,
on the left-hand side of the Newton equation. It is well
known that the Newton direction is a descent direction only
if the Hessian is positive definite. Unfortunately, even when
the inverse problem is well posed, # is guaranteed to be
positive definite only close to a minimum (Nocedal and
Wright, 2006). The remedy we apply here is to neglect terms
in the Hessian expression that involve the adjoint variable
(Appendix B). This leads to the so-called Gauss—Newton
approximation of the Hessian, which (with appropriate
regularization) is guaranteed to be positive definite. Since the
adjoint system (Eqn (10)) is driven only by the data misfit,
(U™ — u), on the top boundary, T, the adjoint velocity is
expected to be small when the data misfit is small, which
occurs close to the solution of the inverse problem, provided
the model or observational errors are not large. The Gauss—
Newton Hessian is thus often a good approximation of the
full Hessian. In such cases, even though one loses the strict
quadratic convergence guarantee of Newton’s method, one
can still obtain fast, superlinear convergence, as well as
independence of the number of iterations from the number
of inversion parameters, as will be seen in the numerical
results in Section 4. In the remainder of this paper, we
employ the Gauss—-Newton approximation of the Hessian,
but for simplicity we occasionally drop the term ‘Gauss’
when referring to the method.

Formally, when the Hessian operator in the Newton system
(Egn (7)) is discretized, it gives rise to a dense Hessian matrix
of dimension equal to the number of inversion parameters
(Appendix B). Computing each column of the Hessian
requires solution of a linearized forward problem (Hinze
and others, 2009). Therefore, explicitly forming and storing
this matrix is not an option. Instead, we solve the Newton
system (Eqn (7)) using the linear CG method, which does
not require the explicit Hessian, instead requiring only the
action of the Hessian on a vector at each CG iteration. Next,
we present expressions for this Hessian action in terms of the
solution of a pair of linearized forward and adjoint problems.
These expressions are simply stated here; their derivation is
presented in Appendix A (in the case of a linear rheology,
and invoking the Gauss—Newton approximation).

The action of the Gauss—Newton Hessian operator in a
given CG direction, (B, ), evaluated at the current Newton
iterate, (53, n), can be expressed as

H(B, n)(B, )
—V.-(y3TVP) + |[Tu|"'Tu-TV onTy,
_ (y8TVP)-n  on oI, an
V- (V) + 29U, n) éu: &y inQ,
(vaVN)-n  on 09,
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where the incremental forward velocity/pressure (i, p)
satisfy the incremental forward Stokes problem,

V-a=0 inQ, (12a)
—V-o3=V-71y, inQ, (12b)
ilr, = |, and ogn|r, = oun|r, onT}, (120)
ogn=—7yn only, (12d)
1-n=0 onTy, (12e)
Toun+ B|Tul™ 'Ta
+B8m—)|Tu|"(Tue TwTa
= —B|Tu|™ "Tu— Trynon Ty, (12f)

with o = 2n,n (I + 52%2%)e; — Ip, and
Ty = 2d—Z(u, nhéy, and the incremental adjoint

velocity/pressure (v, §) satisfy the incremental adjoint
Stokes problem

vV-v=0 inQ, (13a)
—V:-oy=0 inQ, (13b)
V|, = V|r, and oyn|r, = oyn|r, on T}, (13c)
oyn=—10 onTIy, (13d)
v.-n=20 onI}, (13e)
Toyn+ B|Tu|™ ' TV
+ B(m — 1)|Tu|m_3(Tu® Tu)Tv=0 onTy, (13f)
with oy = 2n(u,n) (I + 52%85)éy — 1. In these

expressions, & and &y are defined in the same manner as &,
and &y. Note that the only source term in the incremental
adjoint problem (Eqn (13)) is provided by the incremental
forward velocity on the right-hand side of Eqn (13d), which
results from a linearization of the residual of the adjoint
Stokes problem (Eqn (10)). The only source terms in the
incremental forward Stokes problem are given, in turn, by the
forward velocity, which again stems from the linearization of
the residual of the forward problem.

In summary, the ‘workflow’ for computing the application
of the Hessian to a vector, (3, i), proceeds as follows. First,
in evaluating the gradient for each Newton iteration, we
have already solved the forward nonlinear Stokes problem
(Egn (4)) to obtain the forward velocity/pressure, (u, p), and
the adjoint Stokes problem (Eqn (10)) to obtain the adjoint
velocity/pressure, (v, q). Next, the right-hand side of the
incremental forward Stokes problem (Eqn (12)) is constructed
from the forward velocity, and this Stokes problem is solved
to obtain the incremental forward velocity/pressure, (i1, p).
Then, the incremental forward velocity forms the right-hand
side of the incremental adjoint Stokes problem (Eqn (13)),
which is subsequently solved to yield the incremental adjoint
velocity/pressure, (v, ). Finally, the incremental adjoint
velocity (along with the forward velocity) is used to evaluate
Egn (11), the application of the Gauss—Newton Hessian to
(B, n). Algorithm 2 summarizes the role of incremental Stokes
solutions in the CG iteration.

There are several observations to make about these
expressions. First, the Hessian action (Eqn (11)) has the
same form as the gradient (Eqn (8)). Second, the incremental
forward and adjoint Stokes problems (Eqns (12)) and ((13))
have the same operator as the adjoint Stokes problem
(Egn (10)), and differ only in the domain and boundary source
terms. Like the adjoint Stokes problem, both incremental
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Initialize/define variables my = (81, m), o, p, ¢, &40
fork=1,...do
(ug, py) < solve the forward equation with my
(Vk, qi) < solve the adjoint equation with my and (uy, py)
g < compute the gradient given by the discretization of (8)
Perform inexact CG iterations (Algorithm 2) to compute iy,
a1
while no descent do
My g < My + oy
Solve the forward equation with my 4
if J(my.q) < J(my)+ cag]my then
Jmy) < T(my_q)
else
a4 po
end if
end while
if [|g,/l < <ol then
converged
end if
end for

Algorithm 1. Adjoint-based inexact Newton method

systems are linearized Stokes equations with anisotropic
effective viscosity tensors that depend on the solution of the
forward Stokes problem. Since the operator for the adjoint
Stokes problem (Eqn (10)) is identical to the Jacobian of the
nonlinear forward Stokes problem (Eqn (4)), the tools needed
to solve the incremental systems are already available in
any Newton-based forward Stokes solver, as they are for
the gradient.

