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Let us define a reflection to be a unitary transformation, other than the 
identity, which leaves fixed, pointwise, a (reflecting) hyperplane, that is, a 
subspace of deficiency 1, and a reflection group to be a group generated by 
reflections. Chevalley (1) (and also Coxeter (2) together with Shephard and 
Todd (4)) has shown that a reflection group G, acting on a space of n dimen­
sions, possesses a set of n algebraically independent (polynomial) invariants 
which form a polynomial basis for the set of all invariants of G. Our aim here 
is to prove: 

THEOREM. Let G be a finite reflection group, acting on a space V of finite 
dimension. Let J be the Jacobian {matrix) of a basic set of invariants of G, com­
puted relative to any basis of V. Let p be any point of V. Then the following 
numbers are equal: 

(a) the maximum number of linearly independent reflecting hyperplanes 
containing p; 

(b) the maximum rank of 1 — x for all x in G for which xp = p; 
(c) the nullity of J at p. 

The equality of the numbers defined in (b) and (c) is the essence of a 
conjecture of Shephard (3). 

Throughout the paper, G is a reflection group, of finite order g, acting on a 
space V of n dimensions. The symbols Li, . . . , Lv denote the hyperplanes in 
which reflections of G take place, as well as non-zero linear forms which vanish 
on the corresponding hyperplanes, and for each i, at is a corresponding non­
zero normal vector, rt is the order of the (cyclic) subgroup of G which leaves 
Li fixed pointwise, and Rt is a generator of this subgroup. Finally, Iu . . . , In 

are basic invariants of G; du . . . , dn are their degrees; and / generically 
denotes their Jacobian, relative to whatever basis is at hand. 

LEMMA. For some non-zero scalar c, 

det J = c 17 Lrr\ 

A proof of this well-known result will be included because it and the corollary 
below play a key role in the proof of the theorem. Choose an orthonormal 
basis of V so that the first co-ordinate Xi is a multiple of L\. If I is any in­
variant of G, the equation Rxl = I implies that / is a polynomial in Xi7"1, 
whence 

x[l~ divides dl/dxi. 
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Thus the first row of J , and hence also det / , is divisible by 

xï1_1, and hence also by LJ1"1. 

Similarly, det J is divisible by each Lj«-1. Using the formula 

E ^ -1) = i: (rt -1), 
j=l i=l 

proved in (4, p. 290, 1. 12), a comparison of degrees shows that the factor c 
in the statement of the lemma is a scalar, non-zero because the Ij are algeb­
raically independent. 

From the first part of the proof we have : 

COROLLARY. The determinant of the Jacobian of any n invariants of G is 
divisible byY\Lrj~l. 

Proof of the theorem. If k, I, and m denote the respective numbers defined 
by (a), (b), and (c), we prove in turn that m < k, k < /, and / < m. 

First label the Z/s so that Li, . . . , Lu are those which contain p, and then 
choose an orthonormal basis pi, . . . , pn of V so that pi, . . . , pk span the 
same subspace as ax, . . . , au, the normals to the Z/s. Let G be the (reflection) 
group generated by Ru . . . , Ru. The co-ordinates xk+i = i^+i', . . . , xn = In

r 

are invariants of G'. If / / , . . . , Ik' are any invariants of G, they are also 
invariants of G', and the corollary above shows that 

ri rrx 

1 

divides 
a(7l, . . . , In)/d(xh . . . ,Xn), 

that is, divides 

d(/î, . . . , Ik)/d(xi, . . . ,xk). 

Consider now the expansion of det J across the first k rows : 
det J = J2 ± J'(ii> • • • ? i*)J"(ik+i, . . . , 4 ) , 

with J'{ii, . . . , ik) denoting the minor corresponding to the rows 1, . . . , k and 
columns ii, . . . , ik of J, J" {ik+i, . . . , in) denoting the minor corresponding to 
the rows k + 1, . . . , n and columns ik+i, . . . , in, and the sum being over all 
permutations iu . . . , in of 1, . . . , n for which ii < . . . < ik and ik+1 < . . . 
< in. By what has just been shown, each J' is divisible by 

n L?-\ 
i 

so that, by the lemma, there are polynomials M{ii, . . . , ik) such that 

I l LT1 = £ M{ii, . . . , ik)J"{ik+l, . . . , in). 
u+1 
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Since the left side of this equation is not 0 at p, we conclude that some J" 
is not 0 at p, whence J has rank n — k at least and nullity k at most at p. 
Thus m < k. 

Next, assume that the labelling is such that Lu . . . , L,c contain p and are 
linearly independent. Set x = R1R2 . . . Rk. Suppose xq = q, with q Ç V. 
Then Rclq = R2 . . . Rkq implies that 

q + Ciax = q + c2a2 + . . . + ckak 

for suitable scalars Cj, whence, because of the linear independence of the ajy 

we conclude that C\ = 0 and Riq = q. Similarly R2q = q, . . . , Rkq = ç, 
hence g lies in each of L1? . . . , L&, and the solution space of the equation 
xq = q has dimension n — k. Thus 1 — x has rank k, and the inequality 
k < I has been established. 

Finally choose x Ç G so that 1 — x has rank / and xp = p, and then an 
orthonormal basis pi, . . . , pn of F so that x£ ; = c ^ with cû dp. 1 for 1 < j < / 
and £7 = 1 for / + 1 < j < w. If / is an invariant of G, the equation xl = I 
implies that each term of / has a total exponent in the co-ordinates Xi, . . . , xt 

which is either 0 or at least 2. Thus for each j such that 1 < j < /, dl/dXj 
is 0 at any point at which xi, . . . , xt are all 0, in particular, at p. This implies 
that the first / rows of / vanish at p} whence / < m. 

Thus the theorem is completely proved. 
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