Each CG iteration entails forming the Hessian action
(Egn (11)) (which, when discretized, leads to a Hessian
matrix-vector product), which, in turn, requires solution
of the incremental forward and adjoint systems (Eqns (12)
and (13)). If a direct linear solver based on a matrix factoriza-
tion is feasible, the cost of the Stokes matrix factorization can
be amortized across the incremental system solutions in all
CG iterations needed for each Newton iteration; in this case,
only triangular solutions are required at each CG iteration. If
a direct solver is not feasible, then at least the preconditioner
can be reused for all of the incremental solutions during the
CG iterations. In any case, it is critical to reduce the number
of CG iterations as far as possible.

Moreover, since accurate solution of the Newton system
(Egn (7)) is needed only close to the minimum of the
regularized data misfit functional, 7, to retain superlinear
convergence (Nocedal and Wright, 2006), we terminate
the CG iterations early for iterates that are far from the
converged solution. This significantly reduces the number
of required linearized forward/adjoint solutions. One form
of this inexact Newton method terminates the CG iterations
when the norm of the residual of the linear system (Eqn (7))
drops below a tolerance that is proportional to the norm
of the gradient (Algorithm 2). Far from the minimum —
when the relative gradient is large — the tolerance is also
large, and the CG iterations are terminated early. As the
minimum is approached, the norm of the gradient decreases,
thereby enforcing an increasingly more accurate solution of
the Newton system (Eqn (7)). The criterion above is able to
significantly reduce the number of CG iterations (and thus
the required number of linearized forward/adjoint Stokes
solutions), while still maintaining superlinear convergence.
Compared to a more accurate computation of the Newton
direction, this inexactness can result in a slightly larger
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i) < 0,i+ 0

0
r) g,
0 0
di —ry
v < min (0.5, lg |
ligoll

while ||r} || > v||g, |l do
(@, px) < solve incremental forward equation with d),
(¥, k) < solve incremental adjoint equation with (i1, py)
Hd|, « evaluate the Hessian-vector product as given by the
discretization of (11)
riTrf
di Hyd?
e m +ao'd) .
rttr 4+ o'Hid)
i1 r;<+1Tri+1
i e T
p “ rLTrL
i+1 i1 i1 i
dk et B,
i i+1
end while

of

S i
m

Algorithm 2. CG algorithm for solving Hymy = —g,

number of Newton iterations, but significantly reduces the
overall number of CG iterations, and thus the overall number
of Stokes-like solutions.

Once the Newton direction is computed by inexact
solution of Eqn (7), we must guarantee that sufficient
decrease in J is obtained in that direction, so convergence
of the iterations can be assured. This is achieved by a line
search that finds a step size, «, satisfying the so-called
Armijo condition (Nocedal and Wright, 2006), which has the
attractive property that it requires only cost function evalua-
tions (entailing a forward Stokes solution), and not gradient
information. The Newton iterations are repeated until the
norm of the gradient of 7 is sufficiently small. The inexact
Newton method is summarized in Algorithms 1 and 2.

Typical values for the line search parameters in Algorithm 1
are 1 = 0.5 and ¢ = 10~*. Note that the CG iteration in
Algorithm 2 is initialized with m{, = 0, and thus the first CG
iterate, f, is the negative gradient direction, scaled by a®.

Finally we comment on the choice of the regularization
parameters, g and v», which depend on (an estimate of) the
observation error, also called the noise level. This error can,
for instance, be due to measurement error or model uncer-
tainties (Tarantola, 2005). We use the Morozov discrepancy
criterion (Vogel, 2002), i.e. we find regularization parameters
such that |lu — u®|| ~ &, where § is the noise level and
u = u, is the solution computed with the regularization
parameters (Fig. 1). Generally, the quality of the reconstruc-
tion is not very sensitive to the choice of the regularization
parameters. However, choosing parameters that are too large
will lead to an overly smoothed reconstruction, while a
regularization parameter that is too small for the error in
the observations results in instability in the inverse problem,
manifesting as noise in the inverse solution.

4. RESULTS FOR MODEL TEST PROBLEMS

In this section, we describe numerical test problems to
study the performance of the optimization algorithm and the
ability of the inversion procedure to recover the unknown
parameter fields. Tests are performed for inversion of the
sliding coefficient, 8, in problems with linear and nonlinear
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Fig. 1. lllustration of the detection of an optimal regularization
parameter, v (which can either be vg or ), using Morozov’s
discrepancy principle. The dashed horizontal line depicts the noise
level, §, and the solid curve shows the misfits ||uy — u®bs|| for
different values of ~. The value of ~ corresponding to the misfit
marked by the dot is a near-optimal regularization parameter
according to Morozov’s discrepancy principle. This criterion for
choosing the regularization parameter requires the solution of
several inverse problems with different values of . The plot shows
the parameter selection for model 1 described in Section 4.1.

rheology, and a linear sliding law. Then we show inversion
results for Glen’s flow law exponent parameter, n.

4.1. Model problems

We begin by presenting five model problems we use to assess
performance and efficacy of the proposed inversion method.
The forward problems are based on the Ice Sheet Model
Intercomparison Project for Higher-Order Models (ISMIP-
HOM) benchmark study by Pattyn and others (2008). For
all test problems, we consider a 3-D hexahedral ice slab
of thickness H = 1km on an inclined plane with slope
s = 0.1° (Fig. 2). The driving force in the Stokes equations
(Egn (4)) is the gravity, pg = (pgsin8,0, —pg cos 0), where
p = 910kgm™ is the ice density, g = 9.81ms™? is the
gravitational constant, and § = 0.17/180 is the slope in
radians. The basal sliding coefficient field is defined as

B(x, y) = 1000 4+ 1000 sin(wx) sin(wy), (14)

where (x,y) € [0,L] x [0, L] with L the length of the ice
sheet, taken to be 5km unless otherwise specified, and
w = 2m/L. Thus, the wavelength of the basal variation is
L. Unless otherwise specified, we use a linear basal sliding
law (i.,e. m = 1 in Eqn (4f) with the sliding coefficient
given by Eqn (14), periodic boundary conditions for the
lateral boundaries and zero traction on the top surface. The
sliding and rheology laws considered here are given by
Eqgns (2) and (3). For linear rheology (i.e. n = 1), the ice
flow parameter, A, is 2.140373 x 1077 Pa~"'a~', and for
nonlinear rheology A = 107"®Pa="a~! (Pattyn and others,
2008).

For all numerical experiments, surface velocities ex-
tracted from forward solution fields are used as synthetic
observations in the inverse problem. Random Gaussian
noise is added to these observational data to lessen the
‘inverse crime’, which occurs when the same numerical
method is used to both synthesize the data and drive
the inverse solution (e.g. Kaipio and Somersalo, 2005).
We choose a regularization parameter that approximately
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Fig. 2. Coordinate system and cross section through a 3-D slab of
ice, as used in the computational experiments.

satisfies Morozov’s discrepancy principle. We discretize the
domain, €, into hexahedra, and, for the forward and adjoint
Stokes problems as well as their incremental counterparts,
we employ Taylor-Hood finite elements to approximate the
velocity—pressure pairs, i.e. trilinear elements for pressure
and triquadratic elements for velocity components. For the
unknown inversion fields, 3 and n, bi- and trilinear elements,
respectively, are used. All Stokes-like systems (which share
a coefficient matrix given by the Jacobian of the forward
problem) are solved by MATLAB’s backslash operator, i.e.
using a direct factorization.

The performance of the inexact Newton method presented
in Section 3 is compared with two commonly used (e.g.
Morlighem and others, 2010; Goldberg and Sergienko,
2011) versions of the NCG method, namely the Fletcher-
Reeves and Polak-Ribiere nonlinear CG methods with a line
search such that the step length satisfies the strong Wolfe
condition (Nocedal and Wright, 2006, p.60). To speed up
the convergence of the Fletcher—Reeves algorithm, a restart is
performed whenever two consecutive gradients are far from
orthogonal, as measured by the test |g£gk_1|/||gk||2 > v,
where g, _; and g, are the (discrete) gradients at iterations
k — 1 and k, respectively. A typical value for the parameter
v is 0.1 (Nocedal and Wright, 2006, p. 125).

We now describe the five model problems used below. The
general set-up of these problems is as previously described.
Below we focus only on specifying the ‘true’ inversion fields
and other specific problem features.

1. The first model problem considers inversion for the basal
sliding coefficient, 8, with linear rheology as given by
Egn (2), with n = 1, and linear sliding law, given by
Egn (3) with m = 1. The true g field is given by Eqn (14).
This model is used for assessing the performance of the
proposed inexact Newton method.

2. This problem is as model 1, but with L = 10km.

Additionally, we add a small-wavelength variation to the
sliding coefficient, i.e. we replace Eqn (14) by

Bi(x,y) = B(x, y) + 100 + 100 sin(8wx) sin(8wy).

3. This is the same as model 1, but in addition to the
linear rheology we also consider a nonlinear rheology
law (n = 3) and various sizes of the domain, namely
L =5, 10, 20 and 40km. By choosing these different
horizontal dimensions, we are able to assess the ability
to invert for several different wavenumber variations in
the true 3 field from surface observations.
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Table 1. Number of iterations (#iter) and the number of Stokes factorizations (#Stokes) for the NCG and inexact Newton methods for an
inverse problem with nonlinear rheology. The first column (Mesh) shows the number of elements used to discretize the variables in the
two horizontal and the vertical directions; the second column (#dof) indicates the total number of velocity and pressure variables and the
third column (#par) indicates the number of inversion (3) parameters. The fourth and fifth columns report the number of NCG iterations
and the number of Stokes factorizations for the Fletcher-Reeves (FR) and Polak—Ribiere (PR) variants of the NCG method. The sixth column
shows the number of Newton iterations, and in parentheses the overall number of CG iterations. The last column reports the number
of factorizations needed by the inexact Newton method. The iterations are terminated when the norm of the gradient is decreased by a
factor of 10°. This table shows that the cost of solving the inverse problem by the inexact Newton method measured as number of Stokes
factorizations is roughly independent of the number of inversion parameters. This is not the case for the NCG method, i.e. as we increase
the mesh resolution, the numbers of iterations and Stokes factorizations increase significantly. In addition, the comparison shows that the
inexact Newton method is ~50 times faster (measured in the number of Stokes factorizations) than the commonly used NCG method

NCG (FR/PR) Inexact Newton
Mesh #dof #par #iter #Stokes #iter #Stokes
10 x 10 x 2 6978 121 75/56 1933/1592 9 (34) 50
20 x20 %2 26538 141 83/65 2268/2373 9 (33) 57
40 x 40 x 2 103458 1681 137/103 2841/2841 9(32) 57
80 x 80 x 2 408 498 6561 164/128 3759/2812 9 (33) 64

4. This model considers inversion for a smoothly varying
Glen’s flow law exponent parameter, n, in the nonlinear
Stokes equations (Eqn (4)). The basic geometry and
model set-up is as previously described, except that
the boundary conditions on both lateral x-z-plane
boundaries are set to no-slip conditions. The purpose of
this model problem is to study whether variations in the
volume viscosity field can be reconstructed from surface
velocity observations. For this purpose, we propose the
following true n field:

this is at the heart of cost function, gradient and Hessian
vector product evaluation. Here, we use a direct method
based on a matrix factorization to solve these Stokes systems.
Relative to computing a factorization, the cost of the
subsequent triangular substitutions is negligible, especially
for large problems. Thus, we characterize the cost of the two
inversion methods by the number of matrix factorizations
needed to achieve convergence for a given tolerance. This
allows conclusions about the performance of the methods to
be independent of the specific direct solver employed. Note
1 that the number of factorizations needed by both the inexact
nix,y,z) =3+ 3 [sin (w1 x) + sin (w1 y) + sin (w2 2)], Newton and the NCG methods is equal to the number of
(15)  distinct linear systems that must be factored (and thus, each
CG iteration within the inexact Newton iteration does not
require a factorization).
Table 1 compares the number of iterations and Stokes
factorizations required for convergence of the NCG and

where wy = 27 /L and wy = wH /4.

5. The geometry and problem set-up for this model are the
same as for model 4, but we aim to reconstruct the n

field: inexact Newton methods for an inverse problem with
nix,y, z) =3 +2max(ny, m), (16)  nonlinear rheology. Since realistic inverse ice sheet problems
where are very high-dimensional, we are particularly interested in

ni(x,y, z) = exp [ — 252

m%%a—{

0, else.

Here we choose the mean and the standard deviation
of the above Gaussians as xo = L/2, yo = 3L/4 and
o = 104/L/5. The goal of this problem is to study the
ability of the inversion method to reconstruct strong local
anomalies in the rheology. Such anomalies could indicate
that Glen’s flow law cannot be used to describe the
mechanical properties of the ice in that region sufficiently

well.

4.2. Performance of the inexact Newton method

Now we consider the behavior of the inexact Newton
method described in Section 3 and compare its performance
with the NCG method, using model 1 but with a nonlinear
rheology (n = 3) as a test problem. To motivate our
performance metric, note that the solution of linear or
linearized Stokes systems dominates the computational cost
for both inversion methods since, as explained in Section 3,
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(x —x0)* + (y — )/0)2}

_ 2
exp [—%} . X < X0,

the behavior of these optimization methods as the size of
the inverse problem grows. Thus, we use a sequence of
increasingly finer meshes to assess the performance. As can
be seen, for all four meshes the number of iterations needed
by the inexact Newton method is significantly smaller than
the number of iterations needed by the NCG method.
For example, on a mesh of 40 x 40 x 2 elements, the
Newton method takes 9 iterations with 32 CG iterations
overall (i.e. ~4 CG iterations per Newton step), whereas
the NCG method takes >100 iterations. When comparing
the number of factorizations, the difference between the
two methods is even more significant, i.e. the NCG method
requires ~50 times more Stokes factorizations than does
the inexact Newton method. One reason for this is that
CG (i.e. inner) iterations of Newton do not incur any
additional factorizations, since the linear systems that are
being solved have the same coefficient matrix. Moreover,
even though computing a descent direction for the NCG
method is theoretically cheaper (since it requires only
gradient information), the difficulty of finding an appropriate
step length that satisfies the Wolfe condition amounts to a
large number of linearized forward solutions (i.e. number of
factorizations). Finally, the results show that the number
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Fig. 3. (a) The cost function value versus the number of Stokes factorizations for the inexact Newton (red) and the Fletcher—Reeves (FR) (blue)
and Polak-Ribiere (PR) (black) variants of the NCG method. The basal sliding coefficient, 3, was reconstructed with nonlinear rheology,
and for SNR = 500 and L = 10. This plot corresponds to the coarsest mesh (10 x 10 x 2) case in Table 1. The inexact Newton method is
seen to be significantly more efficient than the NCG methods. (b) The coefficient 6, = |81 — 8|2 /1I1Bx — B¥ ;2 (with By denoting the
kth iterate and 8* the inverse solution) plotted against the iteration number. Since 6, — 0, the method converges at a superlinear rate.

of Newton iterations is insensitive to the inverse problem
size, in accordance with the theory (Heinkenschloss, 1993).
This is not the case with the NCG method, which for the
nonlinear rheology case shows a significant increase in the
number of iterations and Stokes factorizations with problem
size. The ability of Newton methods to scale independently
of inverse problem size is critical to the prospects for
solving large-scale ice sheet inverse problems, as will be
encountered in full-continental inversions for basal sliding
and rheology coefficients.

To visualize the differences in performance between the
inexact Newton and NCG methods, in Figure 3 we plot (left)
the cost function value vs the number of Stokes factorizations
for the inexact Newton and for the Fletcher-Reeves (FR)
and Polak—-Ribiéere (PR) variants of the NCG method. These
results are for model 1 with nonlinear rheology (n = 3).
This figure further illustrates the significant improvement in
efficiency of the inexact Newton method over the NCG
methods. In Figure 3b, we plot the convergence coefficient
of the inexact Newton method, defined by 6, = ||Bxi1 —
BN 2/ 1Bk — B\l 2, where By is the kth iterate, and 8™ is
the inverse solution. This result shows that limj_, ., d; = O,
and thus the convergence rate is superlinear (Kelley, 1999;
Nocedal and Wright, 2006).

4.3. Inversion results

Inversion for the basal sliding coefficient, 3

Here we study how well variations in the basal sliding
coefficient field, 8, can be reconstructed from synthetic
observations. We use a linear sliding law (m = 1) and both
linear (n = 1) and nonlinear (n = 3) rheology. The goal is
to study the limits of invertibility for the sliding coefficient,
B, as a function of wavelength of the basal variation
and the noise level in the synthetic velocity observations.
Related studies based on approximate derivatives found
from analytical transfer functions are given by Raymond and
Gudmundsson (2005), Raymond (2007), Gudmundsson and
Raymond (2008) and Raymond and Gudmundsson (2009).
To specify the noise level, we use the signal-to-noise ratio
(SNR), which we define as the ratio between the average
surface velocity and the standard deviation of the added
noise, opoise, 1.€.

SNR = — 2

Onoise

(17)
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where U is the average surface velocity based on some [P
norm (we use o = ||u||Lz(F‘)/|Ft|1/2 for models 1-3, and
U = ||u]|rm, for models 4 and 5).

We start with the (linear) model 2, where the true S
coefficient field is given by a sum of small and large
wavelength variations (Fig. 4,c). Due to the presence of noise
in the data (SNR = 100), the basal sliding coefficient, 3,
can be reconstructed only approximately (Fig. 4d). While
the large-wavelength component is well recovered, the
small-wavelength variations cannot be reconstructed by the
inversion method. This can be explained by the fact that
the surface velocity response to these small-wavelength
variations in 8 is small due to the smoothing property of
the parameter-to-observable map; effectively, the solution of
the Stokes problem acts as a low-pass filter. These small
observed velocities are overwhelmed by the noise in the
data, making the reconstruction of the small-wavelength
component impossible.

We continue with a more systematic study of the interplay
between length scales in the basal variation, the SNR,
the nonlinearity of the rheology and the quality of the
reconstruction, using the problem setting for model 3.
First, we solve the Stokes equations for the true basal
sliding coefficient for different wavelengths, L, of the
sliding coefficient. Then we add noise with a given
SNR to the resulting surface velocities and use these
synthetic observations to reconstruct the basal sliding
coefficient. Results for different noise levels and for linear
and nonlinear rheology are summarized in Table 2. The
regularization parameters are computed according to the
Morozov discrepancy principle (Table 2a). The relative errors
between the true and the reconstructed 3 coefficient field,
i.e. ||Buue — Blli2/||Brruel |12, are reported in Table 2b. Besides
the expected result that more noise makes the reconstruction
of the true sliding coefficient more difficult, we make the
following observations:

1. Asthe noise level decreases, for both linear and nonlinear
rheology, the basal sliding coefficient, 8, reconstructed
from the noisy surface observations converges to the
true B (i.e. the one that was used for the synthetic
observations).

2. The larger the wavelength, L, of the variation of the basal
sliding coefficient, the better it can be reconstructed.
This result is in agreement with findings reported by
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Fig. 4. Inversion for a rough basal sliding coefficient, 8, with a
linear rheology law and a domain of 10km x 10km x 1km.
(a, b) Observations of (a) surface velocity with SNR = 100;
(b) surface velocity based on reconstructed basal sliding coefficient.
(c) True basal sliding coefficient; (d) inverted 3 field based on noisy
observations. The regularization parameter, v, is chosen according
to Morozov’s discrepancy principle. Even though the observations
are fitted to within the noise (a, b), only the smooth components of
B can reconstructed (d).

Gudmundsson and Raymond (2008), which are based
on analytical transfer functions along flowlines and, thus,
describe the effects of small-amplitude basal variations on
the surface velocity. Gudmundsson and Raymond (2008)
find that for 1% noise (i.e. for SNR = 100), the variation
in a basal sliding coefficient with a mean value of 500
can be reconstructed accurately only if its wavelength is
~50 times the ice thickness, which is equivalent to L =
50 in our set-up. Our finite-amplitude results (Table 2)
suggest that, for a mean sliding coefficient of 1000, a
reasonable reconstruction can be achieved already for
a smaller wavelength-to-ice-thickness ratio of ~10 for
linear rheology and 20 for nonlinear rheology.

3. The reconstruction of § is significantly more difficult
for nonlinear than for linear rheology. To illustrate this,
in Figure 5 we show the basal sliding coefficient, 3,
reconstructed from synthetic data with SNR = 100
for both linear and nonlinear rheology. For a smaller
wavelength in the g field (of L = 10km), 8 can be
identified well using a linear rheology (Fig. 5b). However,

https://doi.org/10.3189/2012J0G11)182 Published online by Cambridge University Press

Table 2. (a) The optimal regularization parameter computed from
the discrepancy principle. ('~ indicates cases for which no
finite regularization parameter exists that satisfies the discrepancy
principle, since the noise level is larger than the variance of the
surface velocity. In these cases, the noise dominates the data and the
sliding coefficient cannot be reconstructed from the data.) (b) The
error with linear and nonlinear rheology for signal-to-noise ratios
SNR = 500, 100, 20 and 10

1. Linear rheology
SNR SNR
L 500 100 20 10 500 100 20 10

2. Nonlinear rheology

(@) The optimal regularization parameter,
5 0.015 0.1 - - - - - -
0.03 0.15 - -

10 0.2 1.2 8 35
20 1.5 10 70 200 0.8 5 25 55
40 8 60 550 1600 6 40 300 800
(b) The relative error, 7“?;6[%“@
lrueHLZ
5 0.031 0.112 - - - - - -
10 0.022 0.049 0.157 0.310 0.032 0.165 - -

20 0.017 0.041 0.109 0.177
40 0.013 0.039 0.125 0.191

0.026 0.045 0.118 0.285
0.015 0.036 0.097 0.149

nonlinear rheology for the same L weakens the ability to
reconstruct S (Fig. 5¢). However, the larger wavelength
in the B field (of L = 40km) can be reconstructed well
even for nonlinear rheology (Fig. 5d).

4. To further interpret the findings summarized in points

2 and 3, Figure 6 shows sections through the surface
flow velocity field for small- (L = 10) and large- (L =
40) wavelength § fields, and for linear (n = 1) and
nonlinear (n = 3) rheology. Note that the deviation from
a constant flow at the top surface grows with increasing
L, and decreases with the degree of nonlinearity (n) of
the rheology. This departure from a uniform flow is what
allows the reconstruction of a spatially varying basal
sliding coefficient, through the solution of an inverse
problem; larger deviations from a constant are not as
easily overwhelmed by noise. This explains why the
reconstruction of the sliding coefficient in the presence of
a certain noise level is better for L = 40 than for L = 10
(see 2 above) and for linear than for nonlinear rheology
(see 3 above).

Inversion for Glen’s flow law exponent, n
Here we present inversion results for models 4 and 5. We
find that the reconstruction of a spatially varying Glen’s flow
law exponent field, n (i.e. the rheology parameter field), from
surface observations is possible, and works particularly well
when n varies smoothly. For both cases the inversion was
started with a spatially uniform n field, namely n = 3.
Figures 7 and 8 present results of inversion for models 4
and 5, respectively. For each of these models, the top panels
show the noisy observations of the surface velocity (left) and
the velocity field obtained solving the Stokes equations with
the reconstructed n field (right). These images demonstrate
that the inversion matches the observations to within the
noise. Figures 7c and 8c show the true n rheology parameter
fields (used to generate the synthetic observations) and
their reconstructed values. Slices through the same true and
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Fig. 5. Reconstruction of basal sliding coefficient, 3, from noisy
synthetic observations (SNR = 100) from model 3. Shown are
the true 3 field (a) and the reconstruction for L = 10 with linear
rheology (b) and with nonlinear rheology (c). (d) Reconstruction for
a nonlinear rheology with L = 40.

2000
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reconstructed n fields for models 4 and 5 are shown in
Figures 7d and 8d.

The n parameter fields, which are either smoothly
varying (model 4) or highly localized (model 5), can
be well reconstructed from the surface observations. The

899

surface-to-volume ratio of observations to parameters makes
the inversion of a spatially varying n parameter field
an underdetermined problem and, thus, regularization is
essential in the noise-free case, as well as the noisy case.

Despite this ill-posedness, the sharp horizontal variation
in the n parameter field of model 5, which could originate
from, for instance, spatially varying crystal fabric orientation,
impurity content or fracture, is well reconstructed. Note that
in the upper part of the slab the reconstructions are close to
the true n fields, but they degrade in the deeper parts of the
slab.

5. CONCLUSIONS

We have presented an adjoint-based inexact Newton method
for estimating uncertain (or unknown) parameters in ice
sheet models that are governed by the nonlinear full-
Stokes equations. We have applied this method to the
inverse problem of inferring the basal sliding coefficient
and the exponent in Glen’s flow law from observations
of ice surface velocity. To address the ill-posedness of the
inverse problem, a Tikhonov-type regularization is used.
This penalizes oscillatory components in the unknown
parameter fields, which cannot be reconstructed reliably in
the inversion.

We have studied the performance of the proposed method
in comparison with the NCG method, which has been
applied previously to glaciology inverse problems (Vieli and
Payne, 2003; Morlighem and others, 2010; Goldberg and
Sergienko, 2011). We conclude that the Newton method is
significantly (of the order of six times) more efficient than the

—Linear
- - -Nonlinear

= —Linear a
- --Nonlinear

Velocity (ma™")
no
o
Velocity (m a")
(3]
o

s

! T
b —Linear | C

- --Nonlinear|

Velocity (m a")
S

-
-, N amea -

--------------------------------- L R TP -t 4 I
5 0.2 0.4 06 08 1 15 02 04 0.6 08 1 1% 02 0.4 06 0.8 1
Normalized x MNormalized x Normalized x
60 - 60 :
——Linear ——Linear | f
|- - -Nonlinear - --Nonlinear|
50 50
T: 40 40
£
z
© 30 30
@
=
20 20
1% 0.2 0.4 0.6 0.8 1 1% 0.2 0.4 06 0.8 LS 0.2 0.4 06 058 1
Normalized x Normalized x Normalized x

Fig. 6. Surface velocity response for Stokes flow problem described in model 3 for linear and nonlinear rheology. The plots show x-component
velocities at y = L/4 for variations in 8 with wavelengths L = 10 km (a—c) and L = 40 km (d-f). (a, d) depict surface velocities based on the
true basal sliding coefficient. (b, e) show these synthetic observations with added noise (SNR = 100). (c, f) display surface velocities based
on the reconstructed 3 field. Note that the noise in the data for L = 40 km (e) appears smaller than for L = 10km (b) due to the plotting
range for the y-axis, which is chosen according to the velocity variation. The deviation from a constant in the surface flow velocity (i.e. the
observations for the inverse problem) decreases with L and with increasing nonlinearity in the rheology, which makes the reconstruction of

B more difficult (cf. Fig. 5d).
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Fig. 7. Reconstruction of n exponent field in Glen’s flow law in
model 4. Noisy synthetic observations of the surface velocity (a) are
contrasted with the velocity field corresponding to the reconstructed
n field (b). (c, d) The true (c) and reconstructed (d) n parameter fields.

NCG method and that the cost of solving the inverse problem
measured in number of Stokes solutions is insensitive to
the number of inversion parameters. This finding suggests
that the inexact Newton method is desirable for large-scale
ice sheet inverse problems. Moreover, the additional linear
system solutions entailed by the inexact Newton method
are characterized by linearized Stokes operators that are
identical to that of the adjoint system (which, in turn,
is identical to that of a Newton solver for the nonlinear
forward problem); they differ only in the source terms.
Thus, implementation of the inexact Newton method for the
inverse problem is conceptually straightforward and builds
on existing Newton-based solvers for the nonlinear Stokes
forward problem.

We have formulated and solved five model problems to
study the invertibility of the basal sliding coefficient, 8, and
Glen’s flow law exponent parameter, n. First, we focused
on inversion for 3 fields characterized by wavelengths of
oscillation that vary from smooth to rough, with linear and
nonlinear rheology, and for different SNRs. We found that the
reconstructions converge to the true basal sliding coefficient
as the noise in the synthetic observations decreases, and that
nonlinear rheology makes the reconstruction of the basal
sliding coefficient more difficult. We attribute this difficulty
associated with nonlinear rheology to the fact that the surface
velocity from the nonlinear model is less sensitive to the basal
coefficient field, and hence contains less information for the
inversion. For the n inversion, the goal was to study how well

https://doi.org/10.3189/2012J0G11)182 Published online by Cambridge University Press

Fig. 8. Same as Figure 7, but for model 5.

a spatially (volumetrically) varying Glen’s flow law exponent
field can be reconstructed from surface observations. We
found that the reconstruction of the (volumetric) rheological
parameter — although highly underdetermined due to the
surface-to-volume ratio of observations to parameters, and
in spite of the fact that the target n fields induced a high
degree of nonlinearity in the Stokes equations — is very good
at the surface and deteriorates with depth.

To date, we have employed synthetic observations on
idealized geometries to study the performance of the
proposed method, as well as to probe the limits of
invertibility for basal and rheological parameters. In future
work we intend to apply this inversion framework to
continental-scale ice flow inverse problems with field
observations. A step in this direction has been made by
Price and others (2011), who used estimates of the basal
sliding coefficient for the Greenland ice sheet to predict
its contribution to sea-level rise by the year 2100. In
practice it may be necessary to impose bound constraints
on inversion parameters (e.g. to keep the sliding coefficient
positive, or to restrict the flow law exponent parameter to
an acceptable range). Therefore, in future work we also
plan to incorporate a priori knowledge about the inversion
parameters by extending our inversion method to handle
inequality bound constraints. To conclude, we believe the
proposed adjoint-based inexact Newton method provides an
efficient, scalable and robust framework for solving large-
scale ice sheet inverse problems.
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APPENDIX A. ADJOINT-BASED COMPUTATION OF
DERIVATIVES

Here we derive expressions for the gradient of the regularized
least-squares functional (Eqn (5)), which involves solution
of the Stokes equations (Eqn (4)). Gradients of functionals
defined by solutions of PDEs can be derived systematically
using the method of Lagrange multipliers (Gunzburger, 2003;
Ito and Kunisch, 2008; Troltzsch, 2010; Borzi and Schulz,
2012); for an illustrative application of this approach to
model problems see Petra and Stadler (2011). Variations
of the Lagrangian functional, which is a sum of the cost
functional and the weak form of the PDE, can be used
to derive the weak forms of the adjoint and incremental
equations, as well as expressions for the gradient and
Hessian. For an introduction to the mathematical theory
of the finite-element method (and, in particular, strong
and weak forms of PDEs), refer to Oden and Reddy
(1976), Braess (1997) and Gockenbach (2006). The weak
forms of the forward and adjoint equations can then be
transformed to strong forms by application of Green’s identity
(a multidimensional analogue of integration by parts; Evans,
1998; Gockenbach, 2006), which, for the inverse problem
considered in this paper, results in the equations presented in
Section 3. For simplicity of the presentation, in the derivation
below we focus on the particular case described in model 1,
i.e. inversion for the basal sliding coefficient in the linear
Stokes equations.

Let L%(Q2) denote the space of square-integrable functions,
and let H'(€) = (H'(Q))°, where H' () denotes the subspace
of 12(Q) consisting of functions whose first derivatives also
belong to [%(€), and the domain Q is a 3-D rectangular
section of an ice sheet. In addition, to impose the necessary
boundary conditions, we define

A ={ucH () : ulr, = ulr, u-n|r, =0},

where T', T’y and T, are the pair of opposing boundaries
and the boundary at the base (as described in Section 2).
For u,v € H(Q) and p,q€ L%(£)), we introduce the bilinear
forms A(-, -) : H(Q) x H(Q) — R and B(, ) : HQ) x [2(Q) —
R, the trilinear form S(-,-,-) : H(Q) x H( ) x H'(T},) — R,

and the linear form F(:) : H(Q) — R, defined by
Alu,v) = / 2néy : évdx, B(u,p)= / —pV - udx,
Q Q

S(u,v; B8) = BTu-Tvds,

Flu) = / f-udx.
T, Q

Furthermore, let us define
Qu,p;v,q; B) = Alu,v)+ B(v,p) + B(u, q) + S(u, v; B).

Then the weak form of the Stokes equation is: find (u, p) €
U = H(Q) x L*(Q) such that

Q(u,p;v,q; B) = F(v), forall (v,q) € U. (A1)
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The Lagrangian functional, £ : U x U x H' (T'p) — R, which
we use to derive the expressions for the optimality system, is
given by

Llu,p;v,q;B) =T () +Qu,p;v,q;3) — Flv),  (A2)

where J(B) is the cost functional corresponding to the 3
inversion given by

T@= 1 / u(s) — u
T

2
ds+”2£ 1TV ds. (A3)
Ty

Lagrange function theory states that variations of the
Lagrangian functional with respect to 3 are equivalent to the
gradient of J given in Egn (5), i.e.

Js(B) = Law, p; v, q; B)B) = RaBB1+Sw, v, B), (A4

provided variations with respect to (u, p; v, q) in all direc-
tions (&, p; ¥, §) vanish, i.e.

Ly,qlu,p;v,q; BV, § = Qlu,p; v,q; ) — F(¥)=0, (A5)

Lup(u,p;v,q p)a, p)= Wulwlal + Q(@, p; v, q; 8) =0,

(A6)
where the variations (&1, p; v, §; B) are taken from the same
spaces as (u, p; v, g; ), and

Walu)ld] = /F r(u —u™)

Rs(BIB] = 5 / TVB - TV ds.

Iy

In the above equations, the subscripts for the operators
denote the variables with respect to which we take variations.
Note that Eqn (A5) is the weak form of the forward equation
and Eqn (A6) is the weak form of the adjoint equation. The
solutions of the forward and adjoint equations are used to
evaluate the gradient of 7(8) given in weak form by Eqn (A4).
In order to recover the strong form of the forward, adjoint and
gradient equations, one applies Green's identity.

Next, we derive the second-order variational derivatives
of the Lagrangian, which are needed for solution of
the optimality system by Newton’s method. In abstract
form, Newton’s method computes an update direction

(@, p; v, ; B) from the following Newton step:

Woa(@@] + S@, v; B) + Q@, p; V,@; f) = —Lup), (A7)
S(, v; B) + RasB)IBI + S, v; B) = —Ls,  (A8)
Qi p; ¥, ; B)+ S, ¥; B) = —Ly,q, (A9)

for all variations (&, p; v, g; B), where Ls, Lup) and Ly, g
denote the first variations of the Lagrangian, given by
Eqns (A4-A6), respectively. Here Eqns (A7) and (A9) are
the weak forms of the incremental adjoint and incremental
forward equations, respectively, and

Wuu(fl)[fl] - /tlfl dX,
I
RasPDIA = 75 / VA TVA ds.
1—‘b

Since we assume that (u, p) and (v, q) satisfy the forward
and the adjoint equations, the right-hand sides of Eqns (A7)
and (A9) vanish. Then we apply block elimination to
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eliminate the incremental forward variables (&1, p) from the

incremental forward equation,

Qa, p; v, §; B) = —S(u, ¥; B),

and the incremental adjoint variables (¥,§) from the

incremental adjoint equation,
Ql, p; ¥, G; ) = —Waul@) @] — S(@, v; b).
This results in the linear system for the Newton step:

H(B)IB, Bl = —G(B)(B),

where the gradient, G, is given by the first variation of the
Lagrangian with respect to 3 (given by the left-hand side in

Egn (A4)), and the Hessian, H, is given by

HB)IB, B = RasDIB) + S, v; B) + S(u, v; ),

where (&1, p), and (¥, §) satisfy the incremental forward
(Egn (A10)) and incremental adjoint (Eqn (A11)) equations,
respectively. We note that to obtain the Gauss—Newton ap-
proximation of the Hessian, we ignore the terms proportional

to the adjoint variables (i.e. 5(i1, v; B)).

APPENDIX B. DISCRETIZATION

We discretize the weak form of the forward and adjoint
Stokes equations (Eqns (A5) and (A6)) using the finite-element
method with a hexahedral mesh and employ Taylor-Hood
finite elements for the velocity—pressure solution, which
satisfies the inf-sup stability condition required for numerical
stability (ElIman and others, 2005). Bilinear elements for 3,
the unknown inversion field in the basal boundary conditions

of the Stokes model, are used.

Let us denote by @, Vv, p, q, 3 the vectors of di§crete
unknowns corresponding to the functions &, v, p, g, 8. The
discretized Newton step (at iteration k) is given by the linear

system:
Wuu Wug AT Elk g(u,P)
Wou R C | B |=—| 8 |,
A C 0 Vi g(v,q)

where Wyy, W3, Wg, and R are the components of the
Hessian matrix of the Lagrangian, A is the discrete forward
operator, C is the Jacobian of the forward equation with
respect to the optimization variable, 8, and g, ,, g5 and
8v,q are the discrete gradients of the Lagrangian with respect
to (u,p), B and (v, q), respectively. As before, we assume
that (uy, pr) and (v, qi) satisfy the forward and the adjoint
equations such that g, , = g, = 0, and that terms
proportional to the adjoint variable, i.e. W3 and Wg,, can
be neglected. We recall that the latter assumption gives rise

to the Gauss—Newton approximation of the Hessian.

The incremental forward and adjoint variables, @i, and v,
are computed from the first and last equations in Eqn (B1),
namely

iy = —A"'Cy,
V= —A" Wi,

where A~T is the adjoint operator. Finally, the discretized
Newton system (for the inverse problem)

HB, = —g; with H=R+C'A"'W,A™'C

is solved iteratively using an inexact preconditioned CG
method with preconditioning by the inverse of the regular-
ization operator, R.

APPENDIX C. NEWTON’S METHOD FOR THE
NONLINEAR STOKES EQUATIONS

Here we consider the solution of the nonlinear Stokes
problem (Eqn (4)) using Newton’s method. We state the
energy minimization problem that can be used to implement
a line search for finding the appropriate step length for
the Newton direction. It is known that the Stokes problem
can be written as the following optimization problem (e.g.
Dukowicz and others, 2010):

minj(u):/(@—f~u)dx+1— B|Tu|™ " ds, (C1)
u Q m+1 I,
subject to
V-u=0, (C2)
where
2n _1 L
RS T

The corresponding Lagrangian is
Ly, p) = T () + (V- u,pg,

where the pressure acts as a Lagrange multiplier. The
optimality conditions for the minimization problem given
by Eqn (C1) are computed as before, by taking variations
of the Lagrangian with respect to u and p, and by using the
fact that at the solution these variations with respect to all
variables must vanish. It can be seen that the variation of
® with respect to u in the direction of v is 2n(u)éy : &y,
and hence, after applying Green’s identity one recovers the
strong form of the nonlinear Stokes equations. Note that
since the current iterate as well as the update satisfy the
incompressibility condition (Eqn (C2)), using the linearity
property of the divergence operator, we conclude that
the incompressibility condition is satisfied for all iterates
as well.
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